1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
|
/*
* This is the Loris C++ Class Library, implementing analysis,
* manipulation, and synthesis of digitized sounds using the Reassigned
* Bandwidth-Enhanced Additive Sound Model.
*
* Loris is Copyright (c) 1999-2010 by Kelly Fitz and Lippold Haken
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY, without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*
* PartialUtils.C
*
* A group of Partial utility function objects for use with STL
* searching and sorting algorithms. PartialUtils is a namespace
* within the Loris namespace.
*
* Kelly Fitz, 17 June 2003
* loris@cerlsoundgroup.org
*
* http://www.cerlsoundgroup.org/Loris/
*
*/
#if HAVE_CONFIG_H
#include "config.h"
#endif
#include "PartialUtils.h"
#include "Breakpoint.h"
#include "BreakpointEnvelope.h"
#include "BreakpointUtils.h"
#include "Envelope.h"
#include "Partial.h"
#include "phasefix.h"
#include <algorithm>
#include <cmath>
#include <functional>
#include <utility>
// begin namespace
namespace Loris {
namespace PartialUtils {
// -- base class --
// ---------------------------------------------------------------------------
// PartialMutator constructor from double
// ---------------------------------------------------------------------------
PartialMutator::PartialMutator( double x ) :
env( new BreakpointEnvelope( x ) )
{
}
// ---------------------------------------------------------------------------
// PartialMutator constructor from envelope
// ---------------------------------------------------------------------------
PartialMutator::PartialMutator( const Envelope & e ) :
env( e.clone() )
{
}
// ---------------------------------------------------------------------------
// PartialMutator copy constructor
// ---------------------------------------------------------------------------
PartialMutator::PartialMutator( const PartialMutator & rhs ) :
env( rhs.env->clone() )
{
}
// ---------------------------------------------------------------------------
// PartialMutator destructor
// ---------------------------------------------------------------------------
PartialMutator::~PartialMutator( void )
{
delete env;
}
// ---------------------------------------------------------------------------
// PartialMutator assignment operator
// ---------------------------------------------------------------------------
PartialMutator &
PartialMutator::operator=( const PartialMutator & rhs )
{
if ( this != &rhs )
{
delete env;
env = rhs.env->clone();
}
return *this;
}
// -- amplitude scaling --
// ---------------------------------------------------------------------------
// AmplitudeScaler function call operator
// ---------------------------------------------------------------------------
// Scale the amplitude of the specified Partial according to
// an envelope representing a time-varying amplitude scale value.
//
void
AmplitudeScaler::operator()( Partial & p ) const
{
for ( Partial::iterator pos = p.begin(); pos != p.end(); ++pos )
{
pos.breakpoint().setAmplitude( pos.breakpoint().amplitude() *
env->valueAt( pos.time() ) );
}
}
// ---------------------------------------------------------------------------
// BandwidthScaler function call operator
// ---------------------------------------------------------------------------
// Scale the bandwidth of the specified Partial according to
// an envelope representing a time-varying bandwidth scale value.
//
void
BandwidthScaler::operator()( Partial & p ) const
{
for ( Partial::iterator pos = p.begin(); pos != p.end(); ++pos )
{
pos.breakpoint().setBandwidth( pos.breakpoint().bandwidth() *
env->valueAt( pos.time() ) );
}
}
// ---------------------------------------------------------------------------
// BandwidthSetter function call operator
// ---------------------------------------------------------------------------
// Set the bandwidth of the specified Partial according to
// an envelope representing a time-varying bandwidth value.
//
void
BandwidthSetter::operator()( Partial & p ) const
{
for ( Partial::iterator pos = p.begin(); pos != p.end(); ++pos )
{
pos.breakpoint().setBandwidth( env->valueAt( pos.time() ) );
}
}
// ---------------------------------------------------------------------------
// FrequencyScaler function call operator
// ---------------------------------------------------------------------------
// Scale the frequency of the specified Partial according to
// an envelope representing a time-varying frequency scale value.
//
void
FrequencyScaler::operator()( Partial & p ) const
{
for ( Partial::iterator pos = p.begin(); pos != p.end(); ++pos )
{
pos.breakpoint().setFrequency( pos.breakpoint().frequency() *
env->valueAt( pos.time() ) );
}
}
// ---------------------------------------------------------------------------
// NoiseRatioScaler function call operator
// ---------------------------------------------------------------------------
// Scale the relative noise content of the specified Partial according
// to an envelope representing a (time-varying) noise energy
// scale value.
