blob: aade0dfb00267772be28d74b2c3576a44753b97e (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
|
import os
import numpy as np
import scipy.io.wavfile as wavfile
from nose.tools import assert_almost_equals
import simpl.base as base
class TestFrame(object):
def test_buffers(self):
N = 256
f = base.Frame(N)
assert f.size == N
a = np.random.rand(N)
f.audio = a
assert np.all(f.audio == a)
a = np.random.rand(N)
f.synth = a
assert np.all(f.synth == a)
a = np.random.rand(N)
f.residual = a
assert np.all(f.residual == a)
a = np.random.rand(N)
f.synth_residual = a
assert np.all(f.synth_residual == a)
def test_peaks(self):
p = base.Peak()
p.amplitude = 0.5
p.frequency = 220.0
p.phase = 0.0
f = base.Frame()
assert f.num_peaks == 0
assert f.max_peaks > 0
f.add_peak(p)
assert f.num_peaks == 1
assert f.peak(0).amplitude == p.amplitude
assert f.peaks[0].amplitude == p.amplitude
f.clear()
assert f.num_peaks == 0
class TestPeakDetection(object):
float_precision = 5
frame_size = 512
hop_size = 512
audio_path = os.path.join(
os.path.dirname(__file__), 'audio/flute.wav'
)
@classmethod
def setup_class(cls):
cls.audio = wavfile.read(cls.audio_path)[1]
cls.audio = np.asarray(cls.audio, dtype=np.double)
cls.audio /= np.max(cls.audio)
def test_peak_detection(self):
pd = base.PeakDetection()
pd.find_peaks(self.audio)
assert len(pd.frames) == len(self.audio) / self.hop_size
assert len(pd.frames[0].peaks) == 0
|