1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
|
/*
* This is the Loris C++ Class Library, implementing analysis,
* manipulation, and synthesis of digitized sounds using the Reassigned
* Bandwidth-Enhanced Additive Sound Model.
*
* Loris is Copyright (c) 1999-2010 by Kelly Fitz and Lippold Haken
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY, without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*
* ReassignedSpectrum.C
*
* Implementation of class Loris::ReassignedSpectrum.
*
* Kelly Fitz, 9 Dec 1999
* loris@cerlsoundgroup.org
*
* http://www.cerlsoundgroup.org/Loris/
*
*/
#if HAVE_CONFIG_H
#include "config.h"
#endif
#include "ReassignedSpectrum.h"
#include "Notifier.h"
#include "LorisExceptions.h"
#include <algorithm> // for std::transform(), others
#include <functional> // for bind1st, multiplies, etc.
#include <cstdlib> // for std::abs()
#include <numeric> // for std::accumulate()
#include <cmath> // for M_PI (except when its not there), fmod, fabs
#if defined(HAVE_M_PI) && (HAVE_M_PI)
const double Pi = M_PI;
#else
const double Pi = 3.14159265358979324;
#endif
// The old quadratic interpolation code is still around, in case
// we ever want to use it for comparison, Lemur used to use that.
#if defined(Like_Lemur)
#define USE_PARABOLIC_INTERPOLATION
#endif
// define this symbol to compute the mixed phase derivative
#define COMPUTE_MIXED_PHASE_DERIVATIVE 1
// there's a lot of std in here,
// import the whole namespace, as ugly as that is.
using namespace std;
// begin namespace
namespace Loris {
static unsigned long nextPO2( unsigned long N )
{
return (unsigned long)ceil( log( double(N) ) / log( 2. ) );
}
// ---------------------------------------------------------------------------
// ReassignedSpectrum constructor
// ---------------------------------------------------------------------------
//! Construct a new instance using the specified short-time window.
//! Transform lengths are the smallest power of two greater than twice the
//! window length.
//
ReassignedSpectrum::ReassignedSpectrum( const std::vector< double > & window ) :
mMagnitudeTransform( 1 << ( 1 + nextPO2( window.size() ) ) ),
mCorrectionTransform( 1 << ( 1 + nextPO2( window.size() ) ) )
{
// Build and store the window functions.
buildReassignmentWindows( window );
debugger << "ReassignedSpectrum: length is " << mMagnitudeTransform.size() << endl;
}
// ---------------------------------------------------------------------------
// ReassignedSpectrum constructor
// ---------------------------------------------------------------------------
//! Construct a new instance using the specified short-time window and
//! its time derivative.
//! Transform lengths are the smallest power of two greater than twice the
//! window length.
ReassignedSpectrum::ReassignedSpectrum( const std::vector< double > & window,
const std::vector< double > & windowDerivative ) :
mMagnitudeTransform( 1 << ( 1 + nextPO2( window.size() ) ) ),
mCorrectionTransform( 1 << ( 1 + nextPO2( window.size() ) ) )
{
// Build and store the window functions.
buildReassignmentWindows( window, windowDerivative );
debugger << "ReassignedSpectrum: length is " << mMagnitudeTransform.size() << endl;
}
// ---------------------------------------------------------------------------
// transform
// ---------------------------------------------------------------------------
//! Compute the reassigned Fourier transform of the samples on the half open
//! range [sampsBegin, sampsEnd), aligning sampCenter with the center of
//! the analysis window.
//!
//! \param sampsBegin pointer representing the beginning of
//! the (half-open) range of samples to transform
//! \param sampCenter the sample in the range that is to be
//! aligned with the center of the analysis window
//! \param sampsEnd pointer representing the end of
//! the (half-open) range of samples to transform
//!
