summaryrefslogtreecommitdiff
path: root/src/loris/Partial.C
blob: b6ea15cf5d520ea7eb8d85d447b1ec45ae62c426 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
/*
 * This is the Loris C++ Class Library, implementing analysis, 
 * manipulation, and synthesis of digitized sounds using the Reassigned 
 * Bandwidth-Enhanced Additive Sound Model.
 *
 * Loris is Copyright (c) 1999-2010 by Kelly Fitz and Lippold Haken
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY, without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 *
 *
 * Partial.C
 *
 * Implementation of class Loris::Partial.
 *
 * Kelly Fitz, 16 Aug 1999
 * loris@cerlsoundgroup.org
 *
 * http://www.cerlsoundgroup.org/Loris/
 *
 */

#if HAVE_CONFIG_H
	#include "config.h"
#endif

#include "Partial.h"
#include "Breakpoint.h"
#include "LorisExceptions.h"
#include "Notifier.h"

#include <algorithm>
#include <cmath>

#if defined(HAVE_M_PI) && (HAVE_M_PI)
	const double Pi = M_PI;
#else
	const double Pi = 3.14159265358979324;
#endif

//	begin namespace
namespace Loris {

//long Partial::DebugCounter = 0L;

//	comparitor for elements in Partial::container_type
typedef Partial::container_type::value_type Partial_value_type;
static 
bool order_by_time( const Partial_value_type & x, const Partial_value_type & y )
{
	//	Partial_value_type is a (time,Breakpoint) pair
	return x.first < y.first;
}

//	--- concering the type of Partial::container_type
//
//	On the surface, it would seem that a vector of (time,Breakpoint)
//	pairs would be a more efficient container for the Partial
//	parameter envelope points, and the changes required to implement
//	Partial using vector instead of map are minimal and simple. 
//
//	However, the crucial factor in that change is the expiration of
//	Partial::iterators. With map, iterators remain valid after
//	insertions and removals, but with vector they do not. So it 
//	is easy to change the container type, but it is a much harder
//	project to find all the places in Loris that rely on iterators
//	that remain valid after insertions and removals.
#undef USE_VECTOR


// -- construction --

// ---------------------------------------------------------------------------
//	Partial constructor
// ---------------------------------------------------------------------------
//!	Retun a new empty (no Breakpoints) unlabeled Partial.
//
Partial::Partial( void ) :
	_label( 0 )
{
//	++DebugCounter;
}	

// ---------------------------------------------------------------------------
//	Partial initialized constructor
// ---------------------------------------------------------------------------
//!	Retun a new Partial from a half-open (const) iterator range 
//!	of time, Breakpoint pairs.
//
Partial::Partial( const_iterator beg, const_iterator end ) :
	_breakpoints( beg._iter, end._iter ),
	_label( 0 )
{
//	++DebugCounter;
}	

// ---------------------------------------------------------------------------
//	Partial copy constructor
// ---------------------------------------------------------------------------
//!	Return a new Partial that is an exact copy (has an identical set
//!	of Breakpoints, at identical times, and the same label) of another 
//!	Partial.
//
Partial::Partial( const Partial & other ) :
	_breakpoints( other._breakpoints ),
	_label( other._label )
{
//	++DebugCounter;
}

// ---------------------------------------------------------------------------
//	Partial destructor
// ---------------------------------------------------------------------------
//!	Destroy this Partial.
//
Partial::~Partial( void )
{
//	--DebugCounter;
}	

// ---------------------------------------------------------------------------
//	operator=
// ---------------------------------------------------------------------------
//!	Make this Partial an exact copy (has an identical set of 
//!	Breakpoints, at identical times, and the same label) of another 
//!	Partial.
//
Partial & 
Partial::operator=( const Partial & rhs )
{
	if ( this != &rhs )
	{
		_breakpoints = rhs._breakpoints;
		_label = rhs._label;
	}
	return *this;
}

// -- container-dependent implementation --

// ---------------------------------------------------------------------------
//	begin
// ---------------------------------------------------------------------------
//!	Return a const iterator refering to the position of the first
//!	Breakpoint in this Partial's envelope.
//		
Partial::const_iterator Partial::begin( void ) const 
{ 
	return _breakpoints.begin(); 
}

