1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
|
/*
* This is the Loris C++ Class Library, implementing analysis,
* manipulation, and synthesis of digitized sounds using the Reassigned
* Bandwidth-Enhanced Additive Sound Model.
*
* Loris is Copyright (c) 1999-2010 by Kelly Fitz and Lippold Haken
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY, without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*
* Resampler.C
*
* Implementation of class Resampler, for converting reassigned Partial envelopes
* into more conventional additive synthesis envelopes, having data points
* at regular time intervals. The benefits of reassigned analysis are NOT
* lost in this process, since the elimination of unreliable data and the
* reduction of temporal smearing are reflected in the resampled data.
*
* Lippold, 7 Aug 2003
* loris@cerlsoundgroup.org
*
* http://www.cerlsoundgroup.org/Loris/
*
*
* Phase correction added by Kelly 13 Dec 2005.
*/
#if HAVE_CONFIG_H
#include "config.h"
#endif
#include "Resampler.h"
#include "Breakpoint.h"
#include "LinearEnvelope.h"
#include "LorisExceptions.h"
#include "Notifier.h"
#include "Partial.h"
#include "phasefix.h"
#include <cmath>
// begin namespace
namespace Loris {
// helper declarations:
static Partial::iterator insert_resampled_at( Partial & newp, const Partial & p,
double sampleTime, double insertTime );
/*
TODO
- remove empties (currently handled automatically in the Python module
- remove insert_resampled_at
- phase correct with timing?
- fade time (for amplitude envelope sampling) - equal to interval? half?
*/
// ---------------------------------------------------------------------------
// constructor - sampling interval
// ---------------------------------------------------------------------------
//! Initialize a Resampler having the specified uniform sampling
//! interval. Enable phase-correct resampling, in which frequencies
//! of resampled Partials are modified (using fixFrequency) such
//! that the resampled phases are achieved in synthesis. Phase-
//! correct resampling can be disabled using setPhaseCorrect.
//!
//! Resampled Partials will be composed of Breakpoints at every
//! integer multiple of the resampling interval.
//!
//! \sa setPhaseCorrect
//! \sa fixFrequency
//!
//! \param sampleInterval is the resampling interval in seconds,
//! Breakpoint data is computed at integer multiples of
//! sampleInterval seconds.
//! \throw InvalidArgument if sampleInterval is not positive.
//
Resampler::Resampler( double sampleInterval ) :
interval_( sampleInterval ),
phaseCorrect_( true )
{
if ( sampleInterval <= 0. )
{
Throw( InvalidArgument, "Resampler sample interval must be positive." );
}
}
// ---------------------------------------------------------------------------
// setPhaseCorrect
// ---------------------------------------------------------------------------
//! Specify phase-corrected resampling, or not. If phase
//! correct, Partial frequencies are altered slightly
//! to match, as nearly as possible, the Breakpoint
//! phases after resampling. Phases are updated so that
//! the Partial frequencies and phases are consistent after
//! resampling.
//!
//! \param correctPhase is a boolean flag specifying that
//! (if true) frequency/phase correction should be
//! applied after resampling.
void Resampler::setPhaseCorrect( bool correctPhase )
{
phaseCorrect_ = correctPhase;
}
// ---------------------------------------------------------------------------
// resample
// ---------------------------------------------------------------------------
//! Resample a Partial using this Resampler's stored quanitization interval.
//! If sparse resampling (the default) has be selected, Breakpoint times
//! are quantized to integer multiples of the resampling interval.
//! If dense resampling is selected, a Breakpoint will be provided at
//! every integer multiple of the resampling interval in the time span of
//! the Partial, starting and ending with the nearest multiples to the
//! ends of the Partial. Frequencies and phases are corrected to be in
//! agreement and to match as nearly as possible the resampled phases if
//! phase correct resampling is specified (the default). Resampling
//! is performed in-place.
//!
