summaryrefslogtreecommitdiff
path: root/src/sms/sms.c
blob: 8501d4da6f2807649351319893ce7ac0bc3210da (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
/* 
 * Copyright (c) 2008 MUSIC TECHNOLOGY GROUP (MTG)
 *                         UNIVERSITAT POMPEU FABRA 
 * 
 * 
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 * 
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of 
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 * 
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 * 
 */
/*! \file sms.c
 * \brief initialization, free, and debug functions
 */

#include "sms.h"
#include "SFMT.h" /*!< mersenne twister random number genorator */

char *pChDebugFile = "debug.txt"; /*!< debug text file */
FILE *pDebug; /*!< pointer to debug file */

static char error_message[256];
static int error_status = 0;
static sfloat mag_thresh = .00001; /*!< magnitude threshold for db conversion (-100db)*/
static sfloat inv_mag_thresh = 100000.; /*!< inv(.00001) */
static int initIsDone = 0; /* \todo is this variable necessary? */ 

#define SIZE_TABLES 4096
#define HALF_MAX 1073741823.5  /*!< half the max of a 32-bit word */
#define INV_HALF_MAX (1.0 / HALF_MAX)
#define TWENTY_OVER_LOG10 (20. / LOG10)

/*! \brief initialize global data
 *
 * Currently, just generating the sine and sinc tables.
 * This is necessary before both analysis and synthesis.
 *
 * If using the Mersenne Twister algorithm for random number
 * generation, initialize (seed) it.
 *
 * \return error code \see SMS_MALLOC or SMS_OK in SMS_ERRORS
 */
int sms_init(void) 
{
    if (!initIsDone)
    {
        initIsDone = 1;
        if(sms_prepSine(SIZE_TABLES))
        {
            sms_error("cannot allocate memory for sine table");
            return -1;
        }
        if(sms_prepSinc(SIZE_TABLES))
        {
            sms_error("cannot allocate memory for sinc table");
            return -1;
        }

#ifdef MERSENNE_TWISTER
        init_gen_rand(1234);
#endif
    }

    return 0;
}

/*! \brief free global data
 *
 * deallocates memory allocated to global arrays (windows and tables)
 */
void sms_free()
{
    initIsDone = 0;
    sms_clearSine();
    sms_clearSinc();
}

/*! \brief give default values to an SMS_AnalParams struct 
 * 
 * This will initialize an SMS_AnalParams with values that work
 * for common analyses.  It is useful to start with and then
 * adjust the parameters manually to fit a particular sound
 *
 * Certain things are hard coded in here that will have to 
 * be updated later (i.e. samplerate), so it is best to call this
 * function first, then fill whatever parameters need to be 
 * adjusted.
 * 
 * \param pAnalParams    pointer to analysis data structure
 */
void sms_initAnalParams(SMS_AnalParams *pAnalParams)
{
    int i;
    pAnalParams->iDebugMode = 0;
    pAnalParams->iFormat = SMS_FORMAT_H;
    pAnalParams->iSoundType = SMS_SOUND_TYPE_MELODY;
    pAnalParams->iStochasticType =SMS_STOC_APPROX;
    pAnalParams->iFrameRate = 300;
    pAnalParams->nStochasticCoeff = 128;
    pAnalParams->fLowestFundamental = 50;
    pAnalParams->fHighestFundamental = 1000;
    pAnalParams->fDefaultFundamental = 100;
    pAnalParams->fPeakContToGuide = .4;
    pAnalParams->fFundContToGuide = .5;
    pAnalParams->fFreqDeviation = .45;
    pAnalParams->iSamplingRate = 44100; /* should be set to the real samplingrate with sms_initAnalysis */
    pAnalParams->iDefaultSizeWindow = 1001;
    pAnalParams->windowSize = 0;
    pAnalParams->sizeHop = 110;
    pAnalParams->fSizeWindow = 3.5;
    pAnalParams->nTracks = 60;
    pAnalParams->maxPeaks = 60;
    pAnalParams->nGuides = 100;
    pAnalParams->iCleanTracks = 1;
    pAnalParams->fMinRefHarmMag = 30;
    pAnalParams->fRefHarmMagDiffFromMax = 30;
    pAnalParams->iRefHarmonic = 1;
    pAnalParams->iMinTrackLength = 40; /*!< depends on iFrameRate normally */
    pAnalParams->iMaxSleepingTime = 40; /*!< depends on iFrameRate normally */
    pAnalParams->fLowestFreq = 50.0;
    pAnalParams->fHighestFreq = 12000.;
    pAnalParams->fMinPeakMag = 0.;
    pAnalParams->iAnalysisDirection = SMS_DIR_FWD;
    pAnalParams->iWindowType = SMS_WIN_BH_70;
    pAnalParams->iSizeSound = 0; /*!< no sound yet */
    pAnalParams->nFrames = 0; /*!< no frames yet */
    pAnalParams->minGoodFrames = 3;
    pAnalParams->maxDeviation = 0.01;
    pAnalParams->analDelay = 100;
    pAnalParams->iMaxDelayFrames = MAX(pAnalParams->iMinTrackLength, pAnalParams->iMaxSleepingTime) + 2 +
        (pAnalParams->minGoodFrames + pAnalParams->analDelay);
    pAnalParams->fResidualAccumPerc = 0.;
    pAnalParams->preEmphasis = 1; /*!< perform pre-emphasis by default */
    pAnalParams->preEmphasisLastValue = 0.;
    /* spectral envelope params */
    pAnalParams->specEnvParams.iType = SMS_ENV_NONE; /* turn off enveloping */
    pAnalParams->specEnvParams.iOrder = 25; /* ... but set default params anyway */
    pAnalParams->specEnvParams.fLambda = 0.00001;
    pAnalParams->specEnvParams.iMaxFreq = 0;
    pAnalParams->specEnvParams.nCoeff = 0;
    pAnalParams->specEnvParams.iAnchor = 0; /* not yet implemented */
    pAnalParams->pFrames = NULL;
    /* fft */
    for(i = 0; i < SMS_MAX_SPEC; i++)
    {
        pAnalParams->magSpectrum[i] = 0.0;
        pAnalParams->phaseSpectrum[i] = 0.0;
        pAnalParams->spectrumWindow[i] = 0.0;
        pAnalParams->fftBuffer[i] = 0.0;
        pAnalParams->fftBuffer[i+SMS_MAX_SPEC] = 0.0;
    }
    /* analysis frames */
    pAnalParams->pFrames = NULL;
    pAnalParams->ppFrames = NULL;
    /* residual */
    sms_initResidualParams(&pAnalParams->residualParams);
    /* peak continuation */
    pAnalParams->guideStates = NULL;
    pAnalParams->guides = NULL;
    /* audio input frame */
    for(i = 0; i < SMS_MAX_FRAME_SIZE; i++)
        pAnalParams->inputBuffer[i] = 0.0;
    /* stochastic analysis */
    pAnalParams->stocMagSpectrum = NULL;
    pAnalParams->approxEnvelope = NULL;
    pAnalParams->ppFrames = NULL;
}

