1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
|
/*
* This is the Loris C++ Class Library, implementing analysis,
* manipulation, and synthesis of digitized sounds using the Reassigned
* Bandwidth-Enhanced Additive Sound Model.
*
* Loris is Copyright (c) 1999-2010 by Kelly Fitz and Lippold Haken
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY, without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*
* Morpher.C
*
* Implementation of class Morpher.
*
* Kelly Fitz, 15 Oct 1999
* loris@cerlsoundgroup.org
*
* http://www.cerlsoundgroup.org/Loris/
*
*/
#if HAVE_CONFIG_H
#include "config.h"
#endif
#include "Morpher.h"
#include "Breakpoint.h"
#include "Envelope.h"
#include "LorisExceptions.h"
#include "Notifier.h"
#include "Partial.h"
#include "PartialList.h"
#include "PartialUtils.h"
#include "phasefix.h"
#include <algorithm>
#include <memory>
#include <cmath>
#include <vector>
#if defined(HAVE_M_PI) && (HAVE_M_PI)
const double Pi = M_PI;
#else
const double Pi = 3.14159265358979324;
#endif
// begin namespace
namespace Loris {
const double Morpher::DefaultFixThreshold = -90; // dB, very low by default
// shaping parameter, see interpolateAmplitude:
const double Morpher::DefaultAmpShape = 1E-5;
const double Morpher::DefaultBreakpointGap = 1E-4; // minimum time (sec) between Breakpoints in
// morphed Partials
// helper declarations
static inline bool partial_is_nonnull( const Partial & p );
// -- construction --
// ---------------------------------------------------------------------------
// Morpher constructor (single morph function)
// ---------------------------------------------------------------------------
// Construct a new Morpher using the same morphing envelope for
// frequency, amplitude, and bandwidth (noisiness).
//
Morpher::Morpher( const Envelope & f ) :
_freqFunction( f.clone() ),
_ampFunction( f.clone() ),
_bwFunction( f.clone() ),
_freqFixThresholdDb( DefaultFixThreshold ),
_logMorphShape( DefaultAmpShape ),
_minBreakpointGapSec( DefaultBreakpointGap ),
_doLogAmpMorphing( true ),
_doLogFreqMorphing( false )
{
}
// ---------------------------------------------------------------------------
// Morpher constructor (distinct morph functions)
// ---------------------------------------------------------------------------
// Construct a new Morpher using the specified morphing envelopes for
// frequency, amplitude, and bandwidth (noisiness).
//
Morpher::Morpher( const Envelope & ff, const Envelope & af, const Envelope & bwf ) :
_freqFunction( ff.clone() ),
_ampFunction( af.clone() ),
_bwFunction( bwf.clone() ),
_freqFixThresholdDb( DefaultFixThreshold ),
_logMorphShape( DefaultAmpShape ),
_minBreakpointGapSec( DefaultBreakpointGap ),
_doLogAmpMorphing( true ),
_doLogFreqMorphing( false )
{
}
// ---------------------------------------------------------------------------
// Morpher copy constructor
// ---------------------------------------------------------------------------
//! Construct a new Morpher that is a duplicate of rhs.
//!
//! \param rhs is the Morpher to duplicate
Morpher::Morpher( const Morpher & rhs ) :
_freqFunction( rhs._freqFunction->clone() ),
_ampFunction( rhs._ampFunction->clone() ),
_bwFunction( rhs._bwFunction->clone() ),
_srcRefPartial( rhs._srcRefPartial ),
_tgtRefPartial( rhs._tgtRefPartial ),
_freqFixThresholdDb( rhs._freqFixThresholdDb ),
_logMorphShape( rhs._logMorphShape ),
_minBreakpointGapSec( rhs._minBreakpointGapSec ),
_doLogAmpMorphing( rhs._doLogAmpMorphing ),
_doLogFreqMorphing( rhs._doLogFreqMorphing )
{
}
// ---------------------------------------------------------------------------
// Morpher destructor
// ---------------------------------------------------------------------------
// Destroy this Morpher.
//
Morpher::~Morpher( void )
{
}
// ---------------------------------------------------------------------------
// Morpher assignment operator
// ---------------------------------------------------------------------------
//! Make this Morpher a duplicate of rhs.
//!
//! \param rhs is the Morpher to duplicate
Morpher &
Morpher::operator= ( const Morpher & rhs )
{
if ( &rhs != this )
{
_freqFunction.reset( rhs._freqFunction->clone() );
_ampFunction.reset( rhs._ampFunction->clone() );
_bwFunction.reset( rhs._bwFunction->clone() );
_srcRefPartial = rhs._srcRefPartial;
_tgtRefPartial = rhs._tgtRefPartial;
_freqFixThresholdDb = rhs._freqFixThresholdDb;
_logMorphShape = rhs._logMorphShape;
_minBreakpointGapSec = rhs._minBreakpointGapSec;
_doLogAmpMorphing = rhs._doLogAmpMorphing;
_doLogFreqMorphing = rhs._doLogFreqMorphing;
}
return *this;
}
// -- Partial morphing --
// ---------------------------------------------------------------------------
// morphPartials
// ---------------------------------------------------------------------------
//! Morph a pair of Partials to yield a new morphed Partial.
//! Dummy Partials (having no Breakpoints) don't contribute to the
//! morph, except to cause their opposite to fade out.
//! Either (or neither) the source or target Partial may be a dummy
//! Partial (no Breakpoints), but not both. The morphed
//! Partial has Breakpoints at times corresponding to every Breakpoint
//! in both source Partials, omitting Breakpoints that would be
//! closer than the minBreakpointGap to their predecessor.
//! The new morphed Partial is assigned the specified label and returned.
//!
//! \param src is the Partial corresponding to a morph function
//! value of 0, evaluated at the specified time.
//! \param tgt is the Partial corresponding to a morph function
//! value of 1, evaluated at the specified time.
