1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
|
/*
* This is the Loris C++ Class Library, implementing analysis,
* manipulation, and synthesis of digitized sounds using the Reassigned
* Bandwidth-Enhanced Additive Sound Model.
*
* Loris is Copyright (c) 1999-2010 by Kelly Fitz and Lippold Haken
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY, without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*
* SpcFile.C
*
* Implementation of SpcFile class for Partial import and export for
* real-time synthesis in Kyma.
*
* Spc files always represent a number of Partials that is a power of
* two. This is not necessary for purely-sinusoidal files, but might be
* (not clear) for enhanced data to be properly processed in Kyma.
*
* All of this is kind of disgusting right now. This code has evolved
* somewhat randomly, and we are awaiting full support for bandwidth-
* enhanced data in Kyma..
*
* Kelly Fitz, 8 Jan 2003
* loris@cerlsoundgroup.org
*
* http://www.cerlsoundgroup.org/Loris/
*
*/
#if HAVE_CONFIG_H
#include "config.h"
#endif
#include "SpcFile.h"
#include "AiffData.h"
#include "Breakpoint.h"
#include "BigEndian.h"
#include "LorisExceptions.h"
#include "Marker.h"
#include "Notifier.h"
#include "PartialUtils.h"
#include <algorithm>
#include <cmath>
#include <fstream>
#if defined(HAVE_M_PI) && (HAVE_M_PI)
const double Pi = M_PI;
#else
const double Pi = 3.14159265358979324;
#endif
// Define this if SpcFiles should always have a number of
// Partials that is a power of two. Cannot decide whether
// or not they should. Lip?
#define PO2
using std::exp;
using std::log;
using std::sqrt;
// begin namespace
namespace Loris {
// ---------------------------------------------------------------------------
// constants, can, or should, these be made variable?
// ---------------------------------------------------------------------------
// can't we change this? Seems like we could, but
// its part of the size of the magic junk in the
// Sose chunk.
const int LargestLabel = 256; // max number of partials for SPC file
// 1 Mar 05
// Found that this cannot actually be 512 for enhanced
// Partials, it crashes with a segmentation fault above 256.
// Unfortunately, whatever is causing the problem is not
// using this constant, but some other hardcoded thing.
// if I change this to 256, then I can still export
// 256 enhanced Partials, but I don't know what to change
// to allow 512! Ugh!
// -kel
// this used to be hard coded into Partial, don't know
// whether it is needed to make spc files work.
const double Fade = 0.001;
// this always has to be 24 bits, 1 channel
const int Bps = 24;
const int Nchans = 1;
// ---------------------------------------------------------------------------
// static helper prototypes, defined at bottom
// ---------------------------------------------------------------------------
static void
configureEnvelopeDataCk( SoundDataCk & ck, const SpcFile::partials_type & partials );
static void
configureSosMarkerCk( MarkerCk & ck, const std::vector< Marker > & markers );
static void
configureSosEnvelopesCk( SosEnvelopesCk & ck );
static std::ostream &
writeSosEnvelopesChunk( std::ostream & s, const SosEnvelopesCk & ck );
static void
configureExportStruct( const SpcFile::partials_type & partials, double midipitch,
double endApproachTime, int enhanced );
static unsigned long getNumSampleFrames( void );
const int SpcFile::MinNumPartials = 32;
const double SpcFile::DefaultRate = 44100.;
// -- construction --
// ---------------------------------------------------------------------------
// SpcFile constructor from filename
// ---------------------------------------------------------------------------
// Initialize an instance of SpcFile by importing envelope parameter
// streams from the file having the specified filename or path.
//
SpcFile::SpcFile( const std::string & filename ) :
notenum_( 60 ),
rate_( DefaultRate )
{
readSpcData( filename );
}
// ---------------------------------------------------------------------------
// SpcFile constructor, empty.
// ---------------------------------------------------------------------------
// Initialize an instance of SpcFile having the specified fractional
// MIDI note number, and no Partials (or envelope parameter streams).
//
SpcFile::SpcFile( double midiNoteNum ) :
notenum_( midiNoteNum ),
rate_( DefaultRate )
{
growPartials( MinNumPartials );
}
// ---------------------------------------------------------------------------
// write
// ---------------------------------------------------------------------------
// Export the phase-correct bandwidth-enhanced envelope parameter
// streams represented by this SpcFile to the file having the specified
// filename or path.
//
// A nonzero endApproachTime indicates that the Partials do not include a
// release or decay, but rather end in a static spectrum corresponding to the
// final Breakpoint values of the partials. The endApproachTime specifies how
// long before the end of the sound the amplitude, frequency, and bandwidth
// values are to be modified to make a gradual transition to the static spectrum.
//
// If the endApproachTime is not specified, it is assumed to be zero,
// corresponding to Partials that decay or release normally.
//
void
SpcFile::write( const std::string & filename, double endApproachTime )
{
write( filename, true, endApproachTime );
}
// ---------------------------------------------------------------------------
// write
// ---------------------------------------------------------------------------
// Export the pure sinsoidal (omitting phase and bandwidth data) envelope
// parameter streams represented by this SpcFile to the file having the
// specified filename or path.