/*! \brief initialize analysis data structure's arrays
 * 
 *  based on the SMS_AnalParams current settings, this function will
 *  initialize the sound, synth, and fft arrays. It is necessary before analysis.
 *  there can be multple SMS_AnalParams at the same time
 *
 * \param pAnalParams    pointer to analysis paramaters
 * \param pSoundHeader    pointer to sound header
 * \return 0 on success, -1 on error
 */
int sms_initAnalysis(SMS_AnalParams *pAnalParams)
{
    int i;
    SMS_SndBuffer *pSynthBuf = &pAnalParams->synthBuffer;
    SMS_SndBuffer *pSoundBuf = &pAnalParams->soundBuffer;

    /* define the hopsize for each record */
    pAnalParams->sizeHop = (int)(pAnalParams->iSamplingRate /
                                 (sfloat) pAnalParams->iFrameRate);

    /* set the default size window to an odd length */
    pAnalParams->iDefaultSizeWindow = 
        (int)((pAnalParams->iSamplingRate / pAnalParams->fDefaultFundamental) *
               pAnalParams->fSizeWindow / 2) * 2 + 1;

    int sizeBuffer = (pAnalParams->iMaxDelayFrames * pAnalParams->sizeHop) + SMS_MAX_WINDOW;

    /* if storing residual phases, restrict number of stochastic coefficients to the size of the spectrum (sizeHop = 1/2 sizeFft)*/
    if(pAnalParams->iStochasticType == SMS_STOC_IFFT)
        pAnalParams->nStochasticCoeff = sms_power2(pAnalParams->sizeHop);

    /* do the same if spectral envelope is to be stored in frequency bins */
    if(pAnalParams->specEnvParams.iType == SMS_ENV_FBINS)
        pAnalParams->specEnvParams.nCoeff = sms_power2(pAnalParams->specEnvParams.iOrder * 2);
    else if(pAnalParams->specEnvParams.iType == SMS_ENV_CEP)
        pAnalParams->specEnvParams.nCoeff = pAnalParams->specEnvParams.iOrder+1;
    /* if specEnvParams.iMaxFreq is still 0, set it to the same as fHighestFreq (normally what you want)*/
    if(pAnalParams->specEnvParams.iMaxFreq == 0)
        pAnalParams->specEnvParams.iMaxFreq = pAnalParams->fHighestFreq;

    /*\todo this probably doesn't need env coefficients - they aren't getting used */
    if(sms_allocFrame(&pAnalParams->prevFrame, pAnalParams->nGuides,
                      pAnalParams->nStochasticCoeff, 1, pAnalParams->iStochasticType, 0)
       == -1)
    {
        sms_error("Could not allocate memory for prevFrame");
        return -1;
    }

    pAnalParams->sizeNextRead = (pAnalParams->iDefaultSizeWindow + 1) * 0.5;

    /* sound buffer */
    if((pSoundBuf->pFBuffer = (sfloat *) calloc(sizeBuffer, sizeof(sfloat))) == NULL)
    {
        sms_error("Could not allocate memory for sound buffer");
        return -1;
    }
    pSoundBuf->iMarker = -sizeBuffer;
    pSoundBuf->iFirstGood = sizeBuffer;
    pSoundBuf->sizeBuffer = sizeBuffer;

    /* check default fundamental */
    if (pAnalParams->fDefaultFundamental < pAnalParams->fLowestFundamental)
    {
        pAnalParams->fDefaultFundamental = pAnalParams->fLowestFundamental;
    }
    if (pAnalParams->fDefaultFundamental > pAnalParams->fHighestFundamental)
    {
        pAnalParams->fDefaultFundamental = pAnalParams->fHighestFundamental;
    }