//!	Return an iterator refering to the position of the first
//!	Breakpoint in this Partial's envelope.
//		
Partial::iterator Partial::begin( void ) 
{ 
	return _breakpoints.begin(); 
}

// ---------------------------------------------------------------------------
//	end
// ---------------------------------------------------------------------------
//!	Return a const iterator refering to the position past the last
//!	Breakpoint in this Partial's envelope. The iterator returned by
//!	end() (like the iterator returned by the end() member of any STL
//!	container) does not refer to a valid Breakpoint. 	
//
Partial::const_iterator 
Partial::end( void ) const 
{ 
	return _breakpoints.end(); 
}

//!	Return an iterator refering to the position past the last
//!	Breakpoint in this Partial's envelope. The iterator returned by
//!	end() (like the iterator returned by the end() member of any STL
//!	container) does not refer to a valid Breakpoint. 	
//
Partial::iterator 
Partial::end( void ) 
{ 
	return _breakpoints.end(); 
}

// ---------------------------------------------------------------------------
//	erase
// ---------------------------------------------------------------------------
//!	Breakpoint removal: erase the Breakpoints in the specified range,
//!	and return an iterator referring to the position after the,
//!	erased range.
//
Partial::iterator 
Partial::erase( Partial::iterator beg, Partial::iterator end )
{
	_breakpoints.erase( beg._iter, end._iter );
	return end;
}

// ---------------------------------------------------------------------------
//	findAfter
// ---------------------------------------------------------------------------
//!	Return a const iterator refering to the insertion position for a
//!	Breakpoint at the specified time (that is, the position of the first
//!	Breakpoint at a time not earlier than the specified time).
//	
Partial::const_iterator 
Partial::findAfter( double time ) const
{
#if defined(USE_VECTOR) 
	//	see note above
	Partial_value_type dummy( time, Breakpoint() );
	return std::upper_bound( _breakpoints.begin(), _breakpoints.end(), dummy, order_by_time );
#else
	return _breakpoints.lower_bound( time );
#endif
}

//!	Return an iterator refering to the insertion position for a
//!	Breakpoint at the specified time (that is, the position of the first
//!	Breakpoint at a time later than the specified time).
//	
Partial::iterator 
Partial::findAfter( double time ) 
{
#if defined(USE_VECTOR) 
	//	see note above
	Partial_value_type dummy( time, Breakpoint() );
	return std::upper_bound( _breakpoints.begin(), _breakpoints.end(), dummy, order_by_time );
#else
	return _breakpoints.lower_bound( time );
#endif
}

// ---------------------------------------------------------------------------
//	insert
// ---------------------------------------------------------------------------
//!	Breakpoint insertion: insert a copy of the specified Breakpoint in the
//!	parameter envelope at time (seconds), and return an iterator
//!	refering to the position of the inserted Breakpoint.
//
Partial::iterator 
Partial::insert( double time, const Breakpoint & bp )
{
#if defined(USE_VECTOR) 
	//	see note above
	//	find the position at which to insert the new Breakpoint:
	Partial_value_type dummy( time, Breakpoint() );
	Partial::container_type::iterator insertHere = 
		std::lower_bound( _breakpoints.begin(), _breakpoints.end(), dummy, order_by_time );
		
	//	if the time at insertHere is equal to the insertion time,
	//	simply replace the Breakpoint, otherwise insert:
	if ( insertHere->first == time )
	{
		insertHere->second = bp;
	}
	else
	{
		insertHere = _breakpoints.insert( insertHere, Partial_value_type(time, bp) );
	}
	return insertHere;
#else
    /*
    //  this allows Breakpoints to be inserted arbitrarily
    //  close together, which is no good, can cause trouble later:
    
	std::pair< container_type::iterator, bool > result = 
		_breakpoints.insert( container_type::value_type(time, bp) );
	if ( ! result.second )
    {
		result.first->second = bp;
    }
	return result.first;
    */
    
    //  do not insert a Breakpoint closer than 1ns away
    //  from the nearest existing Breakpoint:
    static const double MinTimeDif = 1.0E-9; // 1 ns
    
    //  find the insertion point for this time
    container_type::iterator pos = _breakpoints.lower_bound( time );
    