//
// A nonzero endApproachTime indicates that the Partials do not include a
// release or decay, but rather end in a static spectrum corresponding to the
// final Breakpoint values of the partials. The endApproachTime specifies how
// long before the end of the sound the amplitude, frequency, and bandwidth
// values are to be modified to make a gradual transition to the static spectrum.
//
// If the endApproachTime is not specified, it is assumed to be zero,
// corresponding to Partials that decay or release normally.
//
void
SpcFile::writeSinusoidal( const std::string & filename, double endApproachTime )
{
write( filename, false, endApproachTime );
}
// ---------------------------------------------------------------------------
// write
// ---------------------------------------------------------------------------
// Export the envelope parameter streams represented by this SpcFile to
// the file having the specified filename or path. Export phase-correct
// bandwidth-enhanced envelope parameter streams if enhanced is true
// (the default), or pure sinsoidal streams otherwise.
//
//
// A nonzero endApproachTime indicates that the Partials do not include a
// release or decay, but rather end in a static spectrum corresponding to the
// final Breakpoint values of the partials. The endApproachTime specifies how
// long before the end of the sound the amplitude, frequency, and bandwidth
// values are to be modified to make a gradual transition to the static spectrum.
//
// If the endApproachTime is not specified, it is assumed to be zero,
// corresponding to Partials that decay or release normally.
//
// This version of write is deprecated, but is handy for internal use,
// called by the above write and writeSiunsoidal members.
//
void
SpcFile::write( const std::string & filename, bool enhanced, double endApproachTime )
{
if ( endApproachTime < 0 )
{
Throw( InvalidArgument, "End Approach Time may not be negative." );
}
std::ofstream s( filename.c_str(), std::ofstream::binary );
if ( ! s )
{
std::string s = "Could not create file \"";
s += filename;
s += "\". Failed to write Spc file.";
Throw( FileIOException, s );
}
// have to do this before trying to do anything else:
configureExportStruct( partials_, notenum_, endApproachTime, enhanced );
unsigned long dataSize = 0;
CommonCk commonChunk;
configureCommonCk( commonChunk, getNumSampleFrames(), Nchans, Bps, rate_ );
dataSize += commonChunk.header.size + sizeof(CkHeader);
SoundDataCk soundDataChunk;
configureEnvelopeDataCk( soundDataChunk, partials_ );
dataSize += soundDataChunk.header.size + sizeof(CkHeader);
InstrumentCk instrumentChunk;
configureInstrumentCk( instrumentChunk, notenum_ );
dataSize += instrumentChunk.header.size + sizeof(CkHeader);
MarkerCk markerChunk;
if ( ! markers_.empty() )
{
configureSosMarkerCk( markerChunk, markers_ );
dataSize += markerChunk.header.size + sizeof(CkHeader);
}
SosEnvelopesCk soseChunk;
configureSosEnvelopesCk( soseChunk );
dataSize += soseChunk.header.size + sizeof(CkHeader);
ContainerCk containerChunk;
configureContainer( containerChunk, dataSize );
try
{
writeContainer( s, containerChunk );
writeCommonData( s, commonChunk );
if ( ! markers_.empty() )
writeMarkerData( s, markerChunk );
writeInstrumentData( s, instrumentChunk );
writeSosEnvelopesChunk( s, soseChunk );
writeSampleData( s, soundDataChunk );
s.close();
}
catch ( Exception & ex )
{
ex.append( " Failed to write Spc file." );
throw;
}
}
// -- access --
// ---------------------------------------------------------------------------
// markers
// ---------------------------------------------------------------------------
// Return a reference to the Marker (see Marker.h) container
// for this SpcFile.
//
SpcFile::markers_type &
SpcFile::markers( void )
{
return markers_;
}
const SpcFile::markers_type &
SpcFile::markers( void ) const
{
return markers_;
}
// ---------------------------------------------------------------------------
// midiNoteNumber
// ---------------------------------------------------------------------------
// Return the fractional MIDI note number assigned to this SpcFile.
// If the sound has no definable pitch, note number 60.0 is used.
//
double
SpcFile::midiNoteNumber( void ) const
{
return notenum_;
}
// ---------------------------------------------------------------------------
// partials
// ---------------------------------------------------------------------------
// Return a read-only (const) reference to the bandwidth-enhanced
// Partials represented by the envelope parameter streams in this SpcFile.
//
const SpcFile::partials_type &
SpcFile::partials( void ) const
{
return partials_;
}
// ---------------------------------------------------------------------------
// sampleRate
// ---------------------------------------------------------------------------
// Return the sampling freqency in Hz for the spc data in this
// SpcFile. This is the rate at which Kyma must be running to ensure
// proper playback of bandwidth-enhanced Spc data.
//
double
SpcFile::sampleRate( void ) const
{
return rate_;
}
// -- mutation --
// ---------------------------------------------------------------------------
// addPartial
// ---------------------------------------------------------------------------
// Add the specified Partial to the enevelope parameter streams
// represented by this SpcFile.
//
// A SpcFile can contain only one Partial having any given (non-zero)
// label, so an added Partial will replace a Partial having the
// same label, if such a Partial exists.
//
// This may throw an InvalidArgument exception if an attempt is made
// to add unlabeled Partials, or Partials labeled higher than the
// allowable maximum.
