summaryrefslogtreecommitdiff
path: root/src/loris/Oscillator.C
blob: 1ffc5c5799dc40a5fdc4acefe8a3c6e867263d98 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
/*
 * This is the Loris C++ Class Library, implementing analysis, 
 * manipulation, and synthesis of digitized sounds using the Reassigned 
 * Bandwidth-Enhanced Additive Sound Model.
 *
 * Loris is Copyright (c) 1999-2010 by Kelly Fitz and Lippold Haken
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY, without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 *
 *
 * Oscillator.C
 *
 * Implementation of class Loris::Oscillator, a Bandwidth-Enhanced Oscillator.
 *
 * Kelly Fitz, 31 Aug 1999
 * loris@cerlsoundgroup.org
 *
 * http://www.cerlsoundgroup.org/Loris/
 *
 */
 
#if HAVE_CONFIG_H
    #include "config.h"
#endif

#include "Oscillator.h"

#include "Filter.h"
#include "Partial.h"
#include "Notifier.h"

#include <cmath>
#include <vector>

#if defined(HAVE_M_PI) && (HAVE_M_PI)
    const double Pi = M_PI;
#else
    const double Pi = 3.14159265358979324;
#endif
const double TwoPi = 2*Pi;

//  begin namespace
namespace Loris {


// ---------------------------------------------------------------------------
//  Oscillator construction
// ---------------------------------------------------------------------------
//  Initialize stochastic modulators and state variables.
//
Oscillator::Oscillator( void ) :
    m_modulator( 1.0 /* seed */ ),
    m_filter( prototype_filter() ),
    m_instfrequency( 0 ),
    m_instamplitude( 0 ),
    m_instbandwidth( 0 ),
    m_determphase( 0 )
{
}

// ---------------------------------------------------------------------------
//  resetEnvelopes
// ---------------------------------------------------------------------------
//  Reset the instantaneous envelope parameters 
//  (frequency, amplitude, bandwidth, and phase).
//  The sample rate is needed to convert the 
//  Breakpoint frequency (Hz) to radians per sample.
//
void 
Oscillator::resetEnvelopes( const Breakpoint & bp, double srate )
{
    //  Remember that the oscillator only knows about 
    //  radian frequency! Convert!
    m_instfrequency = bp.frequency() * TwoPi / srate;
    m_instamplitude = bp.amplitude();
    m_instbandwidth = bp.bandwidth();
    m_determphase = bp.phase();
    
    //  clamp bandwidth:
    if ( m_instbandwidth > 1. )
    {
        debugger << "clamping bandwidth at 1." << endl;
        m_instbandwidth = 1.;
    }
    else if ( m_instbandwidth < 0. )
    { 
        debugger << "clamping bandwidth at 0." << endl;
        m_instbandwidth = 0.;
    }

    //  don't alias:
    if ( m_instfrequency > Pi )
    { 
        debugger << "fading out aliasing Partial" << endl;
        m_instamplitude = 0.;
    }
    
    //  Reset the fitler state too.
    m_filter.clear();
    
}

// ---------------------------------------------------------------------------
//  m2pi
// ---------------------------------------------------------------------------
//  O'Donnell's phase wrapping function.
//
static inline double m2pi( double x )
{
    using namespace std; // floor should be in std
    #define ROUND(x) (floor(.5 + (x)))
    return x + ( TwoPi * ROUND(-x/TwoPi) );
}

// ---------------------------------------------------------------------------
//  setPhase
// ---------------------------------------------------------------------------
//  Reset the phase of the Oscillator to the specified
//  value, and clear the accumulated phase modulation. (?)
//  Or not.
//  This is done when the amplitude of a Partial goes to 
//  zero, so that onsets are preserved in distilled
//  and collated Partials.
//
void 
Oscillator::setPhase( double ph )
{
    m_determphase = m2pi(ph);
}

// ---------------------------------------------------------------------------
//  oscillate
// ---------------------------------------------------------------------------
//  Accumulate bandwidth-enhanced sinusoidal samples modulating the 
//  oscillator state from its current values of radian frequency,
//  amplitude, and bandwidth to the specified target values, into
//  the specified half-open range of doubles.
//
//  The caller must ensure that the range is valid. Target parameters
//  are bounds-checked. 
//
void
Oscillator::oscillate( double * begin, double * end,
                       const Breakpoint & bp, double srate )
{
    double targetFreq = bp.frequency() * TwoPi / srate;     //  radians per sample
    double targetAmp = bp.amplitude(); 
    double targetBw = bp.bandwidth();
    