//! \pre sampsBegin must not be past sampCenter
//! \pre sampsEnd must be past sampCenter
//! \post the transform buffers store the reassigned
//! short-time transform data for the specified
//! samples
//
void
ReassignedSpectrum::transform( const double * sampsBegin,
const double * sampCenter,
const double * sampsEnd )
{
if ( sampCenter < sampsBegin || sampCenter >= sampsEnd )
{
Throw( InvalidArgument, "Invalid sample range boundaries." );
}
const long firstHalfWinLength = window().size() / 2;
const long secondHalfWinLength = (window().size() - 1) / 2;
// ensure that samples outside the window are not used:
sampsBegin = std::max( sampsBegin, sampCenter - firstHalfWinLength );
sampsEnd = std::min( sampsEnd, sampCenter + secondHalfWinLength + 1 );
// we will skip the beginning of the window
// only if pos is too close to the start of
// the buffer:
long winBeginOffset = 0;
if ( sampCenter - sampsBegin < (window().size() / 2) )
{
winBeginOffset = (window().size() / 2) - ( sampCenter - sampsBegin );
}
// to get phase right, we will rotate the Fourier transform
// input by pos - sampsBegin samples:
long rotateBy = sampCenter - sampsBegin;
// window and rotate input and compute normal transform:
// window the samples into the FT buffer:
FourierTransform::iterator it =
std::transform( sampsBegin, sampsEnd, mCplxWin_W_Wtd.begin() + winBeginOffset,
mMagnitudeTransform.begin(), std::multiplies< std::complex< double > >() );
// fill the rest with zeros:
std::fill( it, mMagnitudeTransform.end(), 0. );
// rotate to align phase:
std::rotate( mMagnitudeTransform.begin(), mMagnitudeTransform.begin() + rotateBy, mMagnitudeTransform.end() );
// compute transform:
mMagnitudeTransform.transform();
// compute the dual reassignment transform:
// window the samples into the reassignment FT buffer,
// using the complex-valued reassignment window:
it = std::transform( sampsBegin, sampsEnd, mCplxWin_Wd_Wt.begin() + winBeginOffset,
mCorrectionTransform.begin(), std::multiplies< std::complex<double> >() );
// fill the rest with zeros:
std::fill( it, mCorrectionTransform.end(), 0. );
// rotate to align phase:
std::rotate( mCorrectionTransform.begin(), mCorrectionTransform.begin() + rotateBy, mCorrectionTransform.end() );
// compute the transform:
mCorrectionTransform.transform();
}
// ---------------------------------------------------------------------------
// size
// ---------------------------------------------------------------------------
//! Return the length of the Fourier transforms.
//
ReassignedSpectrum::size_type
ReassignedSpectrum::size( void ) const
{
return mMagnitudeTransform.size();
}
// ---------------------------------------------------------------------------
// window
// ---------------------------------------------------------------------------
//! Return read access to the short-time window samples.
//! (Peers may need to know about the analysis window
//! or about the scale factors in introduces.)
//
const std::vector< double > &
ReassignedSpectrum::window( void ) const
{
return mWindow;
}
// ---------------------------------------------------------------------------
// circEvenPartAt - helper
// ---------------------------------------------------------------------------
// Extract the circular even part from Fourier transform data.
// Used for computing two real transforms using a single complex transform.
//
template< class TransformData >
static std::complex<double>
circEvenPartAt( const TransformData & td, long idx )
{
const long N = td.size();
while( idx < 0 )
{
idx += N;
}
while( idx >= N )
{
idx -= N;
}
long flip_idx;
if ( idx != 0 )
{
flip_idx = N - idx;
}
else
{
flip_idx = idx;
}
return 0.5*( td[idx] + std::conj( td[flip_idx] ) );
}
// ---------------------------------------------------------------------------
// circOddPartAt - helper
// ---------------------------------------------------------------------------
// Extract the circular odd part divided by j from Fourier transform data.
// Used for computing two real transforms using a single complex transform.