//
void
SpcFile::addPartial( const Partial & p )
{
addPartial( p, p.label() );
}
// ---------------------------------------------------------------------------
// addPartial
// ---------------------------------------------------------------------------
// Add a Partial, assigning it the specified label (and position in the
// Spc data).
//
// A SpcFile can contain only one Partial having any given (non-zero)
// label, so an added Partial will replace a Partial having the
// same label, if such a Partial exists.
//
// This may throw an InvalidArgument exception if an attempt is made
// to add unlabeled Partials, or Partials labeled higher than the
// allowable maximum.
//
void
SpcFile::addPartial( const Partial & p, int label )
{
if ( p.label() == 0 )
{
Throw( InvalidArgument, "Spc Partials must be labeled." );
}
if ( label < 1 )
{
Throw( InvalidArgument, "Spc Partials must have positive labels." );
}
if ( label > LargestLabel )
{
Throw( InvalidArgument, "Spc Partial label is too large, cannot have more than 256." );
}
if ( label > partials_.size() )
{
growPartials( label );
}
partials_[label - 1] = p;
partials_[label - 1].setLabel( label );
}
// ---------------------------------------------------------------------------
// setMidiNoteNumber
// ---------------------------------------------------------------------------
// Set the fractional MIDI note number assigned to this SpcFile.
// If the sound has no definable pitch, use note number 60.0 (the default).
//
void
SpcFile::setMidiNoteNumber( double nn )
{
if ( nn < 0 || nn > 128 )
{
Throw( InvalidArgument, "MIDI note number outside of the valid range [1,128]" );
}
notenum_ = nn;
}
// ---------------------------------------------------------------------------
// setSampleRate
// ---------------------------------------------------------------------------
// Set the sampling freqency in Hz for the spc data in this
// SpcFile. This is the rate at which Kyma must be running to ensure
// proper playback of bandwidth-enhanced Spc data.
//
void
SpcFile::setSampleRate( double rate )
{
if ( rate <= 0 )
{
Throw( InvalidArgument, "Sample rate must be positive." );
}
rate_ = rate;
}
// -- helpers --
// ---------------------------------------------------------------------------
// growPartials
// ---------------------------------------------------------------------------
//
void
SpcFile::growPartials( partials_type::size_type sz )
{
if ( partials_.size() < sz )
{
#ifdef PO2
partials_type::size_type po2sz = MinNumPartials;
while ( po2sz < sz )
{
po2sz *= 2;
}
partials_.resize( po2sz );
#else
partials_.resize( sz );
#endif
for ( partials_type::size_type j = 0; j < partials_.size(); ++j )
{
partials_[j].setLabel( j+1 );
}
}
}
// -- export structures --
// ---------------------------------------------------------------------------
// Export Structures
// ---------------------------------------------------------------------------
//
// structure for export information
struct SpcExportInfo
{
double midipitch; // note number (69.00 = A440) for spc file;
// this is the core parameter, others are, by default,
// computed from this one
double endApproachTime; // in seconds, this indicates how long before the end of the sound the
// amplitude, frequency, and bandwidth values are to be modified to
// make a gradual transition to the spectral content at the end,
// 0.0 indicates no such modifications are to be done
int numPartials; // number of partials in spc file
int fileNumPartials; // the actual number of partials plus padding to make a 2**n value
int enhanced; // true for bandwidth-enhanced spc file, false for pure sines
double startTime; // in seconds, time of first frame in spc file
double endTime; // in seconds, this indicates the time at which to truncate the end
// of the spc file, 0.0 indicates no truncation
double markerTime; // in seconds, this indicates time at which a marker is inserted in the
// spc file, 0.0 indicates no marker is desired
double sampleRate; // in hertz, intended sample rate for synthesis of spc file
double hop; // hop size, based on numPartials and sampleRate
double ampEpsilon; // small amplitude value (related to lsb value in spc file log-amp)
};
static struct SpcExportInfo spcEI; // yikky global spc Export information
// -- export helpers by Lippold --
// ---------------------------------------------------------------------------
// fileNumPartials
// ---------------------------------------------------------------------------
// Find number of partials in SOS file. This is the actual number of partials,
// plus padding to make a 2**n value.
//
static int fileNumPartials( int partials )
{
if ( partials <= 32 )
return 32;
if ( partials <= 64 )
return 64;
if ( partials <= 128 )
return 128;
else if ( partials <= 256 )
return 256;
else if ( partials <= LargestLabel )
return LargestLabel;
Throw( FileIOException, "Too many SPC partials!" );
return LargestLabel;
}
// ---------------------------------------------------------------------------
// envLog( )
// ---------------------------------------------------------------------------
// For a range 0 to 1, this returns a log value, 0x0000 to 0xFFFF.
//
static unsigned long envLog( double floatingValue )
{
static double coeff = 65535.0 / log( 32768. );
return (unsigned long)( coeff * log( 32768.0 * floatingValue + 1.0 ) );
} // end of envLog( )
// ---------------------------------------------------------------------------
// envExp( )
// ---------------------------------------------------------------------------
// For a range 0x0000 to 0xFFFF, this returns an exponentiated value in the range 0..1.
// This is the counterpart of SpcFile::envLog().