    //  the time of pos is either equal to or greater
    //  than the insertion time, if this is too close, 
    //  remove the Breakpoint at pos:
    if ( _breakpoints.end() != pos && MinTimeDif > pos->first - time )
    {
        _breakpoints.erase( pos++ );
    }
    //  otherwise, if the preceding position is too clase, 
    //  remove the Breakpoint at that position
    else if ( _breakpoints.begin() != pos && MinTimeDif > time - (--pos)->first )
    {
        _breakpoints.erase( pos++ );
    }

    //  now pos is at most one position away from the insertion point
    //  so insertion can be performed in constant time, and the new
    //  Breakpoint is at least 1ns away from any other Breakpoint:
    pos = _breakpoints.insert( pos, container_type::value_type(time, bp) );

    Assert( pos->first == time );

	return pos;

#endif
}

// ---------------------------------------------------------------------------
//	numBreakpoints
// ---------------------------------------------------------------------------
//!	Same as size(). Return the number of Breakpoints in this Partial.
//
Partial::size_type 
Partial::numBreakpoints( void ) const 
{ 	
	return _breakpoints.size(); 
}
// ---------------------------------------------------------------------------
//	size
// ---------------------------------------------------------------------------
//!	Return the number of Breakpoints in this Partial.
//
Partial::size_type 
Partial::size( void ) const 
{ 	
	return _breakpoints.size(); 
}

// ---------------------------------------------------------------------------
//	label
// ---------------------------------------------------------------------------
//!	Return the 32-bit label for this Partial as an integer.
//
Partial::label_type 
Partial::label( void ) const 
{ 	
	return _label; 
}

// ---------------------------------------------------------------------------
//	first
// ---------------------------------------------------------------------------
//!	Return a reference to the first Breakpoint in the Partial's
//!	envelope. Raises InvalidPartial exception if there are no 
//!	Breakpoints.
//
Breakpoint & 
Partial::first( void )
{
	if ( size() == 0 )
	{
		Throw( InvalidPartial, "Tried find first Breakpoint in a Partial with no Breakpoints." );
	}
#if defined(USE_VECTOR) 
	//	see note above
	return _breakpoints.front().second;
#else
	return begin().breakpoint();
#endif
}

// ---------------------------------------------------------------------------
//	first
// ---------------------------------------------------------------------------
//!	Return a const reference to the first Breakpoint in the Partial's
//!	envelope. Raises InvalidPartial exception if there are no 
//!	Breakpoints.
//
const Breakpoint & 
Partial::first( void ) const
{
	if ( size() == 0 )
	{
		Throw( InvalidPartial, "Tried find first Breakpoint in a Partial with no Breakpoints." );
	}
#if defined(USE_VECTOR) 
	//	see note above
	return _breakpoints.front().second;
#else
	return begin().breakpoint();
#endif
}

// ---------------------------------------------------------------------------
//	last
// ---------------------------------------------------------------------------
//!	Return a reference to the last Breakpoint in the Partial's
//!	envelope. Raises InvalidPartial exception if there are no 
//!	Breakpoints.
//
Breakpoint & 
Partial::last( void )
{
	if ( size() == 0 )
	{
		Throw( InvalidPartial, "Tried find last Breakpoint in a Partial with no Breakpoints." );
	}
#if defined(USE_VECTOR) 
	//	see note above
	return _breakpoints.back().second;
#else
	return (--end()).breakpoint();
#endif
}

// ---------------------------------------------------------------------------
//	last
// ---------------------------------------------------------------------------
//!	Return a const reference to the last Breakpoint in the Partial's
//!	envelope. Raises InvalidPartial exception if there are no 
//!	Breakpoints.
//
const Breakpoint & 
Partial::last( void ) const
{
	if ( size() == 0 )
	{
		Throw( InvalidPartial, "Tried find last Breakpoint in a Partial with no Breakpoints." );
	}	
#if defined(USE_VECTOR) 
	//	see note above
	return _breakpoints.back().second;
#else
	return (--end()).breakpoint();
#endif
}