//
template< class TransformData >
static std::complex<double>
circOddPartAt( const TransformData & td, long idx )
{
const long N = td.size();
while( idx < 0 )
{
idx += N;
}
while( idx >= N )
{
idx -= N;
}
long flip_idx;
if ( idx != 0 )
{
flip_idx = N - idx;
}
else
{
flip_idx = idx;
}
/*
const std::complex<double> minus_j(0,-1);
std::complex<double> tra_part = minus_j * 0.5 *
( td[idx] - std::conj( td[flip_idx] ) );
*/
// can compute this without complex multiplies:
std::complex<double> tmp = td[idx] - std::conj( td[flip_idx] );
return std::complex<double>( 0.5*tmp.imag(), -0.5*tmp.real() );
}
// ---------------------------------------------------------------------------
// frequencyCorrection
// ---------------------------------------------------------------------------
//! Compute the frequency correction at the specified frequency sample
//! using the method of Auger and Flandrin to evaluate the partial
//! derivative of spectrum phase w.r.t. time.
//!
//! Correction is computed in fractional frequency samples, because
//! that's the kind of frequency domain ramp we used on our window.
//! sample is the frequency sample index, the nominal component
//! frequency in samples.
//
// Parabolic interpolation can be tried too (see reassignedFrequency())
// but it appears to give slightly worse results, for example, with
// a square wave.
//
double
ReassignedSpectrum::frequencyCorrection( long idx ) const
{
std::complex<double> X_h = circEvenPartAt( mMagnitudeTransform, idx );
std::complex<double> X_Dh = circEvenPartAt( mCorrectionTransform, idx );
double num = X_h.real() * X_Dh.imag() -
X_h.imag() * X_Dh.real();
double magSquared = std::norm( X_h );
// need to scale by the oversampling factor
double oversampling = (double)mCorrectionTransform.size() / mCplxWin_W_Wtd.size();
return - oversampling * num / magSquared;
}
// ---------------------------------------------------------------------------
// timeCorrection
// ---------------------------------------------------------------------------
//! Compute the time correction at the specified frequency sample
//! using the method of Auger and Flandrin to evaluate the partial
//! derivative of spectrum phase w.r.t. frequency.
//!
//! Correction is computed in fractional samples, because
//! that's the kind of ramp we used on our window.
//
double
ReassignedSpectrum::timeCorrection( long idx ) const
{
std::complex<double> X_h = circEvenPartAt( mMagnitudeTransform, idx );
std::complex<double> X_Th = circOddPartAt( mCorrectionTransform, idx );
double num = X_h.real() * X_Th.real() +
X_h.imag() * X_Th.imag();
double magSquared = norm( X_h );
// No need to scale by the oversampling factor.
// No, seems to sound bad, why?
// (try alienthreat)
// double oversampling = (double)mCorrectionTransform.size() / mCplxWin_W_Wtd.size();
return num / magSquared;
}
// ---------------------------------------------------------------------------
// reassignedFrequency
// ---------------------------------------------------------------------------
//! Return the reassigned frequency in fractional frequency
//! samples computed at the specified transform index.
//!
//! \param idx the frequency sample at which to evaluate the
//! transform
//
double
ReassignedSpectrum::reassignedFrequency( long idx ) const
{
#if ! defined(USE_PARABOLIC_INTERPOLATION)
return double(idx) + frequencyCorrection( idx );
#else // defined(USE_PARABOLIC_INTERPOLATION)
double dbLeft = 20. * log10( abs( circEvenPartAt( mMagnitudeTransform, idx-1 ) ) );
double dbCandidate = 20. * log10( abs( circEvenPartAt( mMagnitudeTransform, idx ) ) );
double dbRight = 20. * log10( abs( circEvenPartAt( mMagnitudeTransform, idx+1 ) ) );
double peakXOffset = 0.5 * (dbLeft - dbRight) /
(dbLeft - 2.0 * dbCandidate + dbRight);
return idx + peakXOffset;
#endif // defined USE_PARABOLIC_INTERPOLATION
}
// ---------------------------------------------------------------------------
// reassignedTime
// ---------------------------------------------------------------------------
//! Return the reassigned time in fractional samples
//! computed at the specified transform index.
//!
//! \param idx the frequency sample at which to evaluate the
//! transform
//
double
ReassignedSpectrum::reassignedTime( long idx ) const
{
return timeCorrection( idx );
}
// ---------------------------------------------------------------------------
// reassignedMagnitude
// ---------------------------------------------------------------------------
//! Return the spectrum magnitude (absolute)
//! computed at the specified transform index.
