1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
|
/*
* This is the Loris C++ Class Library, implementing analysis,
* manipulation, and synthesis of digitized sounds using the Reassigned
* Bandwidth-Enhanced Additive Sound Model.
*
* Loris is Copyright (c) 1999-2010 by Kelly Fitz and Lippold Haken
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY, without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*
* PartialBuilder.C
*
* Implementation of a class representing a policy for connecting peaks
* extracted from a reassigned time-frequency spectrum to form ridges
* and construct Partials.
*
* This strategy attemps to follow a mFreqWarping frequency envelope when
* forming Partials, by prewarping all peak frequencies according to the
* (inverse of) frequency mFreqWarping envelope. At the end of the analysis,
* Partial frequencies need to be un-warped by calling fixPartialFrequencies().
*
* The first attempt was the same as the basic partial formation strategy,
* but for purposes of matching, peak frequencies are scaled by the ratio
* of the mFreqWarping envelope's value at the previous frame to its value
* at the current frame. This was not adequate, didn't store enough history
* so it wasn't really following the reference envelope, just using it to
* make a local decision about how frequency should drift from one frame to
* the next.
*
* Kelly Fitz, 28 May 2003
* loris@cerlsoundgroup.org
*
* http://www.cerlsoundgroup.org/Loris/
*
*/
#if HAVE_CONFIG_H
#include "config.h"
#endif
#include "PartialBuilder.h"
#include "BreakpointEnvelope.h"
#include "Envelope.h"
#include "Notifier.h"
#include "Partial.h"
#include "PartialList.h"
#include "PartialPtrs.h"
#include "SpectralPeaks.h"
#include <algorithm>
#include <cmath>
// ---------------------------------------------------------------------------
// ---------------------------------------------------------------------------
// HEY - remove mMaxTimeOffset and the hopTime argument, these are wrong
// ---------------------------------------------------------------------------
// ---------------------------------------------------------------------------
// begin namespace
namespace Loris {
// ---------------------------------------------------------------------------
// construction
// ---------------------------------------------------------------------------
// Construct a new builder that constrains Partial frequnecy
// drift by the specified drift value in Hz.
//
PartialBuilder::PartialBuilder( double drift ) :
mFreqWarping( new BreakpointEnvelope(1.0) ),
mFreqDrift( drift )
{
reset();
}
// ---------------------------------------------------------------------------
// construction
// ---------------------------------------------------------------------------
// Construct a new builder that constrains Partial frequnecy
// drift by the specified drift value in Hz. The frequency
// warping envelope is applied to the spectral peak frequencies
// and the frequency drift parameter in each frame before peaks
// are linked to eligible Partials. All the Partial frequencies
// need to be un-warped at the ned of the building process, by
// calling finishBuilding().
//
PartialBuilder::PartialBuilder( double drift, const Envelope & env ) :
mFreqWarping( env.clone() ),
mFreqDrift( drift )
{
reset();
}
// --- local helpers for Partial building ---
// ---------------------------------------------------------------------------
// end_frequency
// ---------------------------------------------------------------------------
// Return the frequency of the last Breakpoint in a Partial.
//
static inline double end_frequency( const Partial & partial )
{
return partial.last().frequency();
}
// ---------------------------------------------------------------------------
// freq_distance
// ---------------------------------------------------------------------------
// Helper function, used in formPartials().
// Returns the (positive) frequency distance between a Breakpoint
// and the last Breakpoint in a Partial.
//
inline double
PartialBuilder::freq_distance( const Partial & partial, const SpectralPeak & pk )
{
double normBpFreq = pk.frequency() / mFreqWarping->valueAt( pk.time() );
double normPartialEndFreq =
partial.last().frequency() / mFreqWarping->valueAt( partial.endTime() );
return std::fabs( normPartialEndFreq - normBpFreq );
}
inline double
PartialBuilder::freq_distance( const SpectralPeak & pk1, const SpectralPeak & pk2 )
{
return std::fabs( pk1.frequency() - pk2.frequency() );
}
// ---------------------------------------------------------------------------
// better_match
// ---------------------------------------------------------------------------
// Predicate for choosing the better of two proposed
// Partial-to-Breakpoint matches. Note: sometimes this
// is used to compare two candidate Breakpoint matches
// to the same Partial, other times to candidate Partials
// to the same Breakpoint.
//
// Return true if the first match is better, otherwise
// return false.