//
static double envExp( long intValue )
{
static double coeff = 65535.0 / log( 32768. );
return ( exp( intValue / coeff ) - 1.0 ) / 32768.0;
} // end of envExp( )
// ---------------------------------------------------------------------------
// getPhaseRefTime
// ---------------------------------------------------------------------------
// Find the time at which to reference phase.
// The time will be shortly after amplitude onset, if we are before the onset.
//
static double getPhaseRefTime( int label, const Partial & p, double time )
{
// Keep array of previous values to optimize spc export.
// This depends on this routine being called in increasing-time order.
static double prevPRT[LargestLabel + 1];
if ( prevPRT[label] > time && time > spcEI.startTime )
return prevPRT[ label ];
// Go forward to nonzero amplitude.
while ( p.amplitudeAt( time, Fade ) < spcEI.ampEpsilon && time < spcEI.endTime + spcEI.hop)
{
time += spcEI.hop;
}
prevPRT[ label ] = time;
// Use phase value at initial onset time.
return time;
}
// ---------------------------------------------------------------------------
// afbp
// ---------------------------------------------------------------------------
// Find amplitude, frequency, bandwidth, phase value.
//
static void afbp( const Partial & p, double time, double phaseRefTime,
double magMult, double freqMult,
double & amp, double & freq, double & bw, double & phase)
{
// Optional endApproachTime processing:
// Approach amp, freq, and bw values at endTime, and stick at endTime amplitude.
// We avoid a sudden transition when using stick-at-end-frame sustains.
// Compute weighting factor between "normal" envelope point and static point.
if ( spcEI.endApproachTime && time > spcEI.endTime - spcEI.endApproachTime )
{
if ( time > p.endTime() && p.endTime() > spcEI.endTime - 2 * spcEI.hop)
time = p.endTime();
double wt = ( spcEI.endTime - time ) / spcEI.endApproachTime;
amp = magMult * ( wt * p.amplitudeAt( time, Fade ) +
(1.0 - wt) * p.amplitudeAt( spcEI.endTime, Fade ) );
freq = freqMult * ( wt * p.frequencyAt( time ) + (1.0 - wt) * p.frequencyAt( spcEI.endTime ) );
bw = ( wt * p.bandwidthAt( time ) + (1.0 - wt) * p.bandwidthAt( spcEI.endTime ) );
phase = p.phaseAt( time );
}
// If we are before the phase reference time, or on the final frame,
// use zero amp and offset phase.
else if ( time < phaseRefTime - spcEI.hop / 2 || time > spcEI.endTime - spcEI.hop / 2 )
{
amp = 0.;
freq = freqMult * p.frequencyAt( phaseRefTime );
bw = 0.;
phase = p.phaseAt( phaseRefTime ) - 2. * Pi * (phaseRefTime - time) * freq;
}
// Use envelope values at "time".
else
{
amp = magMult * p.amplitudeAt( time, Fade );
freq = freqMult * p.frequencyAt( time );
bw = p.bandwidthAt( time );
phase = p.phaseAt( time );
}
}
// ---------------------------------------------------------------------------
// pack
// ---------------------------------------------------------------------------
// Pack envelope breakpoint value for interpretation by Envelope Reader sounds
// in Kyma. The packed result is two 24-bit quantities, lval and rval.
//
// In lval, the log of the sine magnitude occupies the top 8 bits, the log of the
// frequency occupies the bottom 16 bits.
//
// In rval, the log of the noise magnitude occupies the top 8 bits, the scaled
// linear phase occupies the bottom 16 bits.
//
// lval and rval are pointers to 3-bytes each, filled in by this function.
//
static void pack( double amp, double freq, double bw, double phase,
Byte * lbytes, Byte * rbytes )
{
// Set phase for one hop earlier, so that Kyma synthesis target phase is correct.
// Add offset to phase for difference between Kyma and Loris representation.
phase -= 2. * Pi * spcEI.hop * freq;
phase += Pi / 2;
// Make phase into range 0..1.
phase = std::fmod( phase, 2. * Pi );
while ( phase < 0. ) // used to be if, I think it should be while
{ // -kel 12 May 2006
phase += 2. * Pi;
}
double zeroToOnePhase = phase / (2. * Pi);
// Make frequency into range 0..1.
double zeroToOneFreq = freq / 22050.0; // 0..1 , 1 is 22.050 kHz
// Compute sine magnitude and noise magnitude from amp and bw.
double theSineMag = amp * sqrt( 1. - bw );
double theNoiseMag = 64.0 * amp * sqrt( bw );
if (theNoiseMag > 1.0)
theNoiseMag = 1.0;
// Pack amp and freq into 24 least-significant bits of lval:
// 7 bits of log-sine-amplitude with 16 bits of zero to right.
// 16 bits of log-frequency with 0 bits of zero to right.
unsigned long lval;
lval = ( envLog( theSineMag ) & 0xFE00 ) << 7;
lval |= ( envLog( zeroToOneFreq ) & 0xFFFF );
// store in lbytes:
// store the sample bytes in big endian order,
// most significant byte first:
const int BytesPerSample = 3;
for ( int j = BytesPerSample; j > 0; --j )
{
// mask the lowest byte after shifting:
*(lbytes++) = 0xFF & (lval >> (8*(j-1)));
}
// Pack noise amp and phase into 24 least-significant bits of rval:
// 7 bits of log-noise-amplitude with 16 bits of zero to right.