    /* deterministic synthesis buffer */
    pSynthBuf->sizeBuffer = pAnalParams->sizeHop << 1;
    pSynthBuf->pFBuffer = calloc(pSynthBuf->sizeBuffer, sizeof(sfloat));
    if(pSynthBuf->pFBuffer == NULL)
    {
        sms_error("could not allocate memory");
        return -1;
    }
    pSynthBuf->iMarker = pSynthBuf->sizeBuffer;
    /* buffer of analysis frames */
    pAnalParams->pFrames = (SMS_AnalFrame *)malloc(pAnalParams->iMaxDelayFrames * sizeof(SMS_AnalFrame));
    if(pAnalParams->pFrames == NULL)
    {
        sms_error("could not allocate memory for delay frames");
        return -1;
    }
    pAnalParams->ppFrames = (SMS_AnalFrame **)malloc(pAnalParams->iMaxDelayFrames * sizeof(SMS_AnalFrame *));
    if(pAnalParams->ppFrames == NULL)
    {
        sms_error("could not allocate memory for pointers to delay frames");
        return -1;
    }

    /* initialize the frame pointers and allocate memory */
    for(i = 0; i < pAnalParams->iMaxDelayFrames; i++)
    {
        pAnalParams->pFrames[i].iStatus = SMS_FRAME_EMPTY;
        pAnalParams->pFrames[i].iFrameSample = 0;
        pAnalParams->pFrames[i].iFrameSize = 0;
        pAnalParams->pFrames[i].iFrameNum = 0;
        pAnalParams->pFrames[i].pSpectralPeaks = 
            (SMS_Peak *)malloc(pAnalParams->maxPeaks * sizeof(SMS_Peak));
        if((pAnalParams->pFrames[i]).pSpectralPeaks == NULL)
        {
            sms_error("could not allocate memory for spectral peaks");
            return -1;
        }
        (pAnalParams->pFrames[i].deterministic).nTracks = pAnalParams->nGuides;

        (pAnalParams->pFrames[i].deterministic).pFSinFreq = 
            (sfloat *)calloc(pAnalParams->nGuides, sizeof(sfloat));
        if((pAnalParams->pFrames[i].deterministic).pFSinFreq == NULL)
        {
            sms_error("could not allocate memory");
            return -1;
        }

        (pAnalParams->pFrames[i].deterministic).pFSinAmp =
            (sfloat *)calloc(pAnalParams->nGuides, sizeof(sfloat));
        if((pAnalParams->pFrames[i].deterministic).pFSinAmp == NULL)
        {
            sms_error("could not allocate memory");
            return -1;
        }

        (pAnalParams->pFrames[i].deterministic).pFSinPha =
            (sfloat *)calloc(pAnalParams->nGuides, sizeof(sfloat));
        if((pAnalParams->pFrames[i].deterministic).pFSinPha == NULL)
        {
            sms_error("could not allocate memory");
            return -1;
        }
        pAnalParams->ppFrames[i] = &pAnalParams->pFrames[i];

        /* set initial values */
        if(sms_clearAnalysisFrame(i, pAnalParams) < 0)
        {
            sms_error("could not set initial values for analysis frames");
            return -1;
        }
    }

    /* memory for residual */
    pAnalParams->residualParams.hopSize = pAnalParams->sizeHop;
    sms_initResidual(&pAnalParams->residualParams);

    /* memory for guide states */
    pAnalParams->guideStates = (int *)calloc(pAnalParams->nGuides, sizeof(int));
    if(pAnalParams->guideStates == NULL)
    {
        sms_error("Could not allocate memory for guide states");
        return -1;
    }

    /* memory for guides */
    pAnalParams->guides = (SMS_Guide *)malloc(pAnalParams->nGuides * sizeof(SMS_Guide));
    if(pAnalParams->guides == NULL)
    {
        sms_error("Could not allocate memory for guides");
        return -1;
    }

    /* initial guide values */
    for (i = 0; i < pAnalParams->nGuides; i++)
    {
        if(pAnalParams->iFormat == SMS_FORMAT_H || pAnalParams->iFormat == SMS_FORMAT_HP)
        {
            pAnalParams->guides[i].fFreq = pAnalParams->fDefaultFundamental * (i + 1);
        }
        else
        {
            pAnalParams->guides[i].fFreq = 0.0;
        }
        pAnalParams->guides[i].fMag = 0.0;
        pAnalParams->guides[i].iPeakChosen = -1;
        pAnalParams->guides[i].iStatus = 0;
    }

    /* stochastic analysis */
    pAnalParams->sizeStocMagSpectrum = sms_power2(pAnalParams->residualParams.residualSize) >> 1;
    pAnalParams->stocMagSpectrum = (sfloat *)calloc(pAnalParams->sizeStocMagSpectrum, sizeof(sfloat));
    if(pAnalParams->stocMagSpectrum == NULL)
    {
        sms_error("Could not allocate memory for stochastic magnitude spectrum");
        return -1;
    }
    pAnalParams->approxEnvelope = (sfloat *)calloc(pAnalParams->nStochasticCoeff, sizeof(sfloat));
    if(pAnalParams->approxEnvelope == NULL)
    {
        sms_error("Could not allocate memory for spectral approximation envelope");
        return -1;
    }