// -- container-independent implementation --

// ---------------------------------------------------------------------------
//	initialPhase
// ---------------------------------------------------------------------------
//!	Return starting phase in radians, except (InvalidPartial) if there
//!	are no Breakpoints.
//
double
Partial::initialPhase( void ) const
{
	if ( numBreakpoints() == 0 )
	{
		Throw( InvalidPartial, "Tried find intial phase of a Partial with no Breakpoints." );
	}
	return first().phase();
}

// ---------------------------------------------------------------------------
//	startTime
// ---------------------------------------------------------------------------
//!	Return start time in seconds, except (InvalidPartial) if there
//!	are no Breakpoints.
//
double
Partial::startTime( void ) const
{
	if ( numBreakpoints() == 0 )
	{
		Throw( InvalidPartial, "Tried to find start time of a Partial with no Breakpoints." );
	}
	return begin().time();
}

// ---------------------------------------------------------------------------
//	endTime
// ---------------------------------------------------------------------------
//!	Return end time in seconds, except (InvalidPartial) if there
//!	are no Breakpoints.
//
double
Partial::endTime( void ) const
{
	if ( numBreakpoints() == 0 )
	{
		Throw( InvalidPartial, "Tried to find end time of a Partial with no Breakpoints." );
	}
	return (--end()).time();
}

// ---------------------------------------------------------------------------
//	absorb
// ---------------------------------------------------------------------------
//!	Absorb another Partial's energy as noise (bandwidth), 
//!	by accumulating the other's energy as noise energy
//!	in the portion of this Partial's envelope that overlaps
//!	(in time) with the other Partial's envelope.
//
void 
Partial::absorb( const Partial & other )
{
	Partial::iterator it = findAfter( other.startTime() );
	while ( it != end() && !(it.time() > other.endTime()) )
	{
		//	only non-null (non-zero-amplitude) Breakpoints
		//	abosrb noise energy because null Breakpoints
		//	are used especially to reset the Partial phase,
		//	and are not part of the normal analyasis data:
		if ( it->amplitude() > 0 )
		{
			// absorb energy from other at the time
			// of this Breakpoint:
			double a = other.amplitudeAt( it.time() );
			it->addNoiseEnergy( a * a );
		}	
		++it;
	}
}

// ---------------------------------------------------------------------------
//	setLabel
// ---------------------------------------------------------------------------
//!	Set the label for this Partial to the specified 32-bit value.
//
void 
Partial::setLabel( label_type l ) 
{ 
	_label = l; 
}

// ---------------------------------------------------------------------------
//	duration
// ---------------------------------------------------------------------------
//!	Return time, in seconds, spanned by this Partial, or 0. if there
//!	are no Breakpoints.
//
double
Partial::duration( void ) const
{
	if ( numBreakpoints() == 0 )
	{
		return 0.;
	}
	return endTime() - startTime();
}

// ---------------------------------------------------------------------------
//	erase
// ---------------------------------------------------------------------------
//!	Erase the Breakpoint at the position of the 
//!	given iterator (invalidating the iterator), and
//!	return an iterator referring to the next position,
//!	or end if pos is the last Breakpoint in the Partial.
//
Partial::iterator 
Partial::erase( iterator pos )
{
	if ( pos != end() )
	{
		iterator b= pos;
		iterator e = ++pos;
		pos = erase( b, e );
	}
	return pos;
}

// ---------------------------------------------------------------------------
//	split
// ---------------------------------------------------------------------------
//!	Break this Partial at the specified position (iterator).
//!	The Breakpoint at the specified position becomes the first
//!	Breakpoint in a new Partial. Breakpoints at the specified
//!	position and subsequent positions are removed from this
//!	Partial and added to the new Partial, which is returned.
//
Partial 
Partial::split( iterator pos )
{
	Partial res( pos, end() );
	erase( pos, end() );
	return res;
}

// ---------------------------------------------------------------------------
//	findNearest (const version)
// ---------------------------------------------------------------------------
//!	Return the insertion position for the Breakpoint nearest
//!	the specified time. Always returns a valid iterator (the
//!	position of the nearest-in-time Breakpoint) unless there
//!	are no Breakpoints.
//
Partial::const_iterator
Partial::findNearest( double time ) const
{
	//	if there are no Breakpoints, return end:
	if ( numBreakpoints() == 0 )
	{
		return end();
	}
			
	//	get the position of the first Breakpoint after time:
	Partial::const_iterator pos = findAfter( time );
	