//!
//! \param idx the frequency sample at which to evaluate the
//! transform
//
double
ReassignedSpectrum::reassignedMagnitude( long idx ) const
{
#if ! defined(USE_PARABOLIC_INTERPOLATION)
// compute the nominal spectral amplitude by scaling
// the peak spectral sample:
return abs( circEvenPartAt( mMagnitudeTransform, idx ) );
#else // defined(USE_PARABOLIC_INTERPOLATION)
// keep this parabolic interpolation computation around
// only for sake of comparison, it is unlikely to yield
// good results with bandwidth association:
double dbLeft = 20. * log10( abs( circEvenPartAt( mMagnitudeTransform, idx-1 ) ) );
double dbCandidate = 20. * log10( abs( circEvenPartAt( mMagnitudeTransform, idx ) ) );
double dbRight = 20. * log10( abs( circEvenPartAt( mMagnitudeTransform, idx+1 ) ) );
double peakXOffset = 0.5 * (dbLeft - dbRight) /
(dbLeft - 2.0 * dbCandidate + dbRight);
double dbmag = dbCandidate - 0.25 * (dbLeft - dbRight) * peakXOffset;
double x = pow( 10., 0.05 * dbmag );
return x;
#endif // defined USE_PARABOLIC_INTERPOLATION
}
// ---------------------------------------------------------------------------
// reassignedPhase
// ---------------------------------------------------------------------------
//! Return the phase in radians computed at the specified transform index.
//! The reassigned phase is shifted to account for the time
//! correction according to the corrected frequency.
//!
//! \param idx the frequency sample at which to evaluate the
//! transform
//
double
ReassignedSpectrum::reassignedPhase( long idx ) const
{
double phase = arg( circEvenPartAt( mMagnitudeTransform, idx ) );
const double offsetTime = timeCorrection( idx );
const double offsetFreq = frequencyCorrection( idx );
// adjust phase according to the frequency correction:
// first compute H(1):
//
// this seems like it would be a good idea, but in practice,
// it screws the phases up badly.
// Am I just correcting in the wrong direction? No, its
// something else.
//
// Seems like I had the slope way too big. Changed to compute
// the slope from H(1) of a rotated window, and now the slope
// is so small that it seems like there will never be any phase
// correction.
//
// Phase ought to be linear anyway, so I should just be
// able to use dumb old linear interpolation.
// offsetFreq is in fractional frequency samples
if ( offsetFreq > 0 )
{
double nextphase = arg( circEvenPartAt( mMagnitudeTransform, idx+1 ) );
double slope = nextphase - phase;
phase += offsetFreq * slope;
}
else
{
double prevphase = arg( circEvenPartAt( mMagnitudeTransform, idx-1 ) );
double slope = phase - prevphase;
phase += offsetFreq * slope;
}
// adjust phase according to the time correction:
const double fracFreqSample = idx + offsetFreq;
phase += offsetTime * fracFreqSample * 2. * Pi / mMagnitudeTransform.size();
// NOTICE
// This could be pretty much anything -- a sample reassigned by a
// millisecond at 1000 Hz in a 1024 FFT at 44k sample rate is
// adjusted by 2Pi.
//
// What if the frequency estimate is bad? Corrupts the phase estimate too!
return fmod( phase, 2. * Pi );
}
// ---------------------------------------------------------------------------
// convergence
// ---------------------------------------------------------------------------
//! Compute and return the convergence indicator, computed from the
//! mixed partial derivative of spectral phase, optionally used in
//! BW enhanced analysis as a convergence indicator. The convergence
//! value is on the range [0,1], 0 for a sinusoid, and 1 for an impulse.
//!