//! \param assignLabel is the label assigned to the morphed Partial
//! \return the morphed Partial
//
Partial
Morpher::morphPartials( Partial src, Partial tgt, int assignLabel )
{
if ( (src.numBreakpoints() == 0) && (tgt.numBreakpoints() == 0) )
{
Throw( InvalidArgument, "Cannot morph two empty Partials," );
}
Partial::const_iterator src_iter = src.begin();
Partial::const_iterator tgt_iter = tgt.begin();
// find the earliest time that a Breakpoint
// could be added to the morph:
double dontAddBefore = 0;
if ( 0 < src.numBreakpoints() )
{
dontAddBefore = std::min( dontAddBefore, src_iter.time() );
}
if ( 0 < tgt.numBreakpoints() )
{
dontAddBefore = std::min( dontAddBefore, tgt_iter.time() );
}
// make a new Partial:
Partial newp;
newp.setLabel( assignLabel );
// Merge Breakpoints from the two Partials,
// loop until there are no more Breakpoints to
// consider in either Partial.
while ( src_iter != src.end() || tgt_iter != tgt.end() )
{
if ( ( tgt_iter == tgt.end() ) ||
( src_iter != src.end() && src_iter.time() < tgt_iter.time() ) )
{
// Ran out of tgt Breakpoints, or
// src Breakpoint is earlier, add it.
//
// Don't insert Breakpoints arbitrarily close together,
// only insert a new Breakpoint if it is later than
// the end of the new Partial by more than the gap time.
if ( dontAddBefore <= src_iter.time() )
{
appendMorphedSrc( src_iter.breakpoint(), tgt, src_iter.time(), newp );
}
++src_iter;
}
else
{
// Ran out of src Breakpoints, or
// tgt Breakpoint is earlier add it.
//
// Don't insert Breakpoints arbitrarily close together,
// only insert a new Breakpoint if it is later than
// the end of the new Partial by more than the gap time.
if ( dontAddBefore <= tgt_iter.time() )
{
appendMorphedTgt( tgt_iter.breakpoint(), src, tgt_iter.time(), newp );
}
++tgt_iter;
}
if ( 0 != newp.numBreakpoints() )
{
// update the earliest time the next Breakpoint
// could be added to the morph:
dontAddBefore = newp.endTime() + _minBreakpointGapSec;
}
}
// Recompute the phases to match the sources when the frequency
// morphing function is 0 or 1.
fixMorphedPhases( newp );
return newp;
}
// ---------------------------------------------------------------------------
// helper - GetMorphState
// ---------------------------------------------------------------------------
typedef enum { SRC = 0, TGT, INTERP } MorphState;
static inline MorphState GetMorphState( double fweight )
{
if ( fweight <= 0 )
{
return SRC;
}
else if ( fweight >= 1 )
{
return TGT;
}
else
{
return INTERP;
}
}
// ---------------------------------------------------------------------------
// fixMorphedPhases (helper)
// ---------------------------------------------------------------------------
// Recompute phases for a morphed Partial, so that the synthesized phases
// match the source phases as closesly as possible at times when the
// frequency morphing function is equal to 0 or 1.
void
Morpher::fixMorphedPhases( Partial & newp ) const
{
if ( 0 != newp.numBreakpoints() )
{
// set the initial morph state according to the value of the
// frequency function at the time of the first Breakpoint in
// the morphed partial
Partial::iterator bppos = newp.begin();
Partial::iterator lastPosCorrect = bppos;
MorphState curstate = GetMorphState( _freqFunction->valueAt( bppos.time() ) );
// consider each Breakpoint, look for a change in the
// morph state at the time of each Breakpoint
while( ++bppos != newp.end() )
{
MorphState nxtstate = GetMorphState( _freqFunction->valueAt( bppos.time() ) );
if ( nxtstate != curstate )
{
// switch!
if ( INTERP != curstate )
{
// switch to INTERP
fixPhaseForward( lastPosCorrect, bppos );
}
else
{
// switch to SRC or TGT
if ( newp.begin() == lastPosCorrect )
{
// first transition
fixPhaseBackward( lastPosCorrect, bppos );
}
else
{
// not first transition
fixPhaseBetween( lastPosCorrect, bppos );
}
}
lastPosCorrect = bppos;
curstate = nxtstate;
}
}
// fix the remaining phases
fixPhaseForward( lastPosCorrect, --bppos );
}
}
// ---------------------------------------------------------------------------
// crossfade
// ---------------------------------------------------------------------------
// Crossfade Partials with no correspondences.
//
// Unlabeled Partials (having label 0) are considered to
// have no correspondences, so they are just faded out, and not
// actually morphed. This is the same as morphing each with an
// empty dummy Partial (having no Breakpoints).
//
// The Partials in the first range are treated as components of the
// source sound, corresponding to a morph function value of 0, and
// those in the second are treated as components of the target sound,
// corresponding to a morph function value of 1.
//
// The crossfaded Partials are stored in the Morpher's PartialList.
//
void
Morpher::crossfade( PartialList::const_iterator beginSrc,
PartialList::const_iterator endSrc,
PartialList::const_iterator beginTgt,
PartialList::const_iterator endTgt,
Partial::label_type label /* default 0 */ )
{
Partial nullPartial;
debugger << "crossfading unlabeled (labeled 0) Partials" << endl;
long debugCounter;
// crossfade Partials corresponding to a morph weight of 0:
PartialList::const_iterator it;
debugCounter = 0;
for ( it = beginSrc; it != endSrc; ++it )
{
if ( it->label() == label && 0 != it->numBreakpoints() )
{
Partial newp;
newp.setLabel( label );
double dontAddBefore = it->startTime();
for ( Partial::const_iterator bpPos = it->begin();
bpPos != it->end();
++bpPos )
{
// Don't insert Breakpoints arbitrarily close together,
// only insert a new Breakpoint if it is later than
// the end of the new Partial by more than the gap time.