	//	if there is an earlier Breakpoint that is closer in
	//	time, prefer that one:
	if ( pos != begin() )
	{
		Partial::const_iterator prev = pos;
		--prev;
		if ( pos == end() || pos.time() - time > time - prev.time() )
		{
			return prev;
		}
	}

	//	failing all else:	
	return pos;
} 

// ---------------------------------------------------------------------------
//	findNearest (non-const version)
// ---------------------------------------------------------------------------
//!	Return the insertion position for the Breakpoint nearest
//!	the specified time. Always returns a valid iterator (the
//!	position of the nearest-in-time Breakpoint) unless there
//!	are no Breakpoints.
//
Partial::iterator
Partial::findNearest( double time )
{
	//	if there are no Breakpoints, return end:
	if ( numBreakpoints() == 0 )
	{
		return end();
	}		
	//	get the position of the first Breakpoint after time:
	Partial::iterator pos = findAfter( time );
	
	//	if there is an earlier Breakpoint that is closer in
	//	time, prefer that one:
	if ( pos != begin() )
	{
		Partial::iterator prev = pos;
		--prev;
		if ( pos == end() || pos.time() - time > time - prev.time() )
		{
			return prev;
		}
	}

	//	failing all else:	
	return pos;
} 

// ---------------------------------------------------------------------------
//	frequencyAt
// ---------------------------------------------------------------------------
//!	Return the interpolated frequency (in Hz) of this Partial at the
//!	specified time. At times beyond the ends of the Partial, return
//!	the frequency at the nearest envelope endpoint. Throw an
//!	InvalidPartial exception if this Partial has no Breakpoints.
//
double
Partial::frequencyAt( double time ) const
{
    Breakpoint bp = parametersAt( time );
    return bp.frequency();
}

// ---------------------------------------------------------------------------
//	ShortestSafeFadeTime
// ---------------------------------------------------------------------------
//!	Define the default fade time for computing amplitude at the ends
//!	of a Partial. Floating point round-off errors make fadeTime == 0.0
//!	dangerous and unpredictable. 1 ns is short enough to prevent rounding
//!	errors in the least significant bit of a 48-bit mantissa for times
//!	up to ten hours.
//
const double Partial::ShortestSafeFadeTime = 1.0E-9;

// ---------------------------------------------------------------------------
//	amplitudeAt
// ---------------------------------------------------------------------------
//!	Return the interpolated amplitude of this Partial at the
//!	specified time. Throw an InvalidPartial exception if this 
//!	Partial has no Breakpoints. If non-zero fadeTime is specified, 
//!	then the amplitude at the ends of the Partial is coomputed using
//!	a linear fade. The default fadeTime is ShortestSafeFadeTime,
//!	see the definition of ShortestSafeFadeTime, above.
//	
double
Partial::amplitudeAt( double time, double fadeTime ) const
{
    Breakpoint bp = parametersAt( time, fadeTime );
    return bp.amplitude();
}


// ---------------------------------------------------------------------------
//	phaseAt
// ---------------------------------------------------------------------------
//!	Return the interpolated phase (in radians) of this Partial at
//!	the specified time. At times beyond the ends of the Partial,
//!	return the extrapolated from the nearest envelope endpoint
//!	(assuming constant frequency, as reported by frequencyAt()).
//!	
//! \param time is the time in seconds at which to evaluate the phase
//!
//! \throw Throw an InvalidPartial exception if this Partial has no
//!	Breakpoints.
//	
double
Partial::phaseAt( double time ) const
{
    Breakpoint bp = parametersAt( time );
    return bp.phase();
}

// ---------------------------------------------------------------------------
//	bandwidthAt
// ---------------------------------------------------------------------------
//!	Return the interpolated bandwidth (noisiness) coefficient of
//!	this Partial at the specified time. At times beyond the ends of
//!	the Partial, return the bandwidth coefficient at the nearest
//!	envelope endpoint. Throw an InvalidPartial exception if this
//!	Partial has no Breakpoints.
//	
double
Partial::bandwidthAt( double time ) const
{
    Breakpoint bp = parametersAt( time );
    return bp.bandwidth();
}