// 16 bits of phase with 0 bits of zero to right.
unsigned long rval;
rval = ( envLog( theNoiseMag ) & 0xFE00 ) << 7;
rval |= ( (unsigned long) ( zeroToOnePhase * 0xFFFF ) );
// store in rbytes:
// store the sample bytes in big endian order,
// most significant byte first:
for ( int j = BytesPerSample; j > 0; --j )
{
// mask the lowest byte after shifting:
*(rbytes++) = 0xFF & (rval >> (8*(j-1)));
}
}
// ---------------------------------------------------------------------------
// packEnvelopes
// ---------------------------------------------------------------------------
// The partials should be labeled and distilled before this is called.
//
static bool notEmpty( const Partial & p ) { return p.size() > 0; }
static void packEnvelopes( const SpcFile::partials_type & partials,
std::vector< Byte > & bytes )
{
// Assert( partials.size() == spcEI.fileNumPartials );
int frames = int( ( spcEI.endTime - spcEI.startTime ) / spcEI.hop ) + 1;
unsigned long dataSize =
frames * spcEI.fileNumPartials * ( 24 / 8 ) * (spcEI.enhanced ? 2 : 1);
bytes.clear();
bytes.reserve( dataSize );
// get the reference partial; the lowest-nonzero-labeled partial with any breakpoints
SpcFile::partials_type::const_iterator pos =
std::find_if( partials.begin(), partials.end(), notEmpty );
Assert( pos != partials.end() );
const Partial & refPar = *pos;
int refLabel = refPar.label();
Assert( (refLabel - 1) == (pos - partials.begin()) );
// write out one frame at a time:
for (double tim = spcEI.startTime; tim <= spcEI.endTime; tim += spcEI.hop )
{
// for each frame, write one value for every partial:
// (this loop extends to the pad partials)
for (unsigned int label = 1; label <= spcEI.fileNumPartials; ++label )
{
double amp, freq, bw, phase;
// find partial with the correct label
// if partial with the correct is empty,
// frequency-multiply the reference partial
#ifndef PO2
if ( label > partials.size() || partials[ label - 1 ].size() == 0 )
#else
if ( partials[ label - 1 ].size() == 0 )
#endif
{
// find the reference time for the phase
double phaseRefTime = getPhaseRefTime( label, refPar, tim );
// find amplitude, frequency, bandwidth, phase value
double freqMult = (double) label / (double) refLabel;
double magMult = 0.0;
afbp( refPar, tim, phaseRefTime, magMult, freqMult, amp, freq, bw, phase );
}
else
{
// find the reference time for the phase
double phaseRefTime = getPhaseRefTime( label, partials[ label - 1 ], tim );
// find amplitude, frequency, bandwidth, phase value
afbp( partials[ label - 1 ], tim, phaseRefTime, 1, 1, amp, freq, bw, phase );
}
// pack log amplitude and log frequency into 24-bit lval,
// log bandwidth and phase into 24-bit rval:
Byte leftbytes[3], rightbytes[3];
pack( amp, freq, bw, phase, leftbytes, rightbytes);
// pack integer samples into the Byte vector without
// byte swapping, they are already correctly packed
// (see pack above):
bytes.insert( bytes.end(), leftbytes, leftbytes + 3 );
if ( spcEI.enhanced )
{
bytes.insert( bytes.end(), rightbytes, rightbytes + 3 );
}
}
}
Assert( bytes.size() == dataSize );
}
// ---------------------------------------------------------------------------
// configureEnvelopeDataCk
// ---------------------------------------------------------------------------
// Configure a special SoundDataCk for exporting Spc envelopes.
//
static void
configureEnvelopeDataCk( SoundDataCk & ck, const SpcFile::partials_type & partials )
{
packEnvelopes( partials, ck.sampleBytes );
ck.header.id = SoundDataId;
// size is everything after the header:
ck.header.size = sizeof(Uint_32) + // offset
sizeof(Uint_32) + // block size
ck.sampleBytes.size(); // sample data
// no block alignment:
ck.offset = 0;
ck.blockSize = 0;
}
// ---------------------------------------------------------------------------
// configureSosMarkerCk
// ---------------------------------------------------------------------------
// Spc needs a special version of this, because Marker times have to be
// rounded to the nearest frame.
//
void
configureSosMarkerCk( MarkerCk & ck, const std::vector< Marker > & markers )
{
ck.header.id = MarkerId;
// accumulate data size
Uint_32 dataSize = sizeof(Uint_16); // num markers
ck.numMarkers = markers.size();
ck.markers.resize( markers.size() );
for ( int j = 0; j < markers.size(); ++j )
{
MarkerCk::Marker & m = ck.markers[j];
m.markerID = j+1;
//m.position = Uint_32((markers[j].time() * srate) + 0.5);
// align marker with nearest frame time:
m.position = Uint_32( markers[j].time() / spcEI.hop )
* spcEI.fileNumPartials
* ( spcEI.enhanced ? 2 : 1 );
m.markerName = markers[j].name();
#define MAX_PSTRING_CHARS 254
if ( m.markerName.size() > MAX_PSTRING_CHARS )
m.markerName.resize( MAX_PSTRING_CHARS );
// the size of a pascal string is the number of
// characters plus the size byte, plus the terminal '\0':
//
// Actualy, at least one web source indicates that Pascal
// strings are not null-terminated, but that they _are_
// padded with an extra (not part of the count) byte
// if necessary to ensure that the total length (including
// count) is even, and this seems to work better with other
// programs (e.g. Kyma)
if ( m.markerName.size()%2 == 0 )
m.markerName += '\0';
dataSize += sizeof(Uint_16) + sizeof(Uint_32) + (m.markerName.size() + 1);
}
// must be an even number of bytes
if ( dataSize%2 )
++dataSize;
ck.header.size = dataSize;
}
// ---------------------------------------------------------------------------
// configureSosEnvelopesCk
// ---------------------------------------------------------------------------
// Configure a the application-specific chunk for exporting Spc envelopes.