if ( dontAddBefore <= bpPos.time() )
{
newp.insert( bpPos.time(),
fadeSrcBreakpoint( bpPos.breakpoint(), bpPos.time() ) );
dontAddBefore = bpPos.time() + _minBreakpointGapSec;
}
}
if ( newp.numBreakpoints() > 0 )
{
++debugCounter;
_partials.push_back( newp );
}
}
}
debugger << "kept " << debugCounter << " from sound 1" << endl;
// crossfade Partials corresponding to a morph weight of 1:
debugCounter = 0;
for ( it = beginTgt; it != endTgt; ++it )
{
if ( it->label() == label && 0 != it->numBreakpoints() )
{
Partial newp;
newp.setLabel( label );
double dontAddBefore = it->startTime();
for ( Partial::const_iterator bpPos = it->begin();
bpPos != it->end();
++bpPos )
{
// Don't insert Breakpoints arbitrarily close together,
// only insert a new Breakpoint if it is later than
// the end of the new Partial by more than the gap time.
if ( dontAddBefore <= bpPos.time() )
{
newp.insert( bpPos.time(),
fadeTgtBreakpoint( bpPos.breakpoint(), bpPos.time() ) );
dontAddBefore = bpPos.time() + _minBreakpointGapSec;
}
}
if ( newp.numBreakpoints() > 0 )
{
++debugCounter;
_partials.push_back( newp );
}
}
}
debugger << "kept " << debugCounter << " from sound 2" << endl;
}
// ---------------------------------------------------------------------------
// morph
// ---------------------------------------------------------------------------
// Morph two sounds (collections of Partials labeled to indicate
// correspondences) into a single labeled collection of Partials.
// Unlabeled Partials (having label 0) are crossfaded. The morphed
// and crossfaded Partials are stored in the Morpher's PartialList.
//
// The Partials in the first range are treated as components of the
// source sound, corresponding to a morph function value of 0, and
// those in the second are treated as components of the target sound,
// corresponding to a morph function value of 1.
//
// Throws InvalidArgument if either the source or target
// sequence is not distilled (contains more than one Partial having
// the same non-zero label).
//
// Ugh! This ought to be a template function!
// Ugh! But then crossfade needs to be a template function.
// Maybe need to do something different with crossfade first.
//
void
Morpher::morph( PartialList::const_iterator beginSrc,
PartialList::const_iterator endSrc,
PartialList::const_iterator beginTgt,
PartialList::const_iterator endTgt )
{
// build a PartialCorrespondence, a map of labels
// to pairs of pointers to Partials, by making every
// Partial in the source the first element of the
// pair at the corresponding label, and every Partial
// in the target the second element of the pair at
// the corresponding label. Pointers not assigned to
// point to a Partial in the source or target are
// initialized to 0 in the correspondence map.
PartialCorrespondence correspondence;
// add source Partials to the correspondence map:
for ( PartialList::const_iterator it = beginSrc; it != endSrc; ++it )
{
// don't add the crossfade label to the set:
if ( it->label() != 0 )
{
MorphingPair & match = correspondence[ it->label() ];
if ( match.src.numBreakpoints() != 0 )
{
Throw( InvalidArgument, "Source Partials must be distilled before morphing." );
}
match.src = *it;
}
}
// add target Partials to the correspondence map:
for ( PartialList::const_iterator it = beginTgt; it != endTgt; ++it )
{
// don't add the crossfade label to the set:
if ( it->label() != 0 )
{
MorphingPair & match = correspondence[ it->label() ];
if ( match.tgt.numBreakpoints() != 0 )
{
Throw( InvalidArgument, "Target Partials must be distilled before morphing." );
}
match.tgt = *it;
}
}
// morph corresponding labeled Partials:
morph_aux( correspondence );
// crossfade the remaining unlabeled Partials:
crossfade( beginSrc, endSrc, beginTgt, endTgt );
}
// ---------------------------------------------------------------------------
// morphBreakpoints
// ---------------------------------------------------------------------------
//! Compute morphed parameter values at the specified time, using
//! the source and target Breakpoints (assumed to correspond exactly
//! to the specified time).
//!
//! \param srcBkpt is the Breakpoint corresponding to a morph function
//! value of 0.
//! \param tgtBkpt is the Breakpoint corresponding to a morph function
//! value of 1.
//! \param time is the time corresponding to srcBkpt (used
//! to evaluate the morphing functions and tgtPartial).
//! \return the morphed Breakpoint
//
Breakpoint
Morpher::morphBreakpoints( Breakpoint srcBkpt, Breakpoint tgtBkpt,
double time ) const
{
double fweight = _freqFunction->valueAt( time );
double aweight = _ampFunction->valueAt( time );
double bweight = _bwFunction->valueAt( time );
// compute interpolated Breakpoint parameters:
return interpolateParameters( srcBkpt, tgtBkpt, fweight,
aweight, bweight );
}
// ---------------------------------------------------------------------------
// morphSrcBreakpoint
// ---------------------------------------------------------------------------
//! Compute morphed parameter values at the specified time, using
//! the source Breakpoint (assumed to correspond exactly to the
//! specified time) and the target Partial (whose parameters are
//! examined at the specified time).
//!
//! \pre the target Partial may not be a dummy Partial (no Breakpoints).
//!
//! \param srcBkpt is the Breakpoint corresponding to a morph function
//! value of 0.
//! \param tgtPartial is the Partial corresponding to a morph function
//! value of 1, evaluated at the specified time.
//! \param time is the time corresponding to srcBkpt (used
//! to evaluate the morphing functions and tgtPartial).
//! \return the morphed Breakpoint
//
Breakpoint
Morpher::morphSrcBreakpoint( const Breakpoint & srcBkpt, const Partial & tgtPartial,
double time ) const
{
if ( 0 == tgtPartial.numBreakpoints() )
{
Throw( InvalidArgument, "morphSrcBreakpoint cannot morph with empty Partial" );
}
Breakpoint tgtBkpt = tgtPartial.parametersAt( time );
return morphBreakpoints( srcBkpt, tgtBkpt, time );
}
// ---------------------------------------------------------------------------
// morphTgtBreakpoint
// ---------------------------------------------------------------------------
//! Compute morphed parameter values at the specified time, using
//! the target Breakpoint (assumed to correspond exactly to the
//! specified time) and the source Partial (whose parameters are
//! examined at the specified time).
//!
//! \pre the source Partial may not be a dummy Partial (no Breakpoints).
//!
//! \param tgtBkpt is the Breakpoint corresponding to a morph function
//! value of 1.