//
void
NoiseRatioScaler::operator()( Partial & p ) const
{
for ( Partial::iterator pos = p.begin(); pos != p.end(); ++pos )
{
// compute new bandwidth value:
double bw = pos.breakpoint().bandwidth();
if ( bw < 1. )
{
double ratio = bw / (1. - bw);
ratio *= env->valueAt( pos.time() );
bw = ratio / ( 1. + ratio );
}
else
{
bw = 1.;
}
pos.breakpoint().setBandwidth( bw );
}
}
// ---------------------------------------------------------------------------
// PitchShifter function call operator
// ---------------------------------------------------------------------------
// Shift the pitch of the specified Partial according to
// the given pitch envelope. The pitch envelope is assumed to have
// units of cents (1/100 of a halfstep).
//
void
PitchShifter::operator()( Partial & p ) const
{
for ( Partial::iterator pos = p.begin(); pos != p.end(); ++pos )
{
// compute frequency scale:
double scale =
std::pow( 2., ( 0.01 * env->valueAt( pos.time() ) ) / 12. );
pos.breakpoint().setFrequency( pos.breakpoint().frequency() * scale );
}
}
// ---------------------------------------------------------------------------
// Cropper function call operator
// ---------------------------------------------------------------------------
// Trim a Partial by removing Breakpoints outside a specified time span.
// Insert a Breakpoint at the boundary when cropping occurs.
//
void
Cropper::operator()( Partial & p ) const
{
// crop beginning of Partial
Partial::iterator it = p.findAfter( minTime );
if ( it != p.begin() ) // Partial begins earlier than minTime
{
if ( it != p.end() ) // Partial ends later than minTime
{
Breakpoint bp = p.parametersAt( minTime );
it = p.insert( minTime, bp );
}
it = p.erase( p.begin(), it );
}
// crop end of Partial
it = p.findAfter( maxTime );
if ( it != p.end() ) // Partial ends later than maxTime
{
if ( it != p.begin() ) // Partial begins earlier than maxTime
{
Breakpoint bp = p.parametersAt( maxTime );
it = p.insert( maxTime, bp );
++it; // advance, we don't want to cut this one off
}
it = p.erase( it, p.end() );
}
}
// ---------------------------------------------------------------------------
// TimeShifter function call operator
// ---------------------------------------------------------------------------
// Shift the time of all the Breakpoints in a Partial by a constant amount.
//
void
TimeShifter::operator()( Partial & p ) const
{
// Since the Breakpoint times are immutable, the only way to
// shift the Partial in time is to construct a new Partial and
// assign it to the argument p.
Partial result;
result.setLabel( p.label() );
for ( Partial::iterator pos = p.begin(); pos != p.end(); ++pos )
{
result.insert( pos.time() + offset, pos.breakpoint() );
}
p = result;
}
// ---------------------------------------------------------------------------
// peakAmplitude
// ---------------------------------------------------------------------------
//! Return the maximum amplitude achieved by a partial.
//!
//! \param p is the Partial to evaluate
//! \return the maximum (absolute) amplitude achieved by
//! the partial p
//
double peakAmplitude( const Partial & p )
{
double peak = 0;
for ( Partial::const_iterator it = p.begin();
it != p.end();
++it )
{
peak = std::max( peak, it->amplitude() );
}
return peak;
}
// ---------------------------------------------------------------------------
// avgAmplitude
// ---------------------------------------------------------------------------
//! Return the average amplitude over all Breakpoints in this Partial.
//! Return zero if the Partial has no Breakpoints.
//!
//! \param p is the Partial to evaluate
//! \return the average amplitude of Breakpoints in the Partial p
//
double avgAmplitude( const Partial & p )
{
double avg = 0;
for ( Partial::const_iterator it = p.begin();
it != p.end();
++it )
{
avg += it->amplitude();
}
if ( avg != 0 )
{
avg /= p.numBreakpoints();
}
return avg;
}
// ---------------------------------------------------------------------------
// avgFrequency
// ---------------------------------------------------------------------------
//! Return the average frequency over all Breakpoints in this Partial.