//
bool PartialBuilder::better_match( const Partial & part, const SpectralPeak & pk1,
const SpectralPeak & pk2 )
{
Assert( part.numBreakpoints() > 0 );
return freq_distance( part, pk1 ) < freq_distance( part, pk2 );
}
bool PartialBuilder::better_match( const Partial & part1,
const Partial & part2, const SpectralPeak & pk )
{
Assert( part1.numBreakpoints() > 0 );
Assert( part2.numBreakpoints() > 0 );
return freq_distance( part1, pk ) < freq_distance( part2, pk );
}
bool PartialBuilder::better_match( const SpectralPeak & pk1,
const SpectralPeak & pk2,
const SpectralPeak & pk3 )
{
return freq_distance( pk1, pk2 ) < freq_distance( pk2, pk3 );
}
// ---------------------------------------------------------------------------
// getNextActive
// ---------------------------------------------------------------------------
int PartialBuilder::getNextActive(int start)
{
for(int i = start + 1; i < mCurrentPartials.size(); i++)
{
if(mActivePartials[i] && !mMatchedPartials[i])
{
return i;
}
}
return mCurrentPartials.size();
}
// ---------------------------------------------------------------------------
// getNextInActive
// ---------------------------------------------------------------------------
int PartialBuilder::getNextInactive(int start)
{
for(int i = start + 1; i < mCurrentPartials.size(); i++)
{
if(!mActivePartials[i] && !mMatchedPartials[i])
{
return i;
}
}
return mCurrentPartials.size();
}
// --- Partial building members ---
// ---------------------------------------------------------------------------
// buildPartials
// ---------------------------------------------------------------------------
// Append spectral peaks, extracted from a reassigned time-frequency
// spectrum, to eligible Partials, where possible. Peaks that cannot
// be used to extend eliglble Partials spawn new Partials.
//
// This is similar to the basic MQ partial formation strategy, except that
// before matching, all frequencies are normalized by the value of the
// warping envelope at the time of the current frame. This means that
// the frequency envelopes of all the Partials are warped, and need to
// be un-normalized by calling finishBuilding at the end of the building
// process.
//
void
PartialBuilder::buildPartials( Peaks & peaks, double frameTime )
{
mNewlyEligible.clear();
unsigned int matchCount = 0; // for debugging
// frequency-sort the spectral peaks:
// (the eligible partials are always sorted by
// increasing frequency if we always sort the
// peaks this way)
std::sort( peaks.begin(), peaks.end(), SpectralPeak::sort_increasing_freq );
PartialPtrs::iterator eligible = mEligiblePartials.begin();
for ( Peaks::iterator bpIter = peaks.begin(); bpIter != peaks.end(); ++bpIter )
{
const double peakTime = frameTime + bpIter->time();
// find the Partial that is nearest in frequency to the Peak:
PartialPtrs::iterator nextEligible = eligible;
if ( eligible != mEligiblePartials.end() &&
end_frequency( **eligible ) < bpIter->frequency() )
{
++nextEligible;
while ( nextEligible != mEligiblePartials.end() &&
end_frequency( **nextEligible ) < bpIter->frequency() )
{
++nextEligible;
++eligible;
}
if ( nextEligible != mEligiblePartials.end() &&
better_match( **nextEligible, **eligible, *bpIter ) )
{
eligible = nextEligible;
}
}
// INVARIANT:
//
// eligible is the position of the nearest (in frequency)
// eligible Partial (pointer) or it is mEligiblePartials.end().
//
// nextEligible is the eligible Partial with frequency
// greater than bp, or it is mEligiblePartials.end().