//! \param idx the frequency sample at which to evaluate the
//! transform
//
double
ReassignedSpectrum::convergence( long idx ) const
{
#if defined(COMPUTE_MIXED_PHASE_DERIVATIVE)
std::complex<double> X_h = circEvenPartAt( mMagnitudeTransform, idx );
std::complex<double> X_Th = circOddPartAt( mCorrectionTransform, idx );
std::complex<double> X_Dh = circEvenPartAt( mCorrectionTransform, idx );
std::complex<double> X_TDh = circOddPartAt( mMagnitudeTransform, idx );
double term1 = (X_TDh * conj(X_h)).real() / norm( X_h );
double term2 = ((X_Th * X_Dh) / (X_h * X_h)).real();
double scaleBy = 2. * Pi / mCplxWin_W_Wtd.size();
double bw = fabs( 1.0 + (scaleBy * (term1 - term2)) );
bw = min( 1.0, bw );
#else
double bw = 0.;
#endif
return bw;
}
// ---------------------------------------------------------------------------
// subscript operator (deprecated)
// ---------------------------------------------------------------------------
// Included to support old code.
// The signature has changed, can no longer return a reference,
// but since the reference returned was const, this version should
// keep most old code working, if not all.
//
std::complex< double >
ReassignedSpectrum::operator[]( unsigned long idx ) const
{
return circEvenPartAt( mMagnitudeTransform, idx );
}
// ---------------------------------------------------------------------------
// make_complex
// ---------------------------------------------------------------------------
// Function object for building complex numbers.
//
template <class T>
struct make_complex
: binary_function< T, T, std::complex<T> >
{
std::complex<T> operator()(const T& re, const T& im) const
{
return std::complex<T>( re, im );
}
};
// ---------------------------------------------------------------------------
// applyFreqRamp
// ---------------------------------------------------------------------------
// Adapted from the FrequencyReassignment constructor in Lemur 5.
//
// This function computes an estimate of the time derivative of the
// specified window function, scaled by N/2pi, appropriate for computing
// frequency reassignment.
//
static inline void applyFreqRamp( vector< double > & w )
{
// we're going to do the frequency-domain ramp
// by Fourier transforming the window, ramping,
// then transforming again.
// Use a transform exactly as long as the window.
// load, w/out rotation, and transform.
FourierTransform temp( w.size() );
FourierTransform::iterator it = std::copy( w.begin(), w.end(), temp.begin() );
std::fill( it, temp.end(), 0. );
temp.transform();
// extract complex transform and multiply by
// a frequency (sample) ramp:
// (the frequency ramp goes from 0 to N/2
// over the first half, then -N/2 to 0 over
// the second (aliased) half of the transform,
// and has to be scaled by the ratio of the
// transform lengths, so that k spans the length
// of the padded transforms, N)
for ( int k = 0 ; k < temp.size(); ++k )
{
double x = (double)k; // to get type promotion right
if ( k < temp.size() / 2 )
{
temp[ k ] *= x;
}
else
{
temp[ k ] *= ( x - temp.size() );
}
}
// invert the transform:
temp.transform();
// the DFT of a DFT gives the scaled and INDEX REVERSED
// sequence. See p. 539 of O and S.
// DFT( X[n] ) -- DFT --> Nx[ -k mod N ]
//
// seems that I want the imaginary part of the index-reversed
// transform scaled by the size of the transform:
std::reverse( temp.begin() + 1, temp.end() );
for ( int i = 0; i < w.size(); ++i )
{
w[i] = - imag( temp[i] ) / temp.size();
}
}
// ---------------------------------------------------------------------------
// applyTimeRamp
// ---------------------------------------------------------------------------
// Make a copy of mWindow scaled by a ramp from -N/2 to N/2 for computing
// time corrections in samples.
//
static inline void applyTimeRamp( vector< double > & w )
{
// the very center of the window should be scaled by 0.,
// need a fractional value for even-length windows, a
// whole number for odd-length windows:
double offset = 0.5 * ( w.size() - 1 );
for ( int k = 0 ; k < w.size(); ++k )
{
w[ k ] *= ( k - offset );
}
}
// ---------------------------------------------------------------------------
// buildReassignmentWindows (private)
// ---------------------------------------------------------------------------
// Build a pair of complex-valued windows, one having the frequency-ramp
// (time-derivative) window in the real part and the time-ramp window in the
// imagnary part, and the other having the unmodified window in the real part
// and, if computing mixed deriviatives, the time-ramp time-derivative window
// in the imaginary part.