    return 0;
}

/*! \brief give default values to an SMS_SynthParams struct 
 * 
 * This will initialize an SMS_SynthParams with values that work
 * for common analyses.  It is useful to start with and then
 * adjust the parameters manually to fit a particular sound
 *
 * \param synthParams    pointer to synthesis parameters data structure
 */
void sms_initSynthParams(SMS_SynthParams *synthParams)
{
    synthParams->iSamplingRate = 44100;
    synthParams->iOriginalSRate = 44100;
    synthParams->iSynthesisType = SMS_STYPE_ALL;
    synthParams->iDetSynthType = SMS_DET_IFFT;
    synthParams->sizeHop = SMS_MIN_SIZE_FRAME;
    synthParams->origSizeHop = SMS_MIN_SIZE_FRAME;
    synthParams->nTracks = 60;
    synthParams->iStochasticType = SMS_STOC_APPROX;
    synthParams->nStochasticCoeff = 128;
    synthParams->pFDetWindow = NULL;
    synthParams->pFStocWindow = NULL;
    synthParams->pSynthBuff = NULL;
    synthParams->pMagBuff = NULL;
    synthParams->pPhaseBuff = NULL;
    synthParams->pSpectra = NULL;
    synthParams->approxEnvelope = NULL;
    synthParams->deEmphasis = 1; /*!< perform de-emphasis by default */
    synthParams->deEmphasisLastValue = 0;
}

/*! \brief initialize synthesis data structure's arrays
 * 
 *  Initialize the synthesis and fft arrays. It is necessary before synthesis.
 *  there can be multple SMS_SynthParams at the same time
 *  This function also sets some initial values that will create a sane synthesis
 *  environment.
 *
 * This function requires an SMS_Header because it may be called to synthesize
 * a stored .sms file, which contains a header with necessary information.
 *
 * \param pSmsHeader      pointer to SMS_Header
 * \param pSynthParams    pointer to synthesis paramaters
 * \return 0 on success, -1 on error
 */
int sms_initSynth(SMS_SynthParams *pSynthParams)
{
    int sizeHop, sizeFft;

    /* make sure sizeHop is something to the power of 2 */
    sizeHop = sms_power2(pSynthParams->sizeHop);
    if(sizeHop != pSynthParams->sizeHop)
    {
        printf("Warning: Synthesis hop size (%d) was not a power of two.\n",
                pSynthParams->sizeHop);
        printf("         Changed to %d.\n", sizeHop);
        pSynthParams->sizeHop = sizeHop;
    }
    sizeFft = sizeHop * 2;

    /* TODO: check memory allocation */
    pSynthParams->pFStocWindow = (sfloat *)calloc(sizeFft, sizeof(sfloat));
    sms_getWindow(sizeFft, pSynthParams->pFStocWindow, SMS_WIN_HANNING);
    pSynthParams->pFDetWindow = (sfloat *)calloc(sizeFft, sizeof(sfloat));
    sms_getWindow(sizeFft, pSynthParams->pFDetWindow, SMS_WIN_IFFT);

    /* allocate memory for analysis data - size of original hopsize 
     * previous frame to interpolate from */
    /* \todo why is stoch coeff + 1? */
    sms_allocFrame(&pSynthParams->prevFrame, pSynthParams->nTracks,
                   pSynthParams->nStochasticCoeff + 1, 1,
                   pSynthParams->iStochasticType, 0);

    pSynthParams->pSynthBuff = (sfloat *)calloc(sizeFft, sizeof(sfloat));
    pSynthParams->pMagBuff = (sfloat *)calloc(sizeHop, sizeof(sfloat));
    pSynthParams->pPhaseBuff = (sfloat *)calloc(sizeHop, sizeof(sfloat));
    pSynthParams->pSpectra = (sfloat *)calloc(sizeFft, sizeof(sfloat));

    /* approximation envelope */
    pSynthParams->approxEnvelope = (sfloat *)calloc(pSynthParams->nStochasticCoeff, sizeof(sfloat));
    if(pSynthParams->approxEnvelope == NULL)
    {
        sms_error("Could not allocate memory for spectral approximation envelope");
        return -1;
    }

    return SMS_OK;
}

/*! \brief give default values to an SMS_ResidualParams struct 
 * 
 * \param residualParams pointer to residual data structure
 */
void sms_initResidualParams(SMS_ResidualParams *residualParams)
{
    residualParams->samplingRate = 44100;
    residualParams->hopSize = 256;
    residualParams->residualSize = 0;
    residualParams->residual = NULL;
    residualParams->fftWindow = NULL;
    residualParams->ifftWindow = NULL;
    residualParams->windowScale = 0.0;
    residualParams->residualMag = 0.0;
    residualParams->originalMag = 0.0;
    residualParams->nCoeffs = 128;
    residualParams->stocCoeffs = NULL;
    residualParams->sizeStocMagSpectrum = 0;
    residualParams->stocMagSpectrum = NULL;
    residualParams->stocPhaseSpectrum = NULL;
    residualParams->approx = NULL;
    residualParams->approxEnvelope = NULL;
    int i;
    for(i = 0; i < SMS_MAX_SPEC; i++)
    {
        residualParams->fftBuffer[i] = 0.0;
        residualParams->fftBuffer[i+SMS_MAX_SPEC] = 0.0;
    }
}

/*! \brief initialize residual data structure
 * 
 * \param residualParams pointer to synthesis paramaters
 * \return 0 on success, -1 on error
 */
int sms_initResidual(SMS_ResidualParams *residualParams)
{
    if(residualParams->hopSize <= 0)
    {
        sms_error("Residual hop size must be a positive integer");
        return -1;
    }

    /* residual signal */
    residualParams->residualSize = residualParams->hopSize * 2;
    residualParams->residual = (sfloat *)calloc(residualParams->residualSize, sizeof(sfloat));
    if(residualParams->residual == NULL)
    {
        sms_error("Could not allocate memory for residual");
        return -1;
    }