// create a new Partial if there is no eligible Partial,
// or the frequency difference to the eligible Partial is
// too great, or the next peak is a better match for the
// eligible Partial, otherwise add this peak to the eligible
// Partial:
Peaks::iterator nextPeak = ++Peaks::iterator( bpIter );
// decide whether this match should be made:
// - can only make the match if eligible is not the end of the list
// - the match is only good if it is close enough in frequency
// - even if the match is good, only match if the next one is not better
bool makeMatch = false;
if ( eligible != mEligiblePartials.end() )
{
bool matchIsGood = mFreqDrift >
std::fabs( end_frequency( **eligible ) - bpIter->frequency() );
if ( matchIsGood )
{
bool nextIsBetter = ( nextPeak != peaks.end() &&
better_match( **eligible, *nextPeak, *bpIter ) );
if ( ! nextIsBetter )
{
makeMatch = true;
}
}
}
Breakpoint bp = bpIter->createBreakpoint();
if ( makeMatch )
{
// invariant:
// if makeMatch is true, then eligible is the position of a valid Partial
(*eligible)->insert( peakTime, bp );
mNewlyEligible.push_back( *eligible );
++matchCount;
}
else
{
Partial p;
p.insert( peakTime, bp );
/* mCollectedPartials.push_back( p ); */
/* mNewlyEligible.push_back( & mCollectedPartials.back() ); */
mNewlyEligible.push_back( & p );
}
// update eligible, nextEligible is the eligible Partial
// with frequency greater than bp, or it is mEligiblePartials.end():
eligible = nextEligible;
}
mEligiblePartials = mNewlyEligible;
}
void
PartialBuilder::buildPartials( Peaks & peaks )
{
unsigned int matchCount = 0;
unsigned int Np = mCurrentPartials.size();
for(int i = 0; i < mCurrentPartials.size(); i++)
{
mMatchedPartials[i] = false;
}
for(int p = 0; p < peaks.size(); p++)
{
// find the Partial that is nearest in frequency to the Peak
int eligible = getNextActive(-1);
int nextEligible = eligible;
if ( eligible < Np )
{
nextEligible = getNextActive(nextEligible);
while ( nextEligible < Np )
{
if ( better_match( mCurrentPartials[nextEligible],
peaks[p],
mCurrentPartials[eligible] ) )
{
eligible = nextEligible;
}
nextEligible = getNextActive(nextEligible);
}
}
// create a new Partial if there is no eligible Partial,
// or the frequency difference to the eligible Partial is
// too great, or the next peak is a better match for the
// eligible Partial, otherwise add this peak to the eligible
// Partial:
int nextPeak = p + 1;
// decide whether this match should be made:
// - can only make the match if eligible is not the end of the list
// - the match is only good if it is close enough in frequency
// - even if the match is good, only match if the next one is not better
bool makeMatch = false;
if ( eligible < Np )
{
bool matchIsGood = mFreqDrift >
std::fabs( mCurrentPartials[eligible].frequency() -
peaks[p].frequency() );
if ( matchIsGood )
{
bool nextIsBetter = ( nextPeak < peaks.size() &&
better_match( peaks[nextPeak],
mCurrentPartials[eligible],
peaks[p] ) );
if ( ! nextIsBetter )
{
makeMatch = true;
}
}
}
if ( makeMatch )
{
// if makeMatch is true then eligible is the position of a
// valid Partial
mCurrentPartials[eligible] = peaks[p];
mActivePartials[eligible] = true;
mMatchedPartials[eligible] = true;
++matchCount;
}
else
{
// save to first inactive partial (if any)
int inactive = getNextInactive(-1);
if(inactive < Np)
{
mCurrentPartials[inactive] = peaks[p];
mActivePartials[inactive] = true;
mMatchedPartials[inactive] = true;
}
}
}
// kill inactive partials
for(int i = 0; i < mCurrentPartials.size(); i++)
{
if(!mMatchedPartials[i])
{
mCurrentPartials[i].setAmplitude(0.f);
mActivePartials[i] = false;
}
}
}
// ---------------------------------------------------------------------------
// finishBuilding
// ---------------------------------------------------------------------------
// Un-do the frequency warping performed in buildPartials, and return
// the Partials that were built. After calling finishBuilding, the
// builder is returned to its initial state, and ready to build another
// set of Partials. Partials are returned by appending them to the
// supplied PartialList.
//
void
PartialBuilder::finishBuilding( PartialList & product )
{
// append the collected Partials to the product list:
product.splice( product.end(), mCollectedPartials );
// reset the builder state:
mEligiblePartials.clear();
mNewlyEligible.clear();
}
// ---------------------------------------------------------------------------
// getPartials
// ---------------------------------------------------------------------------
// Return partials by appending them to the supplised PartialList
void
PartialBuilder::getPartials( PartialList & product )
{
// append the collected Partials to the product list:
product.splice( product.end(), mCollectedPartials );
}
Peaks &
PartialBuilder::getPartials()
{
return mCurrentPartials;
}
// ---------------------------------------------------------------------------
// maxPartials
// ---------------------------------------------------------------------------
// Change the maximum number of partials per frame
void
PartialBuilder::maxPartials(int max)
{
mCurrentPartials.resize(max);
mActivePartials.resize(max);
mMatchedPartials.resize(max);
}
// ---------------------------------------------------------------------------
// reset
// ---------------------------------------------------------------------------
// Reset the current partial list
void
PartialBuilder::reset()
{
for(int i = 0; i < mCurrentPartials.size(); i++)
{
mCurrentPartials[i].setAmplitude(0.f);
mCurrentPartials[i].setFrequency(0.f);
mCurrentPartials[i].setPhase(0.f);
mCurrentPartials[i].setBandwidth(0.f);
mActivePartials[i] = false;
mMatchedPartials[i] = false;
}
}
} // end of namespace Loris
|