    //  clamp bandwidth:
    if ( targetBw > 1. )
    {
        debugger << "clamping bandwidth at 1." << endl;
        targetBw = 1.;
    }
    else if ( targetBw < 0. )
    { 
        debugger << "clamping bandwidth at 0." << endl;
        targetBw = 0.;
    }
        
    //  don't alias:
    if ( targetFreq > Pi )  //  radian Nyquist rate
    {
        debugger << "fading out Partial above Nyquist rate" << endl;
        targetAmp = 0.;
    }

    //  compute trajectories:
    const double dTime = 1. / (end - begin);
    const double dFreqOver2 = 0.5 * (targetFreq - m_instfrequency) * dTime;
    	//	split frequency update in two steps, update phase using average
    	//	frequency, after adding only half the frequency step
    	
    const double dAmp = (targetAmp - m_instamplitude)  * dTime;
    const double dBw = (targetBw - m_instbandwidth)  * dTime;

    //  Use temporary local variables for speed.
    //  Probably not worth it when I am computing square roots 
    //  and cosines...
    double ph = m_determphase;
    double f = m_instfrequency;
    double a = m_instamplitude;
    double bw = m_instbandwidth;
    
    //	Also use a more efficient sample loop when the bandwidth is zero.
    if ( 0 < bw || 0 < dBw )
    {
		double am, nz;
		for ( double * putItHere = begin; putItHere != end; ++putItHere )
		{
			//  use math functions in namespace std:
			using namespace std;
	
			//  compute amplitude modulation due to bandwidth:
			//
			//  This will give the right amplitude modulation when scaled
			//  by the Partial amplitude:
			//
			//  carrier amp: sqrt( 1. - bandwidth ) * amp
			//  modulation index: sqrt( 2. * bandwidth ) * amp
			//
			nz = m_filter.apply( m_modulator.sample() );
			am = sqrt( 1. - bw ) + ( nz * sqrt( 2. * bw ) );  
					
			//  compute a sample and add it into the buffer:
			*putItHere += am * a * cos( ph );
				
			//  update the instantaneous oscillator state:
			f += dFreqOver2;
			ph += f;   //  frequency is radians per sample
			f += dFreqOver2;
			a += dAmp;
			bw += dBw;
			if (bw < 0.)
			{
				bw = 0.;
			}				
		}   // end of sample computation loop
	}
	else
	{
		for ( double * putItHere = begin; putItHere != end; ++putItHere )
		{
			//  use math functions in namespace std:
			using namespace std;
	
			//	no modulation when there is no bandwidth
			
			//  compute a sample and add it into the buffer:
			*putItHere += a * cos( ph );
				
			//  update the instantaneous oscillator state:
			f += dFreqOver2;
			ph += f;   //  frequency is radians per sample
			f += dFreqOver2;
			a += dAmp;
		}   // end of sample computation loop
	
	}
	
	
    //	copy out of the local variables?
    //	no need because we are assigning to the target
    //	values below:
    /*
    m_instfrequency = f;
    m_instamplitude = a;
    m_instbandwidth = bw;
    */
    
    //  wrap phase to prevent eventual loss of precision at
    //  high oscillation frequencies:
    //  (Doesn't really matter much exactly how we wrap it, 
    //  as long as it brings the phase nearer to zero.)
    m_determphase = m2pi( ph );
    
    //  set the state variables to their target values,
    //  just in case they didn't arrive exactly (overshooting
    //  amplitude or, especially, bandwidth, could be bad, and
    //  it does happen):
    m_instfrequency = targetFreq;
    m_instamplitude = targetAmp;
    m_instbandwidth = targetBw;
}

// ---------------------------------------------------------------------------
//  protoype filter (static member)
// ---------------------------------------------------------------------------
//  Static local function for obtaining a prototype Filter
//  to use in Oscillator construction. Eventually, allow
//  external (client) specification of the Filter prototype.
//
const Filter & 
Oscillator::prototype_filter( void )
{
    //  Chebychev order 3, cutoff 500, ripple -1.
    //
    //  Coefficients obtained from http://www.cs.york.ac.uk/~fisher/mkfilter/
    //  Digital filter designed by mkfilter/mkshape/gencode   A.J. Fisher
    //
    static const double Gain = 4.663939184e+04;
    static const double ExtraScaling = 6.;
    static const double MaCoefs[] = { 1., 3., 3., 1. }; 
    static const double ArCoefs[] = { 1., -2.9258684252, 2.8580608586, -0.9320209046 };

    static const Filter proto( MaCoefs, MaCoefs + 4, ArCoefs, ArCoefs + 4, ExtraScaling/Gain );
    return proto;
}



}   //  end of namespace Loris