    /* residual fft/ifft windows */
    residualParams->fftWindow = (sfloat *)calloc(residualParams->residualSize, sizeof(sfloat));
    if(residualParams->fftWindow == NULL)
    {
        sms_error("Could not allocate memory for residual FFT window");
        return -1;
    }
    sms_getWindow(residualParams->residualSize, residualParams->fftWindow, SMS_WIN_BH_70);
    sms_scaleWindow(residualParams->residualSize, residualParams->fftWindow);

    residualParams->ifftWindow = (sfloat *)calloc(residualParams->residualSize, sizeof(sfloat));
    if(residualParams->ifftWindow == NULL)
    {
        sms_error("Could not allocate memory for residual IFFT window");
        return -1;
    }
    sms_getWindow(residualParams->residualSize, residualParams->ifftWindow, SMS_WIN_HANNING);
    /* compute IFFT window scaling:
     * windows per hop = hop size / window size = 0.5
     * overlap = 50% => 1 window total in each hop/frame
     * => windowScale = window size / sum(window samples) = 1.85
     *    for a 1024 sized hamming window
     */
    int i;
    sfloat sum = 0.0;
    for(i = 0; i < residualParams->residualSize; i++)
        sum += residualParams->ifftWindow[i];
    residualParams->windowScale = (sfloat)residualParams->residualSize / sum;

    /* stochastic analysis */
    residualParams->stocCoeffs = (sfloat *)calloc(residualParams->nCoeffs, sizeof(sfloat));
    if(residualParams->stocCoeffs == NULL)
    {
        sms_error("Could not allocate memory for stochastic coefficients");
        return -1;
    }

    residualParams->sizeStocMagSpectrum = sms_power2(residualParams->residualSize) >> 1;
    residualParams->stocMagSpectrum = (sfloat *)calloc(residualParams->sizeStocMagSpectrum, sizeof(sfloat));
    if(residualParams->stocMagSpectrum == NULL)
    {
        sms_error("Could not allocate memory for stochastic magnitude spectrum");
        return -1;
    }
    residualParams->stocPhaseSpectrum = (sfloat *)calloc(residualParams->sizeStocMagSpectrum, sizeof(sfloat));
    if(residualParams->stocPhaseSpectrum == NULL)
    {
        sms_error("Could not allocate memory for stochastic magnitude spectrum");
        return -1;
    }

    residualParams->approx = (sfloat *)calloc(residualParams->residualSize, sizeof(sfloat));
    if(residualParams->approx == NULL)
    {
        sms_error("Could not allocate memory for spectral approximation");
        return -1;
    }
    residualParams->approxEnvelope = (sfloat *)calloc(residualParams->nCoeffs, sizeof(sfloat));
    if(residualParams->approxEnvelope == NULL)
    {
        sms_error("Could not allocate memory for spectral approximation envelope");
        return -1;
    }

    return 0;
}

/*! \brief free residual data
 * 
 * frees all the memory allocated to an SMS_ResidualParams by
 * sms_initResidual
 *
 * \param residualParams pointer to residual data structure
 */
void sms_freeResidual(SMS_ResidualParams *residualParams)
{
    if(residualParams->residual)
        free(residualParams->residual);
    if(residualParams->fftWindow)
        free(residualParams->fftWindow);
    if(residualParams->ifftWindow)
        free(residualParams->ifftWindow);
    if(residualParams->stocCoeffs)
        free(residualParams->stocCoeffs);
    if(residualParams->stocMagSpectrum)
        free(residualParams->stocMagSpectrum);
    if(residualParams->stocPhaseSpectrum)
        free(residualParams->stocPhaseSpectrum);
    if(residualParams->approx)
        free(residualParams->approx);
    if(residualParams->approxEnvelope)
        free(residualParams->approxEnvelope);

    residualParams->residual = NULL;
    residualParams->fftWindow = NULL;
    residualParams->ifftWindow = NULL;
    residualParams->stocCoeffs = NULL;
    residualParams->stocMagSpectrum = NULL;
    residualParams->stocPhaseSpectrum = NULL;
    residualParams->approx = NULL;
    residualParams->approxEnvelope = NULL;
}

/*! \brief free analysis data
 * 
 * frees all the memory allocated to an SMS_AnalParams by
 * sms_initAnalysis
 *
 * \param pAnalParams    pointer to analysis data structure
 */
void sms_freeAnalysis(SMS_AnalParams *pAnalParams)
{
    if(pAnalParams->pFrames)
    {
        int i;
        for(i = 0; i < pAnalParams->iMaxDelayFrames; i++)
        {
            if((pAnalParams->pFrames[i]).pSpectralPeaks)
                free((pAnalParams->pFrames[i]).pSpectralPeaks);
            if((pAnalParams->pFrames[i].deterministic).pFSinFreq)
               free((pAnalParams->pFrames[i].deterministic).pFSinFreq);
            if((pAnalParams->pFrames[i].deterministic).pFSinAmp)
               free((pAnalParams->pFrames[i].deterministic).pFSinAmp);
            if((pAnalParams->pFrames[i].deterministic).pFSinPha)
               free((pAnalParams->pFrames[i].deterministic).pFSinPha);
        }
        free(pAnalParams->pFrames);
    }

    sms_freeFrame(&pAnalParams->prevFrame);
    sms_freeResidual(&pAnalParams->residualParams);