//
static void
configureSosEnvelopesCk( SosEnvelopesCk & ck )
{
ck.header.id = ApplicationSpecificId;
// size is everything after the header:
ck.header.size = sizeof(Uint_32) + // signature
sizeof(Uint_32) + // enhanced
sizeof(Uint_32) + // validPartials
// this last bit is a big, obsolete array, that
// we now use two positions in, an they aren't
// even the first two! Truly nasty.
4*LargestLabel + 8 * sizeof(Int_32);// initPhase[] et al
ck.signature = SosEnvelopesId;
ck.enhanced = spcEI.enhanced;
// the number of partials is doubled in bandwidth-enhanced spc files
ck.validPartials = spcEI.numPartials * ( spcEI.enhanced ? 2 : 1 );
// resolution in microseconds
ck.resolution = long( 1000000.0 * spcEI.hop );
// all partials quasiharmonic
// the number of partials is doubled in bandwidth-enhanced spc files
ck.quasiHarmonic = spcEI.numPartials * ( spcEI.enhanced ? 2 : 1);
}
// ---------------------------------------------------------------------------
// writeSosEnvelopesChunk
// ---------------------------------------------------------------------------
//
std::ostream &
writeSosEnvelopesChunk( std::ostream & s, const SosEnvelopesCk & ck )
{
// write it out:
try
{
BigEndian::write( s, 1, sizeof(Int_32), (char *)&ck.header.id );
BigEndian::write( s, 1, sizeof(Int_32), (char *)&ck.header.size );
BigEndian::write( s, 1, sizeof(Int_32), (char *)&ck.signature );
BigEndian::write( s, 1, sizeof(Int_32), (char *)&ck.enhanced );
BigEndian::write( s, 1, sizeof(Int_32), (char *)&ck.validPartials );
// The SOSresultion and SOSquasiHarmonic fields are in the phase table memory.
//BigEndian::write( s, initPhaseLth, sizeof(Int_32), (char *)&ck.initPhase[0] );
static const int InitPhaseLth = ( LargestLabel + 8 );
Int_32 bogus[ InitPhaseLth ]; // obsolete initial phase array
std::fill( bogus, bogus + InitPhaseLth, 0 );
bogus[ ck.validPartials ] = ck.resolution;
bogus[ ck.validPartials + 1 ] = ck.quasiHarmonic;
BigEndian::write( s, InitPhaseLth, sizeof(Int_32), (char *)bogus );
}
catch( FileIOException & ex )
{
ex.append( "Failed to write AIFF file Container chunk." );
throw;
}
return s;
}
// ---------------------------------------------------------------------------
// computeHop
// ---------------------------------------------------------------------------
// Find the hop size, based on number of partials and sample rate.
//
static double computeHop( int numPartials, double sampleRate )
{
return 2 * numPartials / sampleRate;
}
// ---------------------------------------------------------------------------
// computeStartTime
// ---------------------------------------------------------------------------
// Find the start time: the earliest time of any labeled partial.
//
static double computeStartTime( const SpcFile::partials_type & pars )
{
double startTime = 1000.;
for ( SpcFile::partials_type::const_iterator pIter = pars.begin(); pIter != pars.end(); ++pIter )
if ( pIter->size() > 0 && startTime > pIter->startTime() && pIter->label() > 0 )
startTime = pIter->startTime();
return startTime;
}
// ---------------------------------------------------------------------------
// computeEndTime
// ---------------------------------------------------------------------------
// Find the end time: the latest time of any labeled partial.
//
static double computeEndTime( const SpcFile::partials_type & pars )
{
double endTime = -1000.;
for ( SpcFile::partials_type::const_iterator pIter = pars.begin(); pIter != pars.end(); ++pIter )
if ( pIter->size() > 0 && endTime < pIter->endTime() && pIter->label() > 0 )
endTime = pIter->endTime();
return endTime;
}
// ---------------------------------------------------------------------------
// computeNumPartials
// ---------------------------------------------------------------------------
// Find the number of partials.
//
static long computeNumPartials( const SpcFile::partials_type & pars )
{
// We purposely consider partials with no breakpoints, to allow
// a larger number of partials than actually have data.
int numPartials = 0;
for ( SpcFile::partials_type::const_iterator pIter = pars.begin(); pIter != pars.end(); ++pIter )
if ( numPartials < pIter->label() )
numPartials = pIter->label();
// To ensure a reasonable hop time, make at least 32 partials.
return numPartials ? std::max( 32, numPartials ) : 0;
}
// ---------------------------------------------------------------------------
// configureExportStruct
// ---------------------------------------------------------------------------
static void
configureExportStruct( const SpcFile::partials_type & plist, double midipitch,
double endApproachTime, int enhanced )
{
// note number (69.00 = A440) for spc file
spcEI.midipitch = midipitch;
// enhanced indicates a bandwidth-enhanced spc file; by default it is true.
