1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
|
#include "mq.h"
using namespace simpl;
// ----------------------------------------------------------------------------
// Windowing
void hamming_window(int window_size, sample* window) {
sample sum = 0;
for(int i = 0; i < window_size; i++) {
window[i] = 0.54 - (0.46 * cos(2.0 * M_PI * i / (window_size - 1)));
sum += window[i];
}
for(int i = 0; i < window_size; i++) {
window[i] /= sum;
}
}
// ----------------------------------------------------------------------------
// Initialisation and destruction
int simpl::init_mq(MQParameters* params) {
// allocate memory for window
params->window = new sample[params->frame_size];
hamming_window(params->frame_size, params->window);
// allocate memory for FFT
params->fft_in = (sample*) fftw_malloc(sizeof(sample) *
params->frame_size);
params->fft_out = (fftw_complex*) fftw_malloc(sizeof(fftw_complex) *
params->num_bins);
params->fft_plan = fftw_plan_dft_r2c_1d(params->frame_size, params->fft_in,
params->fft_out, FFTW_ESTIMATE);
// set other variables to defaults
reset_mq(params);
return 0;
}
void simpl::reset_mq(MQParameters* params) {
params->prev_peaks = NULL;
}
int simpl::destroy_mq(MQParameters* params) {
if(params) {
if(params->window) delete [] params->window;
if(params->fft_in) fftw_free(params->fft_in);
if(params->fft_out) fftw_free(params->fft_out);
fftw_destroy_plan(params->fft_plan);
params->window = NULL;
params->fft_in = NULL;
params->fft_out = NULL;
}
return 0;
}
// ----------------------------------------------------------------------------
// Peak Detection
// Add new_peak to the doubly linked list of peaks, keeping peaks sorted
// with the largest amplitude peaks at the start of the list
void simpl::mq_add_peak(MQPeak* new_peak, MQPeakList* peak_list) {
while(true) {
if(peak_list->peak) {
if(peak_list->peak->amplitude > new_peak->amplitude) {
if(peak_list->next) {
peak_list = peak_list->next;
}
else {
MQPeakList* new_node = new MQPeakList();
new_node->peak = new_peak;
new_node->prev = peak_list;
new_node->next = NULL;
peak_list->next = new_node;
return;
}
}
else {
MQPeakList* new_node = new MQPeakList();
new_node->peak = peak_list->peak;
new_node->prev = peak_list;
new_node->next = peak_list->next;
peak_list->next = new_node;
peak_list->peak = new_peak;
return;
}
}
else {
// should only happen for the first peak
peak_list->peak = new_peak;
return;
}
}
}
void simpl::delete_peak_list(MQPeakList* peak_list) {
while(peak_list && peak_list->next) {
if(peak_list->peak) {
delete peak_list->peak;
peak_list->peak = NULL;
}
MQPeakList* temp = peak_list->next;
delete peak_list;
peak_list = temp;
}
if(peak_list) {
if(peak_list->peak) {
delete peak_list->peak;
peak_list->peak = NULL;
}
peak_list->next = NULL;
peak_list->prev = NULL;
delete peak_list;
peak_list = NULL;
}
}
sample get_magnitude(sample x, sample y) {
return sqrt((x*x) + (y*y));
}
sample get_phase(sample x, sample y) {
return atan2(y, x);
}
MQPeakList* simpl::mq_find_peaks(int signal_size, sample* signal,
MQParameters* params) {
int num_peaks = 0;
sample prev_amp, current_amp, next_amp;
MQPeakList* peak_list = new MQPeakList();
// take fft of the signal
memcpy(params->fft_in, signal, sizeof(sample)*params->frame_size);
for(int i = 0; i < params->frame_size; i++) {
params->fft_in[i] *= params->window[i];
}
fftw_execute(params->fft_plan);
// get initial magnitudes
prev_amp = get_magnitude(params->fft_out[0][0], params->fft_out[0][1]);
current_amp = get_magnitude(params->fft_out[1][0], params->fft_out[1][1]);
// find all peaks in the amplitude spectrum
for(int i = 1; i < params->num_bins - 1; i++) {
next_amp = get_magnitude(params->fft_out[i+1][0],
params->fft_out[i+1][1]);
if((current_amp > prev_amp) &&
(current_amp > next_amp) &&
(current_amp > params->peak_threshold)) {
MQPeak* p = new MQPeak();
p->amplitude = current_amp;
p->frequency = i * params->fundamental;
p->phase = get_phase(params->fft_out[i][0], params->fft_out[i][1]);
p->bin = i;
p->next = NULL;
p->prev = NULL;
// add it to the appropriate position in the list of Peaks
mq_add_peak(p, peak_list);
num_peaks++;
}
prev_amp = current_amp;
current_amp = next_amp;
}
// limit peaks to a maximum of max_peaks
if(num_peaks > params->max_peaks) {
MQPeakList* current = peak_list;
for(int i = 0; i < params->max_peaks-1; i++) {
current = current->next;
}
delete_peak_list(current->next);
current->next = NULL;
num_peaks = params->max_peaks;
}
// return simpl::mq_sort_peaks_by_frequency(peak_list, num_peaks);
return peak_list;
}
// ----------------------------------------------------------------------------
// Sorting
MQPeakList* merge(MQPeakList* list1, MQPeakList* list2) {