    if(pAnalParams->soundBuffer.pFBuffer)
        free(pAnalParams->soundBuffer.pFBuffer);
    if((pAnalParams->synthBuffer).pFBuffer)
        free((pAnalParams->synthBuffer).pFBuffer);
    if(pAnalParams->ppFrames)
        free(pAnalParams->ppFrames);
    if(pAnalParams->guideStates)
        free(pAnalParams->guideStates);
    if(pAnalParams->guides)
        free(pAnalParams->guides);
    if(pAnalParams->stocMagSpectrum)
        free(pAnalParams->stocMagSpectrum);
    if(pAnalParams->approxEnvelope)
        free(pAnalParams->approxEnvelope);

    pAnalParams->pFrames = NULL;
    pAnalParams->ppFrames = NULL;
    pAnalParams->soundBuffer.pFBuffer = NULL;
    pAnalParams->synthBuffer.pFBuffer = NULL;
    pAnalParams->guideStates = NULL;
    pAnalParams->guides = NULL;
    pAnalParams->stocMagSpectrum = NULL;
    pAnalParams->approxEnvelope = NULL;
}

/*! \brief free analysis data
 * 
 * frees all the memory allocated to an SMS_SynthParams by
 * sms_initSynthesis
 *
 * \todo is there a way to make sure the plan has been made
 * already? as it is, it crashes if this is called without one
 * \param pSynthParams    pointer to synthesis data structure
 */
void sms_freeSynth(SMS_SynthParams *pSynthParams)
{
    if(pSynthParams->pFStocWindow)
        free(pSynthParams->pFStocWindow);        
    if(pSynthParams->pFDetWindow)
        free(pSynthParams->pFDetWindow);
    if(pSynthParams->pSynthBuff)
        free(pSynthParams->pSynthBuff);
    if(pSynthParams->pSpectra)
        free(pSynthParams->pSpectra);
    if(pSynthParams->pMagBuff)
        free(pSynthParams->pMagBuff);
    if(pSynthParams->pPhaseBuff)
        free(pSynthParams->pPhaseBuff);
    if(pSynthParams->approxEnvelope)
        free(pSynthParams->approxEnvelope);

    sms_freeFrame(&pSynthParams->prevFrame);
}

/*! \brief Allocate memory for an array of spectral peaks
 *
 * Creates memory and sets default values.
 *
 * \param peaks the spectral peaks
 * \param n number of peaks
 * \return 0 on success, -1 on error
 */
int sms_initSpectralPeaks(SMS_SpectralPeaks* peaks, int n)
{
    peaks->nPeaks = n;
    peaks->nPeaksFound = 0;

    peaks->pSpectralPeaks = (SMS_Peak *)malloc(n * sizeof(SMS_Peak));
    if(peaks->pSpectralPeaks == NULL)
    {
        sms_error("could not allocate memory for spectral peaks");
        return -1;
    }
    return 0;
}

/*! \brief Deallocate memory for an array of spectral peaks
 *
 * \param peaks the spectral peaks
 */
void sms_freeSpectralPeaks(SMS_SpectralPeaks* peaks)
{
    if(!peaks)
        return;

    if(peaks->pSpectralPeaks)
        free(peaks->pSpectralPeaks);
    peaks->nPeaks = 0;
    peaks->nPeaksFound = 0;
}

/*! \brief set window size for next frame 
 *
 * adjusts the next window size to fit the currently detected fundamental 
 * frequency, or resets to a default window size if unstable.
 *
 * \param iCurrentFrame         number of current frame
 * \param pAnalParams          analysis parameters
 * \return the size of the next window in samples
 */
int sms_sizeNextWindow(int iCurrentFrame, SMS_AnalParams *pAnalParams)
{
    sfloat fFund = pAnalParams->ppFrames[iCurrentFrame]->fFundamental;
    sfloat fPrevFund = pAnalParams->ppFrames[iCurrentFrame-1]->fFundamental;
    int sizeWindow;

    /* if the previous fundamental was stable use it to set the window size */
    if(fPrevFund > 0 && fabs(fPrevFund - fFund) / fFund <= .2)
        sizeWindow = (int)((pAnalParams->iSamplingRate / fFund) *
                           pAnalParams->fSizeWindow * .5) * 2 + 1;
    /* otherwise use the default size window */
    else
        sizeWindow = pAnalParams->iDefaultSizeWindow;

    if(sizeWindow > SMS_MAX_WINDOW)
    {
        fprintf(stderr, "sms_sizeNextWindow error: sizeWindow (%d) too big, set to %d\n", sizeWindow, 
                SMS_MAX_WINDOW);
        sizeWindow = SMS_MAX_WINDOW;
    }

    return sizeWindow;
}

/*! \brief set default values for analysis frame variables
 * \param iCurrentFrame frame number of the current frame
 * \param pAnalParams analysis parameters
 * \return 0 on success, -1 on error
 */
int sms_clearAnalysisFrame(int iCurrentFrame, SMS_AnalParams *pAnalParams)
{
    int i;
    SMS_AnalFrame *currentFrame = pAnalParams->ppFrames[iCurrentFrame];

    /* clear deterministic data */
    for(i = 0; i < pAnalParams->nGuides; i++)
    {
        currentFrame->deterministic.pFSinFreq[i] = 0.0;
        currentFrame->deterministic.pFSinAmp[i] = 0.0;
        currentFrame->deterministic.pFSinPha[i] = 0.0;
    }