// if enhanced is false, no bandwidth or noise information is exported.
spcEI.enhanced = enhanced;
// endApproachTime is in seconds; by default it is zero (and has no effect).
// a nonzero endApproachTime indicates that the plist does not include a
// release, but rather ends in a static spectrum corresponding to the final
// breakpoint values of the partials. the endApproachTime specifies how
// long before the end of the sound the amplitude, frequency, and bandwidth
// values are to be modified to make a gradual transition to the static spectrum.
spcEI.endApproachTime = endApproachTime;
// number of partials in spc file
spcEI.numPartials = computeNumPartials( plist );
spcEI.fileNumPartials = fileNumPartials( spcEI.numPartials );
// start and end time of spc file
spcEI.startTime = computeStartTime( plist );
spcEI.endTime = computeEndTime( plist );
// in seconds, this indicates time at which a marker is inserted
// in the spc file, 0.0 indicates no marker. this is not being used currently.
spcEI.markerTime = 0.;
// in hertz, intended sample rate for synthesis of spc file
spcEI.sampleRate = 44100.;
// compute hop size
spcEI.hop = computeHop( spcEI.numPartials, spcEI.sampleRate );
// compute ampEpsilon, a small amplitude value twice the lsb value
// of log amp in packed spc format.
spcEI.ampEpsilon = 2. * envExp( 0x200 );
// Max number of partials is due to (arbitrary) size of initPhase[].
if ( spcEI.numPartials < 1 || spcEI.numPartials > LargestLabel )
Throw( FileIOException, "Partials must be distilled and labeled between 1 and 512." );
debugger << "startTime = " << spcEI.startTime << " endTime = " << spcEI.endTime
<< " hop = " << spcEI.hop << " partials = " << spcEI.numPartials << endl;
}
// ---------------------------------------------------------------------------
// getNumSampleFrames
// ---------------------------------------------------------------------------
// The number of exported sample frames is computed from data stored in
// the icky global export struct.
//
static unsigned long getNumSampleFrames( void )
{
int frames = int( ( spcEI.endTime - spcEI.startTime ) / spcEI.hop ) + 1;
return frames * spcEI.fileNumPartials * ( spcEI.enhanced ? 2 : 1 );
}
// -- import helpers by Lippold --
// ---------------------------------------------------------------------------
// processEnhancedPoint
// ---------------------------------------------------------------------------
// Add ehanced-spc breakpoint to existing Loris partials.
//
static void
processEnhancedPoint( Byte * leftbytes, Byte * rightbytes,
const double frameTime,
Partial & par )
{
// represent bytes as 24 bit integers:
const int BytesPerSample = 3;
// assign the leading byte, so that the sign
// is preserved:
long left = static_cast<char>(*(leftbytes++));
for ( int j = 1; j < BytesPerSample; ++j )
{
// OR bytes after the most significant, so
// that their sign is ignored:
left = (left << 8) + (unsigned char)*(leftbytes++);
}
long right = static_cast<char>(*(rightbytes++));
for ( int j = 1; j < BytesPerSample; ++j )
{
// OR bytes after the most significant, so
// that their sign is ignored:
right = (right << 8) + (unsigned char)*(rightbytes++);
}
//
// Unpack values.
//
double freq = envExp( left & 0xffff ) * 22050.0;
double sineMag = envExp( (left >> 7) & 0xfe00 );
double noiseMag = envExp( (right >> 7) & 0xfe00 ) / 64.;
double phase = ( right & 0xffff ) * ( 2. * Pi / 0xffff );
double total = sineMag * sineMag + noiseMag * noiseMag;
double amp = sqrt( total );
double noise = 0.;
if (total != 0.)
noise = noiseMag * noiseMag / total;
if (noise > 1.)
noise = 1.;
phase -= Pi / 2.;
if (phase < 0.)
phase += 2. * Pi;
//
// Create a new breakpoint and insert it.
//
Breakpoint newbp( freq, amp, noise, phase );
par.insert( frameTime, newbp );
}
// ---------------------------------------------------------------------------
// processSineOnlyPoint
// ---------------------------------------------------------------------------
// Add sine-only spc breakpoint to existing Loris partials.
//
static void
processSineOnlyPoint( Byte * bytes,
const double frameTime,
Partial & par )
{
// represent bytes as 24 bit integers:
const int BytesPerSample = 3;
// assign the leading byte, so that the sign
// is preserved:
long packed = static_cast<char>(*(bytes++));
for ( int j = 1; j < BytesPerSample; ++j )
{
// OR bytes after the most significant, so
// that their sign is ignored:
packed = (packed << 8) + (unsigned char)*(bytes++);
}
//
// Unpack values.
//
double freq = envExp( packed & 0xffff ) * 22050.0;
double amp = envExp( (packed >> 7) & 0xfe00 );
double noise = 0.;
double phase = 0.;
//
// Create a new breakpoint and insert it.