MQPeakList* merged_head = NULL;
MQPeakList* merged_tail;
while(list1 || list2) {
if(list1 && list2) {
if(list1->peak->frequency <= list2->peak->frequency) {
if(!merged_head) {
merged_head = list1;
merged_tail = merged_head;
}
else {
merged_tail->next = list1;
merged_tail = merged_tail->next;
}
list1 = list1->next;
merged_tail->next = NULL;
}
else {
if(!merged_head) {
merged_head = list2;
merged_tail = merged_head;
}
else {
merged_tail->next = list2;
merged_tail = merged_tail->next;
}
list2 = list2->next;
merged_tail->next = NULL;
}
}
else if(list1) {
if(!merged_head) {
merged_head = list1;
merged_tail = merged_head;
}
else {
merged_tail->next = list1;
merged_tail = merged_tail->next;
}
list1 = list1->next;
merged_tail->next = NULL;
}
else if(list2) {
if(!merged_head) {
merged_head = list2;
merged_tail = merged_head;
}
else {
merged_tail->next = list2;
merged_tail = merged_tail->next;
}
list2 = list2->next;
merged_tail->next = NULL;
}
}
return merged_head;
}
MQPeakList* merge_sort(MQPeakList* peak_list, int num_peaks) {
if(num_peaks <= 1) {
return peak_list;
}
MQPeakList* left;
MQPeakList* right;
MQPeakList* current = peak_list;
int n = 0;
// find the index of the middle peak. If we have an odd number,
// give the extra peak to the left
int middle;
if(num_peaks % 2 == 0) {
middle = num_peaks / 2;
}
else {
middle = (num_peaks / 2) + 1;
}
// split the peak list into left and right at the middle value
left = peak_list;
while(current) {
if(n == middle - 1) {
right = current->next;
current->next = NULL;
break;
}
n++;
current = current->next;
}
// recursively sort and merge
left = merge_sort(left, middle);
right = merge_sort(right, num_peaks - middle);
return merge(left, right);
}
// Sort peak_list into a list order from smaller to largest frequency.
MQPeakList* simpl::mq_sort_peaks_by_frequency(MQPeakList* peak_list,
int num_peaks) {
if(!peak_list) {
return NULL;
}
else if(num_peaks == 0) {
return peak_list;
}
else {
return merge_sort(peak_list, num_peaks);
}
}
// ----------------------------------------------------------------------------
// Partial Tracking
// Find a candidate match for peak in frame if one exists. This is the closest
// (in frequency) match that is within the matching interval.
MQPeak* find_closest_match(MQPeak* p, MQPeakList* peak_list,
MQParameters* params, int backwards) {
MQPeakList* current = peak_list;
MQPeak* match = NULL;
sample best_distance = 44100.0;
sample distance;
while(current && current->peak) {
if(backwards) {
if(current->peak->prev) {
current = current->next;
continue;
}
}
else {
if(current->peak->next) {
current = current->next;
continue;
}
}
distance = fabs(current->peak->frequency - p->frequency);
if((distance < params->matching_interval) &&
(distance < best_distance)) {
best_distance = distance;
match = current->peak;
}
current = current->next;
}
return match;
}
// Returns the closest unmatched peak in frame with a frequency less
// than p.frequency.
MQPeak* free_peak_below(MQPeak* p, MQPeakList* peak_list) {
MQPeakList* current = peak_list;
MQPeak* free_peak = NULL;
sample closest_frequency = 44100;
while(current && current->peak) {
if(current->peak != p) {
// if current peak is unmatched, and it is closer to p than the
// last unmatched peak that we saw, save it
if(!current->peak->prev &&
(current->peak->frequency < p->frequency) &&
(fabs(current->peak->frequency - p->frequency)
< closest_frequency)) {
closest_frequency = fabs(current->peak->frequency -
p->frequency);
free_peak = current->peak;
}
}
current = current->next;
}
return free_peak;
}
// MQ Partial Tracking
MQPeakList* simpl::mq_track_peaks(MQPeakList* peak_list,
MQParameters* params) {
MQPeakList* current = peak_list;
// MQ algorithm needs 2 frames of data, so do nothing if this is the
// first frame
if(params->prev_peaks) {
// find all matches for previous peaks in the current frame
current = params->prev_peaks;
while(current && current->peak) {
MQPeak* match = find_closest_match(
current->peak, peak_list, params, 1
);
if(match) {
MQPeak* closest_to_cand = find_closest_match(
match, params->prev_peaks, params, 0
);
if(closest_to_cand != current->peak) {
// see if the closest peak with lower frequency to the
// candidate is within the matching interval
MQPeak* lower = free_peak_below(match, peak_list);
if(lower) {
if(fabs(lower->frequency - current->peak->frequency)
< params->matching_interval) {
lower->prev = current->peak;
current->peak->next = lower;
}
}
}
// if closest_peak == peak, it is a definitive match
else {
match->prev = current->peak;
current->peak->next = match;
}
}
current = current->next;
}
}
params->prev_peaks = peak_list;
return peak_list;
}
|