//! \param srcPartial is the Partial corresponding to a morph function
//! value of 0, evaluated at the specified time.
//! \param time is the time corresponding to srcBkpt (used
//! to evaluate the morphing functions and srcPartial).
//! \return the morphed Breakpoint
//
Breakpoint
Morpher::morphTgtBreakpoint( const Breakpoint & tgtBkpt, const Partial & srcPartial,
double time ) const
{
if ( 0 == srcPartial.numBreakpoints() )
{
Throw( InvalidArgument, "morphTgtBreakpoint cannot morph with empty Partial" );
}
Breakpoint srcBkpt = srcPartial.parametersAt( time );
return morphBreakpoints( srcBkpt, tgtBkpt, time );
}
// ---------------------------------------------------------------------------
// fadeSrcBreakpoint
// ---------------------------------------------------------------------------
//! Compute morphed parameter values at the specified time, using
//! the source Breakpoint, assumed to correspond exactly to the
//! specified time, and assuming that there is no corresponding
//! target Partial, so the source Breakpoint should be simply faded.
//!
//! \param bp is the Breakpoint corresponding to a morph function
//! value of 0.
//! \param time is the time corresponding to bp (used
//! to evaluate the morphing functions).
//! \return the faded Breakpoint
//
Breakpoint
Morpher::fadeSrcBreakpoint( Breakpoint bp, double time ) const
{
double alpha = _ampFunction->valueAt( time );
bp.setAmplitude( interpolateAmplitude( bp.amplitude(), 0,
alpha ) );
return bp;
}
// ---------------------------------------------------------------------------
// fadeTgtBreakpoint
// ---------------------------------------------------------------------------
//! Compute morphed parameter values at the specified time, using
//! the target Breakpoint, assumed to correspond exactly to the
//! specified time, and assuming that there is not corresponding
//! source Partial, so the target Breakpoint should be simply faded.
//!
//! \param bp is the Breakpoint corresponding to a morph function
//! value of 1.
//! \param time is the time corresponding to bp (used
//! to evaluate the morphing functions).
//! \return the faded Breakpoint
//
Breakpoint
Morpher::fadeTgtBreakpoint( Breakpoint bp, double time ) const
{
double alpha = _ampFunction->valueAt( time );
bp.setAmplitude( interpolateAmplitude( 0, bp.amplitude(),
alpha ) );
return bp;
}
// -- morphing function access/mutation --
// ---------------------------------------------------------------------------
// setFrequencyFunction
// ---------------------------------------------------------------------------
// Assign a new frequency morphing envelope to this Morpher.
//
void
Morpher::setFrequencyFunction( const Envelope & f )
{
_freqFunction.reset( f.clone() );
}
// ---------------------------------------------------------------------------
// setAmplitudeFunction
// ---------------------------------------------------------------------------
// Assign a new amplitude morphing envelope to this Morpher.
//
void
Morpher::setAmplitudeFunction( const Envelope & f )
{
_ampFunction.reset( f.clone() );
}
// ---------------------------------------------------------------------------
// setBandwidthFunction
// ---------------------------------------------------------------------------
// Assign a new bandwidth morphing envelope to this Morpher.
//
void
Morpher::setBandwidthFunction( const Envelope & f )
{
_bwFunction.reset( f.clone() );
}
// ---------------------------------------------------------------------------
// frequencyFunction
// ---------------------------------------------------------------------------
// Return a reference to this Morpher's frequency morphing envelope.
//
const Envelope &
Morpher::frequencyFunction( void ) const
{
return * _freqFunction;
}
// ---------------------------------------------------------------------------
// amplitudeFunction
// ---------------------------------------------------------------------------
// Return a reference to this Morpher's amplitude morphing envelope.
//
const Envelope &
Morpher::amplitudeFunction( void ) const
{
return * _ampFunction;
}
// ---------------------------------------------------------------------------
// bandwidthFunction
// ---------------------------------------------------------------------------
// Return a reference to this Morpher's bandwidth morphing envelope.
//
const Envelope &
Morpher::bandwidthFunction( void ) const
{
return * _bwFunction;
}
// -- reference Partial label access/mutation --
// ---------------------------------------------------------------------------
// sourceReferencePartial
// ---------------------------------------------------------------------------
//! Return the Partial to be used as a reference
//! Partial for the source sequence in a morph of two Partial
//! sequences. The reference partial is used to compute
//! frequencies for very low-amplitude Partials whose frequency
//! estimates are not considered reliable. The reference Partial
//! is considered to have good frequency estimates throughout.
//! A default (empty) Partial indicates that no reference Partial
//! should be used for the source sequence.
//
const Partial &
Morpher::sourceReferencePartial( void ) const
{
return _srcRefPartial;
}
// ---------------------------------------------------------------------------
// sourceReferencePartial
// ---------------------------------------------------------------------------
//! Return the Partial to be used as a reference
//! Partial for the source sequence in a morph of two Partial
//! sequences. The reference partial is used to compute
//! frequencies for very low-amplitude Partials whose frequency
//! estimates are not considered reliable. The reference Partial
//! is considered to have good frequency estimates throughout.
//! A default (empty) Partial indicates that no reference Partial
//! should be used for the source sequence.
//
Partial &
Morpher::sourceReferencePartial( void )
{
return _srcRefPartial;
}
// ---------------------------------------------------------------------------
// targetReferenceLabel
// ---------------------------------------------------------------------------
//! Return the Partial to be used as a reference
//! Partial for the target sequence in a morph of two Partial
//! sequences. The reference partial is used to compute
//! frequencies for very low-amplitude Partials whose frequency
//! estimates are not considered reliable. The reference Partial
//! is considered to have good frequency estimates throughout.
//! A default (empty) Partial indicates that no reference Partial
//! should be used for the target sequence.
//
const Partial &
Morpher::targetReferencePartial( void ) const
{
return _tgtRefPartial;
}
// ---------------------------------------------------------------------------
// targetReferenceLabel
// ---------------------------------------------------------------------------
//! Return the Partial to be used as a reference
//! Partial for the target sequence in a morph of two Partial
//! sequences. The reference partial is used to compute
//! frequencies for very low-amplitude Partials whose frequency
//! estimates are not considered reliable. The reference Partial
//! is considered to have good frequency estimates throughout.