//! \param p is the Partial to resample
//
void
Resampler::resample( Partial & p ) const
{
debugger << "resampling Partial labeled " << p.label()
<< " having " << p.numBreakpoints()
<< " Breakpoints" << endl;
// create the new Partial:
Partial newp;
newp.setLabel( p.label() );
// find time of first and last breakpoint for the resampled envelope:
double firstInsertTime = interval_ * int( 0.5 + p.startTime() / interval_ );
double lastInsertTime = p.endTime() + ( 0.5 * interval_ );
// resample:
for ( double tins = firstInsertTime; tins <= lastInsertTime; tins += interval_ )
{
// sample time is obtained from the timing envelope, if specified,
// otherwise same as the insert time:
double tsamp = tins;
insert_resampled_at( newp, p, tins, tins );
}
// store the new Partial:
p = newp;
debugger << "resampled Partial has " << p.numBreakpoints()
<< " Breakpoints" << endl;
if ( phaseCorrect_ )
{
fixFrequency( p ); // use default maxFixPct
}
}
// ---------------------------------------------------------------------------
// resample
// ---------------------------------------------------------------------------
//! Resample a Partial using this Resampler's stored quanitization interval.
//! If sparse resampling (the default) has be selected, Breakpoint times
//! are quantized to integer multiples of the resampling interval.
//! If dense resampling is selected, a Breakpoint will be provided at
//! every integer multiple of the resampling interval in the time span of
//! the Partial, starting and ending with the nearest multiples to the
//! ends of the Partial. Frequencies and phases are corrected to be in
//! agreement and to match as nearly as possible the resampled phases if
//! phase correct resampling is specified (the default). Resampling
//! is performed in-place.
//!
//! \param p is the Partial to resample
//!
//! \param timingEnv is the timing envelope, a map of Breakpoint
//! times in resampled Partials onto parameter sampling
//! instants in the original Partials.
//!
//! \throw InvalidArgument if timingEnv has any negative breakpoint
//! times or values.
//
void
Resampler::resample( Partial & p, const LinearEnvelope & timingEnv ) const
{
debugger << "resampling Partial labeled " << p.label()
<< " having " << p.numBreakpoints()
<< " Breakpoints" << endl;
Assert( 0 != timingEnv.size() );
// create the new Partial:
Partial newp;
newp.setLabel( p.label() );
// find the extent of the timing envelope, if specified, otherwise
// the insert time range is the same as the sample time range:
double firstInsertTime = interval_ * int( 0.5 + timingEnv.begin()->first / interval_ );
double lastInsertTime = (--timingEnv.end())->first + ( 0.5 * interval_ );
// resample:
for ( double insertTime = firstInsertTime;
insertTime <= lastInsertTime;
insertTime += interval_ )
{
// sample time is obtained from the timing envelope, if specified,
// otherwise same as the insert time:
double sampleTime = timingEnv.valueAt( insertTime );
// make a resampled Breakpoint:
Breakpoint newbp = p.parametersAt( sampleTime );
Partial::iterator ret_pos = newp.insert( insertTime, newbp );
}
// remove excess null Breakpoints at the ends of the newly-formed
// Partial, no simple way to anticipate these, without evaluating
// the timing envelope at all points.
//
// Also runs of nulls in the middle?
Partial::iterator it = newp.begin();
while( it != newp.end() && 0 == it->amplitude() )
{
++it;
}
newp.erase( newp.begin(), it );
it = newp.end();
while( it != newp.begin() && 0 == (--it)->amplitude() )
{
}
if ( it != newp.end() )
{
newp.erase( ++it, newp.end() );
}
// is this a good idea? generally not.
if ( phaseCorrect_ && ( 0 != newp.numBreakpoints() ) )
{
fixFrequency( newp ); // use default maxFixPct
}
// store the new Partial:
p = newp;
debugger << "resampled Partial has " << p.numBreakpoints()
<< " Breakpoints" << endl;
}
// ---------------------------------------------------------------------------
// quantize
// ---------------------------------------------------------------------------
//! The Breakpoint times in the resampled Partial will comprise a
//! sparse sequence of integer multiples of the sampling interval,
//! beginning with the multiple nearest to the Partial's start time and
//! ending with the multiple nearest to the Partial's end time, and including
//! only multiples that are near to Breakpoint times in the original Partial.