//! Return zero if the Partial has no Breakpoints.
//!
//! \param p is the Partial to evaluate
//! \return the average frequency (Hz) of Breakpoints in the Partial p
//
double avgFrequency( const Partial & p )
{
double avg = 0;
for ( Partial::const_iterator it = p.begin();
it != p.end();
++it )
{
avg += it->frequency();
}
if ( avg != 0 )
{
avg /= p.numBreakpoints();
}
return avg;
}
// ---------------------------------------------------------------------------
// weightedAvgFrequency
// ---------------------------------------------------------------------------
//! Return the average frequency over all Breakpoints in this Partial,
//! weighted by the Breakpoint amplitudes.
//! Return zero if the Partial has no Breakpoints.
//!
//! \param p is the Partial to evaluate
//! \return the average frequency (Hz) of Breakpoints in the Partial p
//
double weightedAvgFrequency( const Partial & p )
{
double avg = 0;
double ampsum = 0;
for ( Partial::const_iterator it = p.begin();
it != p.end();
++it )
{
avg += it->amplitude() * it->frequency();
ampsum += it->amplitude();
}
if ( avg != 0 && ampsum != 0 )
{
avg /= ampsum;
}
else
{
avg = 0;
}
return avg;
}
// -- phase maintenance functions --
// ---------------------------------------------------------------------------
// fixPhaseBefore
//
//! Recompute phases of all Breakpoints earlier than the specified time
//! so that the synthesize phases of those earlier Breakpoints matches
//! the stored phase, and the synthesized phase at the specified
//! time matches the stored (not recomputed) phase.
//!
//! Backward phase-fixing stops if a null (zero-amplitude) Breakpoint
//! is encountered, because nulls are interpreted as phase reset points
//! in Loris. If a null is encountered, the remainder of the Partial
//! (the front part) is fixed in the forward direction, beginning at
//! the start of the Partial.
//!
//! \param p The Partial whose phases should be fixed.
//! \param t The time before which phases should be adjusted.
//
void fixPhaseBefore( Partial & p, double t )
{
if ( 1 < p.numBreakpoints() )
{
Partial::iterator pos = p.findNearest( t );
Assert( pos != p.end() );
fixPhaseBackward( p.begin(), pos );
}
}
// ---------------------------------------------------------------------------
// fixPhaseAfter
//
//! Recompute phases of all Breakpoints later than the specified time
//! so that the synthesize phases of those later Breakpoints matches
//! the stored phase, as long as the synthesized phase at the specified
//! time matches the stored (not recomputed) phase.
//!
//! Phase fixing is only applied to non-null (nonzero-amplitude) Breakpoints,
//! because null Breakpoints are interpreted as phase reset points in
//! Loris. If a null is encountered, its phase is simply left unmodified,
//! and future phases wil be recomputed from that one.
//!
//! \param p The Partial whose phases should be fixed.
//! \param t The time after which phases should be adjusted.
//
void fixPhaseAfter( Partial & p, double t )
{
// nothing to do it there are not at least
// two Breakpoints in the Partial
if ( 1 < p.numBreakpoints() )
{
Partial::iterator pos = p.findNearest( t );
Assert( pos != p.end() );
fixPhaseForward( pos, --p.end() );
}
}
// ---------------------------------------------------------------------------
// fixPhaseForward
//
//! Recompute phases of all Breakpoints later than the specified time
//! so that the synthesize phases of those later Breakpoints matches
//! the stored phase, as long as the synthesized phase at the specified
//! time matches the stored (not recomputed) phase. Breakpoints later than
//! tend are unmodified.
//!
//! Phase fixing is only applied to non-null (nonzero-amplitude) Breakpoints,
//! because null Breakpoints are interpreted as phase reset points in
//! Loris. If a null is encountered, its phase is simply left unmodified,
//! and future phases wil be recomputed from that one.
//!
//! HEY Is this interesting, in general? Why would you want to do this?
//!
//! \param p The Partial whose phases should be fixed.
//! \param tbeg The phases and frequencies of Breakpoints later than the
//! one nearest this time will be modified.
//! \param tend The phases and frequencies of Breakpoints earlier than the
//! one nearest this time will be modified. Should be greater
//! than tbeg, or else they will be swapped.
