1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
|
/*
* This is the Loris C++ Class Library, implementing analysis,
* manipulation, and synthesis of digitized sounds using the Reassigned
* Bandwidth-Enhanced Additive Sound Model.
*
* Loris is Copyright (c) 1999-2010 by Kelly Fitz and Lippold Haken
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY, without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*
* SpectralPeakSelector.C
*
* Implementation of a class representing a policy for selecting energy
* peaks in a reassigned spectrum to be used in Partial formation.
*
* Kelly Fitz, 28 May 2003
* loris@cerlsoundgroup.org
*
* http://www.cerlsoundgroup.org/Loris/
*
*/
#if HAVE_CONFIG_H
#include "config.h"
#endif
#include "SpectralPeakSelector.h"
#include "Breakpoint.h"
#include "Notifier.h"
#include "ReassignedSpectrum.h"
#include <cmath> // for abs and fabs
// define this to use local minima in frequency
// reassignment to detect "peaks", otherwise
// magnitude peaks are used.
#define USE_REASSIGNMENT_MINS 1
//#undef USE_REASSIGNMENT_MINS
// begin namespace
namespace Loris {
// ---------------------------------------------------------------------------
// construction - constant resolution
// ---------------------------------------------------------------------------
SpectralPeakSelector::SpectralPeakSelector( double srate, double maxTimeCorrection ) :
mSampleRate( srate ),
mMaxTimeOffset( maxTimeCorrection )
{
}
// ---------------------------------------------------------------------------
// selectPeaks
// ---------------------------------------------------------------------------
// Collect and return magnitude peaks in the lower half of the spectrum,
// ignoring those having frequencies below the specified minimum, and
// those having large time corrections.
//
// If the minimumFrequency is unspecified, 0 Hz is used.
//
// There are two strategies for doing. Probably each one should be a
// separate class, but for now, they are just separate functions.
Peaks
SpectralPeakSelector::selectPeaks( ReassignedSpectrum & spectrum,
double minFrequency )
{
#if defined(USE_REASSIGNMENT_MINS) && USE_REASSIGNMENT_MINS
return selectReassignmentMinima( spectrum, minFrequency );
#else
return selectMagnitudePeaks( spectrum, minFrequency );
#endif
}
// ---------------------------------------------------------------------------
// selectReassignmentMinima (private)
// ---------------------------------------------------------------------------
Peaks
SpectralPeakSelector::selectReassignmentMinima( ReassignedSpectrum & spectrum,
double minFrequency )
{
using namespace std; // for abs and fabs
const double sampsToHz = mSampleRate / spectrum.size();
const double oneOverSR = 1. / mSampleRate;
const double minFreqSample = minFrequency / sampsToHz;
const double maxCorrectionSamples = mMaxTimeOffset * mSampleRate;
Peaks peaks;
int start_j = 1, end_j = (spectrum.size() / 2) - 2;
double fsample = start_j;
do
{
fsample = spectrum.reassignedFrequency( start_j++ );
} while( fsample < minFreqSample );
for ( int j = start_j; j < end_j; ++j )
{
// look for changes in the frequency reassignment,
// from positive to negative correction, indicating
// a concentration of energy in the spectrum:
double next_fsample = spectrum.reassignedFrequency( j+1 );
if ( fsample > j && next_fsample < j + 1 )
{
// choose the smaller correction of fsample or next_fsample:
// (could also choose the larger magnitude?)
double freq;
int peakidx;
if ( (fsample-j) < (j+1-next_fsample) )
{
freq = fsample * sampsToHz;
peakidx = j;
}
else
{
freq = next_fsample * sampsToHz;
peakidx = j+1;
}
// still possible that the frequency winds up being
// below the specified minimum
if ( freq >= minFrequency )
{
// keep only peaks with small time corrections:
double timeCorrectionSamps = spectrum.reassignedTime( peakidx );
if ( fabs(timeCorrectionSamps) < maxCorrectionSamples )
{
double mag = spectrum.reassignedMagnitude( peakidx );
double phase = spectrum.reassignedPhase( peakidx );
// this will be overwritten later in analysis,
// might be ignored altogether, only used if the
// mixed derivative convergence indicator is stored
// as bandwidth in Analyzer:
double bw = spectrum.convergence( j );
// also store the corrected peak time in seconds, won't
// be able to compute it later:
double time = timeCorrectionSamps * oneOverSR;
Breakpoint bp( freq, mag, bw, phase );
peaks.push_back( SpectralPeak( time, bp ) );
}
}
}
fsample = next_fsample;
}
/*
debugger << "SpectralPeakSelector::selectReassignmentMinima: found "
<< peaks.size() << " peaks" << endl;
*/
return peaks;
}
// ---------------------------------------------------------------------------
// selectMagnitudePeaks (private)
// ---------------------------------------------------------------------------
Peaks
SpectralPeakSelector::selectMagnitudePeaks( ReassignedSpectrum & spectrum,
double minFrequency )
{
using namespace std; // for abs and fabs
const double sampsToHz = mSampleRate / spectrum.size();
const double oneOverSR = 1. / mSampleRate;
const double minFreqSample = minFrequency / sampsToHz;
const double maxCorrectionSamples = mMaxTimeOffset * mSampleRate;
Peaks peaks;
int start_j = 1, end_j = (spectrum.size() / 2) - 2;
double fsample = start_j;
do
{
fsample = spectrum.reassignedFrequency( start_j++ );
} while( fsample < minFreqSample );
for ( int j = start_j; j < end_j; ++j )
{
if ( spectrum.reassignedMagnitude(j) > spectrum.reassignedMagnitude(j-1) &&
spectrum.reassignedMagnitude(j) > spectrum.reassignedMagnitude(j+1) )
{
// skip low-frequency peaks:
double fsample = spectrum.reassignedFrequency( j );
if ( fsample < minFreqSample )
continue;
// skip peaks with large time corrections:
double timeCorrectionSamps = spectrum.reassignedTime( j );
if ( fabs(timeCorrectionSamps) > maxCorrectionSamples )
continue;
double mag = spectrum.reassignedMagnitude( j );
double phase = spectrum.reassignedPhase( j );
// this will be overwritten later in analysis,
// might be ignored altogether, only used if the
// mixed derivative convergence indicator is stored
// as bandwidth in Analyzer:
double bw = spectrum.convergence( j );
// also store the corrected peak time in seconds, won't
// be able to compute it later:
double time = timeCorrectionSamps * oneOverSR;
Breakpoint bp ( fsample * sampsToHz, mag, bw, phase );
peaks.push_back( SpectralPeak( time, bp ) );
} // end if itsa peak
}
/*
debugger << "SpectralPeakSelector::selectMagnitudePeaks: found "
<< peaks.size() << " peaks" << endl;
*/
return peaks;
}
} // end of namespace Loris
|