//! Resampling is performed in-place.
//!
//! \param p is the Partial to resample
//
void Resampler::quantize( Partial & p ) const
{
debugger << "quantizing Partial labeled " << p.label()
<< " having " << p.numBreakpoints()
<< " Breakpoints" << endl;
// for phase-correct quantization, first make the phases correct by
// fixing them from the initial phase (ideally this should have
// no effect but there's no way to be phase-correct after quantization
// unless the phases start correct), then quantize the Breakpoint
// times, then afterwards, adjust the frequencies to match
// the interpolated phases:
if ( phaseCorrect_ )
{
fixPhaseForward( p.begin(), --p.end() );
}
// create the new Partial:
Partial newp;
newp.setLabel( p.label() );
Partial::const_iterator iter = p.begin();
while( iter != p.end() )
{
const Breakpoint & bp = iter.breakpoint();
double bpt = iter.time();
// find the nearest multiple of the quantization interval:
long qstep = long( 0.5 + ( bpt / interval_ ) );
long endstep = qstep-1; // guarantee first insertion
if ( newp.numBreakpoints() != 0 )
{
endstep = long( 0.5 + ( newp.endTime() / interval_ ) );
}
// insert a new Breakpoint if it does not duplicate
// a previous insertion, or if it is a Null (needed
// for phase-correction):
if ( (endstep != qstep) || (0 == bp.amplitude()) )
{
double qt = interval_ * qstep;
// insert another Breakpoint and advance the Breakpoint
// iterator and the current time:
//
// sample the Partial with a long fade time so that
// the amplitudes at the ends keep their original values:
const double a_long_time = 1.;
Breakpoint newbp = p.parametersAt( qt, a_long_time );
Partial::iterator new_pos = newp.insert( qt, newbp );
// tricky: if the quantized position (iter) is a null Breakpoint,
// we had better made the new position a null also, very important
// for making phase resets happen at synthesis time.
//
// Also, if new_pos is earlier than iter, the phase should be rolled
// back from iter, rather than interpolated. If new_pos is later
// than iter, then its phase will have been correctly interpolated.
if ( 0 == bp.amplitude() )
{
new_pos.breakpoint().setAmplitude( 0 );
if ( new_pos.time() < bpt )
{
double dp = phaseTravel( new_pos.breakpoint(), bp,
bpt - new_pos.time() );
new_pos.breakpoint().setPhase( bp.phase() - dp );
}
}
}
++iter;
}
// for phase-correct quantization, adjust the frequencies to match
// the interpolated phases:
if ( phaseCorrect_ )
{
fixFrequency( newp, 5 );
}
debugger << "quantized Partial has " << newp.numBreakpoints()
<< " Breakpoints" << endl;
// store the new Partial:
p = newp;
}
// ---------------------------------------------------------------------------
// insert_resampled_at (helper)
// ---------------------------------------------------------------------------
//
static Partial::iterator
insert_resampled_at( Partial & newp, const Partial & p,
double sampleTime, double insertTime )
{
// make a resampled Breakpoint:
Breakpoint newbp = p.parametersAt( sampleTime );
// handle end points to reduce error at ends
if ( sampleTime < p.startTime() )
{
newbp.setAmplitude( p.first().amplitude() );
}
else if ( sampleTime > p.endTime() )
{
newbp.setAmplitude( p.last().amplitude() );
}
Partial::iterator ret_pos = newp.insert( insertTime, newbp );
debugger << "inserted Breakpoint having amplitude " << newbp.amplitude()
<< " at time " << insertTime << endl;
return ret_pos;
}
} // end of namespace Loris
|