//! A default (empty) Partial indicates that no reference Partial
//! should be used for the target sequence.
//
Partial &
Morpher::targetReferencePartial( void )
{
return _tgtRefPartial;
}
// ---------------------------------------------------------------------------
// setSourceReferencePartial
// ---------------------------------------------------------------------------
//! Specify the Partial to be used as a reference
//! Partial for the source sequence in a morph of two Partial
//! sequences. The reference partial is used to compute
//! frequencies for very low-amplitude Partials whose frequency
//! estimates are not considered reliable. The reference Partial
//! is considered to have good frequency estimates throughout.
//! The specified Partial must be labeled with its harmonic number.
//! A default (empty) Partial indicates that no reference
//! Partial should be used for the source sequence.
//
void
Morpher::setSourceReferencePartial( const Partial & p )
{
if ( p.label() == 0 )
{
Throw( InvalidArgument,
"the morphing source reference Partial must be "
"labeled with its harmonic number" );
}
_srcRefPartial = p;
}
// ---------------------------------------------------------------------------
// setSourceReferencePartial
// ---------------------------------------------------------------------------
//! Specify the Partial to be used as a reference
//! Partial for the source sequence in a morph of two Partial
//! sequences. The reference partial is used to compute
//! frequencies for very low-amplitude Partials whose frequency
//! estimates are not considered reliable. The reference Partial
//! is considered to have good frequency estimates throughout.
//! A default (empty) Partial indicates that no reference
//! Partial should be used for the source sequence.
//!
//! \param partials a sequence of Partials to search
//! for the reference Partial
//! \param refLabel the label of the Partial in partials
//! that should be selected as the reference
//
void
Morpher::setSourceReferencePartial( const PartialList & partials,
Partial::label_type refLabel )
{
if ( refLabel != 0 )
{
PartialList::const_iterator pos =
std::find_if( partials.begin(), partials.end(),
PartialUtils::isLabelEqual( refLabel ) );
if ( pos == partials.end() )
{
Throw( InvalidArgument, "no Partial has the specified reference label" );
}
_srcRefPartial = *pos;
}
else
{
_srcRefPartial = Partial();
}
}
// ---------------------------------------------------------------------------
// setTargetReferencePartial
// ---------------------------------------------------------------------------
//! Specify the Partial to be used as a reference
//! Partial for the target sequence in a morph of two Partial
//! sequences. The reference partial is used to compute
//! frequencies for very low-amplitude Partials whose frequency
//! estimates are not considered reliable. The reference Partial
//! is considered to have good frequency estimates throughout.
//! The specified Partial must be labeled with its harmonic number.
//! A default (empty) Partial indicates that no reference
//! Partial should be used for the target sequence.
//
void
Morpher::setTargetReferencePartial( const Partial & p )
{
if ( p.label() == 0 )
{
Throw( InvalidArgument,
"the morphing target reference Partial must be "
"labeled with its harmonic number" );
}
_tgtRefPartial = p;
}
// ---------------------------------------------------------------------------
// setTargetReferencePartial
// ---------------------------------------------------------------------------
//! Specify the Partial to be used as a reference
//! Partial for the target sequence in a morph of two Partial
//! sequences. The reference partial is used to compute
//! frequencies for very low-amplitude Partials whose frequency
//! estimates are not considered reliable. The reference Partial
//! is considered to have good frequency estimates throughout.
//! A default (empty) Partial indicates that no reference
//! Partial should be used for the target sequence.
//!
//! \param partials a sequence of Partials to search
//! for the reference Partial
//! \param refLabel the label of the Partial in partials
//! that should be selected as the reference
//
void
Morpher::setTargetReferencePartial( const PartialList & partials,
Partial::label_type refLabel )
{
if ( refLabel != 0 )
{
PartialList::const_iterator pos =
std::find_if( partials.begin(), partials.end(),
PartialUtils::isLabelEqual( refLabel ) );
if ( pos == partials.end() )
{
Throw( InvalidArgument, "no Partial has the specified reference label" );
}
_tgtRefPartial = *pos;
}
else
{
_tgtRefPartial = Partial();
}
}
// ---------------------------------------------------------------------------
// amplitudeShape
// ---------------------------------------------------------------------------
// Return the shaping parameter for the amplitude moprhing
// function (only used in new log-amplitude morphing).
// This shaping parameter controls the
// slope of the amplitude morphing function,
// for values greater than 1, this function
// gets nearly linear (like the old amplitude
// morphing function), for values much less
// than 1 (e.g. 1E-5) the slope is gently
// curved and sounds pretty "linear", for
// very small values (e.g. 1E-12) the curve
// is very steep and sounds un-natural because
// of the huge jump from zero amplitude to
// very small amplitude.
double Morpher::amplitudeShape( void ) const
{
return _logMorphShape;
}
// ---------------------------------------------------------------------------
// setAmplitudeShape
// ---------------------------------------------------------------------------
// Set the shaping parameter for the amplitude moprhing
// function. This shaping parameter controls the
// slope of the amplitude morphing function,
// for values greater than 1, this function
// gets nearly linear (like the old amplitude
// morphing function), for values much less
// than 1 (e.g. 1E-5) the slope is gently
// curved and sounds pretty "linear", for
// very small values (e.g. 1E-12) the curve
// is very steep and sounds un-natural because
// of the huge jump from zero amplitude to
// very small amplitude.