// ---------------------------------------------------------------------------
//  wrapPi
// ---------------------------------------------------------------------------
//  O'Donnell's phase wrapping function.
//
static inline double wrapPi( double x )
{
    using namespace std; // floor should be in std
    #define ROUND(x) (floor(.5 + (x)))
    const double TwoPi = 2.0*Pi;
    return x + ( TwoPi * ROUND(-x/TwoPi) );
}

// ---------------------------------------------------------------------------
//	parametersAt
// ---------------------------------------------------------------------------
//!	Return the interpolated parameters of this Partial at
//!	the specified time. If non-zero fadeTime is specified, then the
//!	amplitude at the ends of the Partial is coomputed using a 
//!	linear fade. The default fadeTime is ShortestSafeFadeTime.
//!	Throw an InvalidPartial exception if this Partial has no
//!	Breakpoints. 
//
Breakpoint
Partial::parametersAt( double time, double fadeTime ) const 
{
	if ( numBreakpoints() == 0 )
	{
		Throw( InvalidPartial, "Tried to interpolate a Partial with no Breakpoints." );
	}
	
	double freq, amp, bw, ph;			
	if ( startTime() >= time ) 
	{
		//	time is before the onset of the Partial:
		//	frequency is starting frequency, 
		//	amplitude is 0 (or fading), bandwidth is starting 
		//	bandwidth, and phase is rolled back.
		
		const Breakpoint & bp = first();
		double tstart = startTime();
		
		//  frequency:
		freq = bp.frequency();
		
		//  amplitude:
		amp = 0;
		if ( (fadeTime > 0) && ((tstart - time) < fadeTime) )
		{
			//	fade in ampltude if time is before the onset of the Partial:
			double alpha = 1. - ((tstart - time) / fadeTime);
			amp = alpha * bp.amplitude();
		}
		
        //  bandwidth:
        bw = bp.bandwidth();
        
		//  phase:
        double dp = 2. * Pi * (startTime() - time) * bp.frequency();
		ph = wrapPi( bp.phase() - dp );

	}
	else if ( endTime() <= time ) 
	{
		//	time is past the end of the Partial:
		//	frequency is ending frequency, 
		//	amplitude is 0 (or fading), bandwidth is ending 
		//	bandwidth, and phase is rolled forward.
		const Breakpoint & bp = last();	
        double tend = endTime();

		//  frequency:
		freq = bp.frequency();
		
		//  amplitude:		
		amp = 0;
		if ( (fadeTime > 0) && ((time - tend) < fadeTime) )
		{
			//	fade out ampltude if time is past the end of the Partial:
			double alpha = 1. - ((time - tend) / fadeTime);
			amp = alpha * bp.amplitude();
		}

        //  bandwidth:
        bw = bp.bandwidth();
        
        //  phase:
		double dp = 2. * Pi * (time - endTime()) * bp.frequency();
		ph = wrapPi( bp.phase() + dp );
	}
	else 
	{
        //	findAfter returns the position of the earliest
        //	Breakpoint later than time, or the end
        //	position if no such Breakpoint exists:
        Partial::const_iterator it = findAfter( time );
	
        //	interpolate between it and its predeccessor
        //	(we checked already that it is not begin or end):
        const Breakpoint & hi = it.breakpoint();
		double hitime = it.time();
        const Breakpoint & lo = (--it).breakpoint();
        double lotime = it.time();
        
        double alpha = (time - lotime) / (hitime - lotime);
		
        //  frequency:
        freq = (alpha * hi.frequency()) + ((1. - alpha) * lo.frequency());
			   
        //  amplitude:	
        amp = (alpha * hi.amplitude()) + ((1. - alpha) * lo.amplitude());

        //  bandwidth:
        bw = (alpha * hi.bandwidth()) + ((1. - alpha) * lo.bandwidth());
        
        //  phase:
        //  interpolated phase is computed from the interpolated frequency 
        //  and offset from the phase of the preceding Breakpoint:
        double favg = 0.5 * ( lo.frequency() + freq ); // + hi.frequency() );
        double dp = 2. * Pi * (time - lotime) * favg;                   
        ph = wrapPi( lo.phase() + dp );                        	
	}
	
	return Breakpoint( freq, amp, bw, ph );
}

}	//	end of namespace Loris