    /* clear peaks */
    for(i = 0; i < pAnalParams->maxPeaks; i++)
    {
       currentFrame->pSpectralPeaks[i].fFreq = 0.0;
       currentFrame->pSpectralPeaks[i].fMag = 0.0;
       currentFrame->pSpectralPeaks[i].fPhase = 0.0;
    }

    currentFrame->nPeaks = 0;
    currentFrame->fFundamental = 0;
    currentFrame->iFrameNum = 0;
    currentFrame->iFrameSize = 0;
    currentFrame->iFrameSample = 0;
    currentFrame->iStatus = SMS_FRAME_EMPTY;

    return 0;
}

/*! \brief initialize the current frame
 *
 * initializes arrays to zero and sets the correct sample position.
 * Special care is taken at the end the sample source (if there is
 * not enough samples for an entire frame.
 *
 * \param iCurrentFrame            frame number of current frame in buffer
 * \param pAnalParams             analysis parameters
 * \param sizeWindow               size of analysis window 
 * \return -1 on error \todo make this return void
 */
int sms_initFrame(int iCurrentFrame, SMS_AnalParams *pAnalParams, int sizeWindow)
{
    /* clear deterministic data */
    memset((sfloat *)pAnalParams->ppFrames[iCurrentFrame]->deterministic.pFSinFreq, 0, 
           sizeof(sfloat) * pAnalParams->nGuides);
    memset((sfloat *)pAnalParams->ppFrames[iCurrentFrame]->deterministic.pFSinAmp, 0, 
           sizeof(sfloat) * pAnalParams->nGuides);
    memset((sfloat *)pAnalParams->ppFrames[iCurrentFrame]->deterministic.pFSinPha, 0, 
           sizeof(sfloat) * pAnalParams->nGuides);

    /* clear peaks */
    int i;
    for(i = 0; i < pAnalParams->maxPeaks; i++)
    {
        pAnalParams->ppFrames[iCurrentFrame]->pSpectralPeaks[i].fFreq = 0.0;
        pAnalParams->ppFrames[iCurrentFrame]->pSpectralPeaks[i].fMag = 0.0;
        pAnalParams->ppFrames[iCurrentFrame]->pSpectralPeaks[i].fPhase = 0.0;
    }

    pAnalParams->ppFrames[iCurrentFrame]->nPeaks = 0;
    pAnalParams->ppFrames[iCurrentFrame]->fFundamental = 0;

    pAnalParams->ppFrames[iCurrentFrame]->iFrameNum =  
        pAnalParams->ppFrames[iCurrentFrame - 1]->iFrameNum + 1;
    pAnalParams->ppFrames[iCurrentFrame]->iFrameSize = sizeWindow;

    /* if first frame set center of data around 0 */
    if(pAnalParams->ppFrames[iCurrentFrame]->iFrameNum == 1)
        pAnalParams->ppFrames[iCurrentFrame]->iFrameSample = 0;
    /* if not, increment center of data by sizeHop */
    else
        pAnalParams->ppFrames[iCurrentFrame]->iFrameSample = 
            pAnalParams->ppFrames[iCurrentFrame-1]->iFrameSample + pAnalParams->sizeHop;

    /* check for end of sound */
    if((pAnalParams->ppFrames[iCurrentFrame]->iFrameSample + (sizeWindow+1)/2) >= pAnalParams->iSizeSound
         && pAnalParams->iSizeSound > 0)
    {
        pAnalParams->ppFrames[iCurrentFrame]->iFrameNum =  -1;
        pAnalParams->ppFrames[iCurrentFrame]->iFrameSize =  0;
        pAnalParams->ppFrames[iCurrentFrame]->iStatus =  SMS_FRAME_END;
    }
    else
    {
        /* good status, ready to start computing */
        pAnalParams->ppFrames[iCurrentFrame]->iStatus = SMS_FRAME_READY;
    }
    return SMS_OK;
}

/*! \brief get deviation from average fundamental
 *\
 * \param pAnalParams             pointer to analysis params
 * \param iCurrentFrame        number of current frame 
 * \return deviation value or -1 if really off
 */
sfloat sms_fundDeviation(SMS_AnalParams *pAnalParams, int iCurrentFrame)
{
    sfloat fFund, fSum = 0, fAverage, fDeviation = 0;
    int i;

    if(pAnalParams->minGoodFrames < 1)
        return -1;

    /* get the sum of the past few fundamentals */
    for(i = 0; (i < pAnalParams->minGoodFrames) && (iCurrentFrame-i >= 0); i++)
    {
        fFund = pAnalParams->ppFrames[iCurrentFrame-i]->fFundamental;
        if(fFund <= 0)
            return -1;
        else
            fSum += fFund;
    }

    /* find the average */
    fAverage = fSum / pAnalParams->minGoodFrames;

    /* get the deviation from the average */
    for(i = 0; (i < pAnalParams->minGoodFrames) && (iCurrentFrame-i >= 0); i++)
        fDeviation += fabs(pAnalParams->ppFrames[iCurrentFrame-i]->fFundamental - fAverage);

    /* return the deviation from the average */
    return fDeviation / (pAnalParams->minGoodFrames * fAverage);
}


/*! \brief function to create the debug file 
 *
 * \param pAnalParams             pointer to analysis params
 * \return error value \see SMS_ERRORS 
 */
int sms_createDebugFile(SMS_AnalParams *pAnalParams)
{
    if((pDebug = fopen(pChDebugFile, "w+")) == NULL) 
    {
        fprintf(stderr, "Cannot open debugfile: %s\n", pChDebugFile);
        return SMS_WRERR;
    }
    return SMS_OK;
}