//
// x is the new shaping parameter, it must be positive.
void Morpher::setAmplitudeShape( double x )
{
if ( x <= 0. )
{
Throw( InvalidArgument, "the amplitude morph shaping parameter must be positive");
}
_logMorphShape = x;
}
// ---------------------------------------------------------------------------
// minBreakpointGap
// ---------------------------------------------------------------------------
// Return the minimum time gap (secs) between two Breakpoints
// in the morphed Partials. Morphing two
// Partials can generate a third Partial having
// Breakpoints arbitrarily close together in time,
// and this makes morphs huge. Raising this
// threshold limits the Breakpoint density in
// the morphed Partials. Default is 1/10 ms.
double Morpher::minBreakpointGap( void ) const
{
return _minBreakpointGapSec;
}
// ---------------------------------------------------------------------------
// setMinBreakpointGap
// ---------------------------------------------------------------------------
// Set the minimum time gap (secs) between two Breakpoints
// in the morphed Partials. Morphing two
// Partials can generate a third Partial having
// Breakpoints arbitrarily close together in time,
// and this makes morphs huge. Raising this
// threshold limits the Breakpoint density in
// the morphed Partials. Default is 1/10 ms.
//
// x is the new minimum gap in seconds, it must be positive
//
void Morpher::setMinBreakpointGap( double x )
{
if ( x <= 0. )
{
Throw( InvalidArgument, "the minimum Breakpoint gap must be positive");
}
_minBreakpointGapSec = x;
}
// -- PartialList access --
// ---------------------------------------------------------------------------
// partials
// ---------------------------------------------------------------------------
// Return a reference to this Morpher's list of morphed Partials.
//
PartialList &
Morpher::partials( void )
{
return _partials;
}
// ---------------------------------------------------------------------------
// partials
// ---------------------------------------------------------------------------
// Return a const reference to this Morpher's list of morphed Partials.
//
const PartialList &
Morpher::partials( void ) const
{
return _partials;
}
// -- helpers: morphed parameter computation --
// ---------------------------------------------------------------------------
// morph_aux
// ---------------------------------------------------------------------------
// Helper function that performs the morph between corresponding pairs
// of Partials identified in a PartialCorrespondence. Called by the
// morph() implementation accepting two sequences of Partials.
//
// PartialCorrespondence represents a map from non-zero Partial
// labels to pairs of Partials (MorphingPair) that should be morphed
// into a single Partial that is assigned that label.
//
void Morpher::morph_aux( PartialCorrespondence & correspondence )
{
PartialCorrespondence::const_iterator it;
for ( it = correspondence.begin(); it != correspondence.end(); ++it )
{
Partial::label_type label = it->first;
MorphingPair match = it->second;
Partial & src = match.src;
Partial & tgt = match.tgt;
// sanity check:
// one of those Partials must have some Breakpoints
Assert( src.numBreakpoints() != 0 || tgt.numBreakpoints() != 0 );
debugger << "morphing " << ( ( 0 < src.numBreakpoints() )?( 1 ):( 0 ) )
<< " and " << ( ( 0 < tgt.numBreakpoints() )?( 1 ):( 0 ) )
<< " partials with label " << label << endl;
// &^) HEY LOOKIE HERE!!!!!!!!!!!!!
// ensure that Partials begin and end at zero
// amplitude to solve the problem of Nulls
// getting left out of morphed Partials leading to
// erroneous non-zero amplitude segments:
if ( src.numBreakpoints() != 0 )
{
if ( src.first().amplitude() != 0.0 && src.startTime() > _minBreakpointGapSec )
{
double t = src.startTime() - _minBreakpointGapSec;
Breakpoint null = src.parametersAt( t );
src.insert( t, null );
}
if ( src.last().amplitude() != 0.0 )
{
double t = src.endTime() + _minBreakpointGapSec;
Breakpoint null = src.parametersAt( t );
src.insert( t, null );
}
}
if ( tgt.numBreakpoints() != 0 )
{
if ( tgt.first().amplitude() != 0.0 && tgt.startTime() > _minBreakpointGapSec )
{
double t = tgt.startTime() - _minBreakpointGapSec;
Breakpoint null = tgt.parametersAt( t );
tgt.insert( t, null );
}
if ( tgt.last().amplitude() != 0.0 )
{
double t = tgt.endTime() + _minBreakpointGapSec;
Breakpoint null = tgt.parametersAt( t );
tgt.insert( t, null );
}
}
// &^) HEY LOOKIE HERE!!!!!!!!!!!!!
// the question is: after sticking nulls on the ends,
// should be strip nulls OFF the ends of the morphed
// partial? If so, how many? (ans to second is one,
// cannot have both nulls appear at end of morphed,
// because of min gap). If we unconditionally add
// nulls to ends (regardless of starting and ending
// amps), then we can (I think) be sure that taking
// off one null from each end leaves the Partial in
// an unmolested state.... maybe. No, its possible that
// the morphing function would skip over both artificial
// nulls, so we cannot be sure. Hmmmmm....
// For now, just leave the nulls on the ends,
// the are relatively harmless.
//
// Actually, a (klugey) solution is to remember the times
// of those artificial nulls, and then see if the
// Partial begins or ends at one of those times.
// No, cannot guarantee that one Partial doesn't
// have a null at the time we put an artificial null
// in the other one. Hmmmmm.....
// perform the morph between the two Partials,
// save the result if it has any Breakpoints
// (it may not depending on the morphing functions):
Partial newp = morphPartials( src, tgt, label );
if ( partial_is_nonnull( newp ) )
{
_partials.push_back( newp );
}
}
}
// ---------------------------------------------------------------------------
// adjustFrequency
// ---------------------------------------------------------------------------
// Adjust frequency of low-amplitude Breakpoints to be harmonics of the
// reference Partial, if one has been specified.
//
// Leave the phase alone, because I don't know what we can do with it.
//
static void adjustFrequency( Breakpoint & bp, const Partial & ref,
Partial::label_type harmonicNum,
double thresholdDb,
double time )
{
if ( ref.numBreakpoints() != 0 )
{
// compute absolute magnitude thresholds:
static const double FadeRangeDB = 10;
const double BeginFade = std::pow( 10., 0.05 * (thresholdDb+FadeRangeDB) );
if ( bp.amplitude() < BeginFade )
{
const double Threshold = std::pow( 10., 0.05 * thresholdDb );
const double OneOverFadeSpan = 1. / ( BeginFade - Threshold );
double fscale = (double)harmonicNum / ref.label();
double alpha = std::min( ( BeginFade - bp.amplitude() ) * OneOverFadeSpan, 1. );
double fRef = ref.frequencyAt( time );
bp.setFrequency( ( alpha * ( fRef * fscale ) ) +
( (1 - alpha) * bp.frequency() ) );
}
}
}
// ---------------------------------------------------------------------------
// partial_is_nonnull
// ---------------------------------------------------------------------------
// Helper function to examine a morphed Partial and determine whether
// it has any non-null Breakpoints. If not, there's no point in saving it.