//
Breakpoint newbp( freq, amp, noise, phase );
par.insert( frameTime, newbp );
}
// ---------------------------------------------------------------------------
// readSpcData
// ---------------------------------------------------------------------------
//
void
SpcFile::readSpcData( const std::string & filename )
{
ContainerCk containerChunk;
CommonCk commonChunk;
SoundDataCk soundDataChunk;
InstrumentCk instrumentChunk;
MarkerCk markerChunk;
SosEnvelopesCk soseChunk;
try
{
std::ifstream s( filename.c_str(), std::ifstream::binary );
// the Container chunk must be first, read it:
readChunkHeader( s, containerChunk.header );
if( containerChunk.header.id != ContainerId )
Throw( FileIOException, "Found no Container chunk." );
readContainer( s, containerChunk, containerChunk.header.size );
// read other chunks, we are only interested in
// the Common chunk, the Sound Data chunk, the Markers:
CkHeader h;
while ( readChunkHeader( s, h ) )
{
switch (h.id)
{
case CommonId:
readCommonData( s, commonChunk, h.size );
if ( commonChunk.channels != 1 )
{
Throw( FileIOException,
"Loris only processes single-channel AIFF samples files." );
}
if ( commonChunk.bitsPerSample != 8 &&
commonChunk.bitsPerSample != 16 &&
commonChunk.bitsPerSample != 24 &&
commonChunk.bitsPerSample != 32 )
{
Throw( FileIOException, "Unrecognized sample size." );
}
break;
case SoundDataId:
readSampleData( s, soundDataChunk, h.size );
break;
case InstrumentId:
readInstrumentData( s, instrumentChunk, h.size );
break;
case MarkerId:
readMarkerData( s, markerChunk, h.size );
break;
case ApplicationSpecificId:
readApplicationSpecifcData( s, soseChunk, h.size );
break;
default:
s.ignore( h.size );
}
}
if ( ! commonChunk.header.id || ! soundDataChunk.header.id )
{
Throw( FileIOException,
"Reached end of file before finding both a Common chunk and a Sound Data chunk." );
}
if ( soseChunk.signature != SosEnvelopesId )
{
Throw( FileIOException,
"Reached end of file before finding a Spc Envelope Data chunk, this must not be a Spc file." );
}
}
catch ( Exception & ex )
{
ex.append( " Failed to read Spc file." );
throw;
}
// all the chunks have been read, use them to initialize
// the SpcFile members:
rate_ = commonChunk.srate;
// why was this like this:
// double rate = commonChunk.srate;
if ( instrumentChunk.header.id )
{
notenum_ = instrumentChunk.baseNote;
notenum_ -= 0.01 * instrumentChunk.detune;
}
// extract information from SOSe chunk:
// enhanced file format has number of partials doubled
// sine-only file format has proper number of partials
bool enhanced = soseChunk.enhanced != 0;
int numPartials = enhanced ? soseChunk.validPartials / 2 : soseChunk.validPartials;
int numFrames = commonChunk.sampleFrames / ( fileNumPartials( numPartials ) * ( enhanced ? 2 : 1 ) );
double hop = soseChunk.resolution * 0.000001; // resolution is in microseconds
// read markers, need to compute times corresponding to
// spc frames:
if ( markerChunk.header.id )
{
for ( int j = 0; j < markerChunk.numMarkers; ++j )
{
MarkerCk::Marker & m = markerChunk.markers[j];
double markerTime = m.position * hop / ( fileNumPartials( numPartials ) * ( enhanced ? 2 : 1 ) );
markers_.push_back( Marker( markerTime, m.markerName ) );
}
}
// check for valid file
if ( numPartials == 0 || commonChunk.bitsPerSample != 24 )
Throw( FileIOException, "Not an SPC file." );
if ( numPartials < MinNumPartials || numPartials > LargestLabel )
Throw( FileIOException, "Bad number of partials in SPC file." );
// check the number of bytes of Spc data:
const int BytesPerSample = 3;
const int PredictedNumBytes =
BytesPerSample * numFrames * fileNumPartials( numPartials ) * ( enhanced ? 2 : 1 );
if ( soundDataChunk.sampleBytes.size() != PredictedNumBytes )
{
notifier << "Found " << soundDataChunk.sampleBytes.size() << " bytes of "
<< commonChunk.bitsPerSample << "-bit sample data." << endl;
notifier << "Header says there should be " << PredictedNumBytes
<< "." << endl;
}
// process SPC data points
partials_.clear();
growPartials( numPartials );
Byte * bytes = &soundDataChunk.sampleBytes.front();
for ( int frame = 0; frame < numFrames; ++frame )
{
for ( int partial = 0; partial < fileNumPartials( numPartials ); ++partial )
{
if (enhanced)
{
Byte * lbytes = bytes;
bytes += BytesPerSample;
Byte * rbytes = bytes;
bytes += BytesPerSample;
if ( partial < partials_.size() )
processEnhancedPoint( lbytes, rbytes, frame * hop, partials_[partial] );
}
else
{
if ( partial < partials_.size() )
processSineOnlyPoint( bytes, frame * hop, partials_[partial] );
bytes += BytesPerSample;
}
}
}
}
} // end of namespace Loris
|