//
void fixPhaseForward( Partial & p, double tbeg, double tend )
{
if ( tbeg > tend )
{
std::swap( tbeg, tend );
}
// nothing to do it there are not at least
// two Breakpoints in the Partial
if ( 1 < p.numBreakpoints() )
{
// find the positions nearest tbeg and tend
Partial::iterator posbeg = p.findNearest( tbeg );
Partial::iterator posend = p.findNearest( tend );
// if the positions are different, and tend is
// the end, back it up
if ( posbeg != posend && posend == p.end() )
{
--posend;
}
fixPhaseForward( posbeg, posend );
}
}
// ---------------------------------------------------------------------------
// fixPhaseAt
//
//! Recompute phases of all Breakpoints in a Partial
//! so that the synthesize phases match the stored phases,
//! and the synthesized phase at (nearest) the specified
//! time matches the stored (not recomputed) phase.
//!
//! Backward phase-fixing stops if a null (zero-amplitude) Breakpoint
//! is encountered, because nulls are interpreted as phase reset points
//! in Loris. If a null is encountered, the remainder of the Partial
//! (the front part) is fixed in the forward direction, beginning at
//! the start of the Partial. Forward phase fixing is only applied
//! to non-null (nonzero-amplitude) Breakpoints. If a null is encountered,
//! its phase is simply left unmodified, and future phases wil be
//! recomputed from that one.
//!
//! \param p The Partial whose phases should be fixed.
//! \param t The time at which phases should be made correct.
//
void fixPhaseAt( Partial & p, double t )
{
if ( 1 < p.numBreakpoints() )
{
Partial::iterator pos = p.findNearest( t );
Assert( pos != p.end() );
fixPhaseForward( pos, --p.end() );
fixPhaseBackward( p.begin(), pos );
}
}
// ---------------------------------------------------------------------------
// fixPhaseBetween
//
//! Fix the phase travel between two times by adjusting the
//! frequency and phase of Breakpoints between those two times.
//!
//! This algorithm assumes that there is nothing interesting about the
//! phases of the intervening Breakpoints, and modifies their frequencies
//! as little as possible to achieve the correct amount of phase travel
//! such that the frequencies and phases at the specified times
//! match the stored values. The phases of all the Breakpoints between
//! the specified times are recomputed.
//!
//! THIS DOES NOT YET TREAT NULL BREAKPOINTS DIFFERENTLY FROM OTHERS.
//!
//! \pre There must be at least one Breakpoint in the
//! Partial between the specified times tbeg and tend.
//! \post The phases and frequencies of the Breakpoints in the
//! range have been recomputed such that an oscillator
//! initialized to the parameters of the first Breakpoint
//! will arrive at the parameters of the last Breakpoint,
//! and all the intervening Breakpoints will be matched.
//! \param p The partial whose phases and frequencies will be recomputed.
//! The Breakpoint at this position is unaltered.
//! \param tbeg The phases and frequencies of Breakpoints later than the
//! one nearest this time will be modified.
//! \param tend The phases and frequencies of Breakpoints earlier than the
//! one nearest this time will be modified. Should be greater
//! than tbeg, or else they will be swapped.
//
void fixPhaseBetween( Partial & p, double tbeg, double tend )
{
if ( tbeg > tend )
{
std::swap( tbeg, tend );
}
// for Partials that do not extend over the entire
// specified time range, just recompute phases from
// beginning or end of the range:
if ( p.endTime() < tend )
{
// OK if start time is also after tbeg, will
// just recompute phases from start of p.
fixPhaseAfter( p, tbeg );
}
else if ( p.startTime() > tbeg )
{
fixPhaseBefore( p, tend );
}
else
{
// invariant:
// p begins before tbeg and ends after tend.
Partial::iterator b = p.findNearest( tbeg );
Partial::iterator e = p.findNearest( tend );
// if there is a null Breakpoint n between b and e, then
// should fix forward from b to n, and backward from
// e to n. Otherwise, do this complicated thing.
Partial::iterator nullbp = std::find_if( b, e, BreakpointUtils::isNull );
if ( nullbp != e )
{
fixPhaseForward( b, nullbp );
fixPhaseBackward( nullbp, e );
}
else
{
fixPhaseBetween( b, e );
}
}
}
} // end of namespace PartialUtils
} // end of namespace Loris
|