//
static inline bool partial_is_nonnull( const Partial & p )
{
for ( Partial::const_iterator it = p.begin(); it != p.end(); ++it )
{
if ( it.breakpoint().amplitude() != 0.0 )
{
return true;
}
}
return false;
}
// ---------------------------------------------------------------------------
// Helper function for performing log-domain interpolation
// (originally was for amplitude only).
//
// alpha == 0 returns x, alpha == 1 returns y
//
// It is essential to add in a small offset, so that
// occasional zero amplitudes do not introduce artifacts
// (if amp is zero, then even if alpha is very small
// the effect is to multiply by zero, because 0^x = 0,
// or note that log(0) is -infinity).
//
// This shaping parameter affects the shape of the morph
// curve only when it is of the same order of magnitude as
// one of the sources (x or y) and the other is much larger.
//
// When shape is very small, the curve representing the
// morphed amplitude is very steep, such that there is a
// huge difference between zero amplitude and very small
// amplitude, and this causes audible artifacts. So instead
// use a larger value that shapes the curve more nicely.
// Just have to subtract this value from the morphed
// amplitude to avoid raising the noise floor a whole lot.
//
static inline double
interpolateLog( double x, double y, double alpha, double shape )
{
using std::pow;
double s = x + shape;
double t = y + shape;
double v = ( s * pow( t / s, alpha ) ) - shape;
return v;
}
// ---------------------------------------------------------------------------
// Helper function for performing linear interpolation
// (used to be the only kind we supported).
//
// alpha == 0 returns x, alpha == 1 returns y
//
static inline double
interpolateLinear( double x, double y, double alpha )
{
double v = (x * (1-alpha)) + (y * alpha);
return v;
}
// ---------------------------------------------------------------------------
// Helper function for computing individual morphed amplitude values.
//
inline double
Morpher::interpolateAmplitude( double srcAmp, double tgtAmp, double alpha ) const
{
double morphedAmp = 0;
if ( _doLogAmpMorphing )
{
// if both are small, just return 0
// HEY, is this really what we want?
static const double Epsilon = 1E-12;
if ( ( srcAmp > Epsilon ) || ( tgtAmp > Epsilon ) )
{
morphedAmp = interpolateLog( srcAmp, tgtAmp, alpha, _logMorphShape );
}
}
else
{
morphedAmp = interpolateLinear( srcAmp, tgtAmp, alpha );
}
// Partial amplitudes should never be negative
double res = std::max( 0.0, morphedAmp );
return res;
}
// ---------------------------------------------------------------------------
// Helper function for computing individual morphed bandwidth values.
//
inline double
Morpher::interpolateBandwidth( double srcBw, double tgtBw, double alpha ) const
{
double morphedBw = 0;
if ( _doLogAmpMorphing )
{
// if both are small, just return 0
// HEY, is this really what we want?
static const double Epsilon = 1E-12;
if ( ( srcBw > Epsilon ) || ( tgtBw > Epsilon ) )
{
morphedBw = interpolateLog( srcBw, tgtBw, alpha, _logMorphShape );
}
}
else
{
morphedBw = interpolateLinear( srcBw, tgtBw, alpha );
}
// Partial bandwidths should never be negative
double res = std::max( 0.0, morphedBw );
return res;
}
// ---------------------------------------------------------------------------
// Helper function for computing individual morphed frequency values.
//
inline double
Morpher::interpolateFrequency( double srcFreq, double tgtFreq, double alpha ) const
{
double morphedFreq = 1;
if ( _doLogFreqMorphing )
{
// guard against the extremely unlikely possibility that
// one of the frequencies is zero
double shape = 0;
if ( 0 == srcFreq || 0 == tgtFreq )
{
shape = Morpher::DefaultAmpShape;
}
morphedFreq = interpolateLog( srcFreq, tgtFreq, alpha, shape );
}
else
{
morphedFreq = interpolateLinear( srcFreq, tgtFreq, alpha );
}
return morphedFreq;
}
// ---------------------------------------------------------------------------
// Helper function for computing individual morphed phase values.
//
inline double
Morpher::interpolatePhase( double srcphase, double tgtphase, double alpha ) const
{
// Interpolate raw absolute phase values. If the interpolated
// phase matters at all (near the morphing function boudaries 0
// and 1) then that will give a good target phase value, and the
// frequency will be adjusted to match the phase. Otherwise,
// the phase will just be recomputed to match the interpolated
// frequency.
//
// Wrap the computed phase onto an appropriate range.
// wrap the phases so that they are as similar as possible,
// so that phase interpolation is shift-invariant.
while ( ( srcphase - tgtphase ) > Pi )
{
srcphase -= 2 * Pi;
}
while ( ( tgtphase - srcphase ) > Pi )
{
srcphase += 2 * Pi;
}
double morphedPhase = interpolateLinear( srcphase, tgtphase, alpha );
return std::fmod( morphedPhase, 2 * Pi );
}
// ---------------------------------------------------------------------------
// Helper function for interpolating Breakpoint parameters
//
inline Breakpoint
Morpher::interpolateParameters( const Breakpoint & srcBkpt, const Breakpoint & tgtBkpt,
double fweight, double aweight, double bweight ) const
{
Breakpoint morphed;
// interpolate frequencies:
morphed.setFrequency(
interpolateFrequency( srcBkpt.frequency(), tgtBkpt.frequency(),
fweight ) );
// interpolate LOG amplitudes:
morphed.setAmplitude(
interpolateAmplitude( srcBkpt.amplitude(), tgtBkpt.amplitude(),
aweight ) );
// interpolate bandwidth:
morphed.setBandwidth(
interpolateBandwidth( srcBkpt.bandwidth(), tgtBkpt.bandwidth(),
bweight ) );
// interpolate phase:
morphed.setPhase(
interpolatePhase( srcBkpt.phase(), tgtBkpt.phase(), fweight ) );
return morphed;
}
// ---------------------------------------------------------------------------
// appendMorphedSrc
// ---------------------------------------------------------------------------
//! Compute morphed parameter values at the specified time, using
//! the source Breakpoint (assumed to correspond exactly to the
//! specified time) and the target Partial (whose parameters are
//! examined at the specified time). Append the morphed Breakpoint
//! to newp only if the source should contribute to the morph at
//! the specified time.