/*! \brief  function to write to the debug file
 *
 * writes three arrays of equal size to a debug text
 * file ("./debug.txt"). There are three arrays for the 
 * frequency, magnitude, phase sets. 
 * 
 * \param pFBuffer1 pointer to array 1
 * \param pFBuffer2 pointer to array 2
 * \param pFBuffer3 pointer to array 3
 * \param sizeBuffer the size of the buffers
 */
void sms_writeDebugData(sfloat *pFBuffer1, sfloat *pFBuffer2, 
                        sfloat *pFBuffer3, int sizeBuffer)
{
    int i;
    static int counter = 0;

    for(i = 0; i < sizeBuffer; i++)
        fprintf(pDebug, "%d %d %d %d\n", counter++, (int)pFBuffer1[i],
               (int)pFBuffer2[i], (int)pFBuffer3[i]);
}

/*! \brief  function to write the residual sound file to disk
 *
 * writes the "debug.txt" file to disk and closes the file.
 */
void sms_writeDebugFile ()
{
    fclose(pDebug);
}

/*! \brief convert from magnitude to decibel
 *
 * \param x      magnitude (0:1)
 * \return         decibel (0: -100)
 */
sfloat sms_magToDB(sfloat x)
{
    if(x < mag_thresh)
        return 0.0;
    else
        //return(20. * log10(x * inv_mag_thresh));
        return TWENTY_OVER_LOG10 * log(x * inv_mag_thresh);
        /*return(TWENTY_OVER_LOG10 * log(x));*/
}

/*! \brief convert from decibel to magnitude
 *
 * \param x     decibel (0-100)
 * \return        magnitude (0-1)
 */
sfloat sms_dBToMag(sfloat x)
{
    if(x < 0.00001)
        return 0.0;
    else
        return mag_thresh * pow(10., x*0.05);
        /*return pow(10.0, x*0.05);*/
}

/*! \brief convert an array from magnitude to decibel 
 *
 * Depends on a  linear threshold that indicates the bottom end
 * of the dB scale (magnutdes at this value will convert to zero).
 * \see sms_setMagThresh
 *
 * \param sizeArray     size of array
 * \param pArray pointer to array
 */
void sms_arrayMagToDB(int sizeArray, sfloat *pArray)
{
    int i;
    for(i = 0; i < sizeArray; i++)
        pArray[i] = sms_magToDB(pArray[i]);
}

/*! \brief convert and array from decibel (0-100) to magnitude (0-1)
 *
 * depends on the magnitude threshold
 * \see sms_setMagThresh
 *
 * \param sizeArray     size of array
 * \param pArray pointer to array
 */
void sms_arrayDBToMag(int sizeArray, sfloat *pArray)
{
    int i;
    for(i = 0; i < sizeArray; i++)
        pArray[i] = sms_dBToMag(pArray[i]);
}
/*! \brief set the linear magnitude threshold
 *
 * magnitudes below this will go to zero when converted to db.
 * it is limited to 0.00001 (-100db)
 *
 * \param x  threshold value
 */
void sms_setMagThresh(sfloat x)
{
    /* limit threshold to -100db */
    if(x < 0.00001) 
        mag_thresh = 0.00001;
    else
        mag_thresh = x;
    inv_mag_thresh = 1. / mag_thresh;
}

/*! \brief get a string containing information about the error code 
 *
 * \param pErrorMessage pointer to error message string
 */
void sms_error(char *pErrorMessage) 
{
    strncpy(error_message, pErrorMessage, 256);
    error_status = -1;
}

/*! \brief check if an error has been reported
 *
 * \return  -1 if there is an error, 0 if ok
 */
int sms_errorCheck() 
{
    return error_status;
}

/*! \brief get a string containing information about the last error 
 *
 * \return  pointer to a char string, or NULL if no error
 */
char* sms_errorString() 
{
    if (error_status)
    {
        error_status = 0;
        return error_message;
    }
    return NULL;
}

/*! \brief random number genorator
 *
 * \return random number between -1 and 1
 */
sfloat sms_random()
{
#ifdef MERSENNE_TWISTER
    return genrand_real1(); 
#else
    return (sfloat)(random() * 2 * INV_HALF_MAX);
#endif
}

/*! \brief Root Mean Squared of an array
 *
 * \return RMS energy
 */
sfloat sms_rms(int sizeArray, sfloat *pArray)
{
    int i;
    sfloat mean_squared = 0.;
    for(i = 0; i < sizeArray; i++)
        mean_squared += pArray[i] * pArray[i];

    return sqrtf(mean_squared / sizeArray);
}

/*! \brief make sure a number is a power of 2
 *
 * \return a power of two integer >= input value
 */
int sms_power2(int n)
{
    int p = -1;
    int N = n;
    while(n)
    {
        n >>= 1;
        p++;
    }

    if(1<<p == N) /* n was a power of 2 */
    {
        return N; 
    }
    else  /* make the new value larger than n */
    {
        p++;
        return 1<<p;
    }
}

/*! \brief compute a value for scaling frequency based on the well-tempered scale
 *
 * \param x linear frequency value
 * \return (1.059...)^x, where 1.059 is the 12th root of 2 precomputed
 */
sfloat sms_scalarTempered(sfloat x)
{
    return powf(1.0594630943592953, x);
}

/*! \brief scale an array of linear frequencies to the well-tempered scale
 *
 * \param sizeArray size of the array
 * \param pArray pointer to array of frequencies
 */
void sms_arrayScalarTempered(int sizeArray, sfloat *pArray)
{
    int i;
    for(i = 0; i < sizeArray; i++)
        pArray[i] = sms_scalarTempered(pArray[i]);
}