//
// Input is the unmodified window function.
//
void
ReassignedSpectrum::buildReassignmentWindows( const std::vector< double > & window )
{
mWindow.resize( window.size(), 0. );
// Scale the window so that the reported magnitudes
// are correct.
double winsum = std::accumulate( window.begin(), window.end(), 0. );
std::transform( window.begin(), window.end(), mWindow.begin(),
std::bind1st( std::multiplies<double>(), 2/winsum ) );
// Construct the ramped windows from the scaled window.
std::vector< double > tramp = mWindow;
applyTimeRamp( tramp );
std::vector< double > framp = mWindow;
applyFreqRamp( framp );
std::vector< double > tframp( mWindow.size(), 0. );
#if defined(COMPUTE_MIXED_PHASE_DERIVATIVE)
// Do this only if we are computing the mixed
// partial derivative of phase, otherwise, leave
// that vector empty.
tframp = framp;
applyTimeRamp( tframp );
#endif
// Copy the windows into real and imaginary parts of
// complex window vectors.
mCplxWin_W_Wtd.resize( mWindow.size(), 0. );
mCplxWin_Wd_Wt.resize( mWindow.size(), 0. );
std::transform( framp.begin(), framp.end(), tramp.begin(),
mCplxWin_Wd_Wt.begin(), make_complex< double >() );
std::transform( mWindow.begin(), mWindow.end(), tframp.begin(),
mCplxWin_W_Wtd.begin(), make_complex< double >() );
}
// ---------------------------------------------------------------------------
// buildReassignmentWindows
// ---------------------------------------------------------------------------
// Build a pair of complex-valued windows, one having the frequency-ramp
// (time-derivative) window in the real part and the time-ramp window in the
// imagnary part, and the other having the unmodified window in the real part
// and, if computing mixed deriviatives, the time-ramp time-derivative window
// in the imaginary part.
//
// Input is the unmodified window function and its time derivative, so the
// DFT kludge is unnecessary.
//
void
ReassignedSpectrum::buildReassignmentWindows( const std::vector< double > & window,
const std::vector< double > & windowDerivative )
{
mWindow.resize( window.size(), 0. );
// Scale the windows so that the reported magnitudes
// are correct.
double winsum = std::accumulate( window.begin(), window.end(), 0. );
std::transform( window.begin(), window.end(), mWindow.begin(),
std::bind1st( std::multiplies<double>(), 2/winsum ) );
// The fancy frequency reassignment window needs to scale the
// time derivative window by N (its length) / 2pi, in addition
// to scaling by 2/winsum to match the amplitude scaling above.
const double fancyScale = windowDerivative.size() / ( winsum * Pi );
std::vector< double > framp( windowDerivative.size(), 0 );
std::transform( windowDerivative.begin(), windowDerivative.end(), framp.begin(),
std::bind1st( std::multiplies<double>(), fancyScale ) );
// Construct the ramped windows from the scaled window.
std::vector< double > tramp = mWindow;
applyTimeRamp( tramp );
std::vector< double > tframp( mWindow.size(), 0. );
#if defined(COMPUTE_MIXED_PHASE_DERIVATIVE)
// Do this only if we are computing the mixed
// partial derivative of phase, otherwise, leave
// that vector empty.
tframp = framp;
applyTimeRamp( tframp );
#endif
// Copy the windows into real and imaginary parts of
// complex window vectors.
mCplxWin_W_Wtd.resize( mWindow.size(), 0. );
mCplxWin_Wd_Wt.resize( mWindow.size(), 0. );
std::transform( framp.begin(), framp.end(), tramp.begin(),
mCplxWin_Wd_Wt.begin(), make_complex< double >() );
std::transform( mWindow.begin(), mWindow.end(), tframp.begin(),
mCplxWin_W_Wtd.begin(), make_complex< double >() );
}
} // end of namespace Loris
|