//!
//! If the target Partial is a dummy Partial (no Breakpoints), fade the
//! source instead of morphing.
//!
//! \param srcBkpt is the Breakpoint corresponding to a morph function
//! value of 0.
//! \param tgtPartial is the Partial corresponding to a morph function
//! value of 1, evaluated at the specified time.
//! \param time is the time corresponding to srcBkpt (used
//! to evaluate the morphing functions and tgtPartial).
//! \param newp is the morphed Partial under construction, the morphed
//! Breakpoint is added to this Partial.
//
void
Morpher::appendMorphedSrc( Breakpoint srcBkpt, const Partial & tgtPartial,
double time, Partial & newp )
{
double fweight = _freqFunction->valueAt( time );
double aweight = _ampFunction->valueAt( time );
double bweight = _bwFunction->valueAt( time );
// Need to insert a null (0 amplitude) Breakpoint
// if src and tgt are 0 amplitude but the morphed
// Partial is not. In rare cases, it is possible
// to miss a needed null if we don't check for it
// explicitly.
bool needNull = ( newp.numBreakpoints() != 0 ) &&
( newp.last().amplitude() != 0 ) &&
( srcBkpt.amplitude() == 0) &&
( tgtPartial.numBreakpoints() != 0 ) &&
( tgtPartial.amplitudeAt( time ) == 0 );
// Don't insert Breakpoints at src times if all
// morph functions equal 1 (or > MaxMorphParam),
// and a null is not needed.
const double MaxMorphParam = .9;
if ( fweight < MaxMorphParam ||
aweight < MaxMorphParam ||
bweight < MaxMorphParam ||
needNull )
{
// adjust source Breakpoint frequencies according to the reference
// Partial (if a reference has been specified):
adjustFrequency( srcBkpt, _srcRefPartial, newp.label(), _freqFixThresholdDb, time );
if ( 0 == tgtPartial.numBreakpoints() )
{
// no corresponding target Partial exists:
if ( 0 == _tgtRefPartial.numBreakpoints() )
{
// no reference Partial specified for tgt,
// fade src instead:
newp.insert( time, fadeSrcBreakpoint( srcBkpt, time ) );
}
else
{
// reference Partial has been provided for tgt,
// use it to construct a fake Breakpoint to morph
// with the src:
Breakpoint tgtBkpt = _tgtRefPartial.parametersAt( time );
double fscale = (double) newp.label() / _tgtRefPartial.label();
tgtBkpt.setFrequency( fscale * tgtBkpt.frequency() );
tgtBkpt.setPhase( fscale * tgtBkpt.phase() );
tgtBkpt.setAmplitude( 0 );
tgtBkpt.setBandwidth( 0 );
// compute interpolated Breakpoint parameters:
newp.insert( time, interpolateParameters( srcBkpt, tgtBkpt, fweight,
aweight, bweight ) );
}
}
else
{
Breakpoint tgtBkpt = tgtPartial.parametersAt( time );
// adjust target Breakpoint frequencies according to the reference
// Partial (if a reference has been specified):
adjustFrequency( tgtBkpt, _tgtRefPartial, newp.label(), _freqFixThresholdDb, time );
// compute interpolated Breakpoint parameters:
Breakpoint morphed = interpolateParameters( srcBkpt, tgtBkpt, fweight,
aweight, bweight );
newp.insert( time, morphed );
}
}
}
// ---------------------------------------------------------------------------
// appendMorphedTgt
// ---------------------------------------------------------------------------
//! Compute morphed parameter values at the specified time, using
//! the target Breakpoint (assumed to correspond exactly to the
//! specified time) and the source Partial (whose parameters are
//! examined at the specified time). Append the morphed Breakpoint
//! to newp only if the target should contribute to the morph at
//! the specified time.
//!
//! If the source Partial is a dummy Partial (no Breakpoints), fade the
//! target instead of morphing.
//!
//! \param tgtBkpt is the Breakpoint corresponding to a morph function
//! value of 1.
//! \param srcPartial is the Partial corresponding to a morph function
//! value of 0, evaluated at the specified time.
//! \param time is the time corresponding to srcBkpt (used
//! to evaluate the morphing functions and srcPartial).
//! \param newp is the morphed Partial under construction, the morphed
//! Breakpoint is added to this Partial.
//
void
Morpher::appendMorphedTgt( Breakpoint tgtBkpt, const Partial & srcPartial,
double time, Partial & newp )
{
double fweight = _freqFunction->valueAt( time );
double aweight = _ampFunction->valueAt( time );
double bweight = _bwFunction->valueAt( time );
// Need to insert a null (0 amplitude) Breakpoint
// if src and tgt are 0 amplitude but the morphed
// Partial is not. In rare cases, it is possible
// to miss a needed null if we don't check for it
// explicitly.
bool needNull = ( newp.numBreakpoints() != 0 ) &&
( newp.last().amplitude() != 0 ) &&
( tgtBkpt.amplitude() == 0) &&
( srcPartial.numBreakpoints() != 0 ) &&
( srcPartial.amplitudeAt( time ) == 0 );
// Don't insert Breakpoints at src times if all
// morph functions equal 0 (or < MinMorphParam),
// and a null is not needed.
const double MinMorphParam = .1;
if ( fweight > MinMorphParam ||
aweight > MinMorphParam ||
bweight > MinMorphParam ||
needNull )
{
// adjust target Breakpoint frequencies according to the reference
// Partial (if a reference has been specified):
adjustFrequency( tgtBkpt, _tgtRefPartial, newp.label(), _freqFixThresholdDb, time );
if ( 0 == srcPartial.numBreakpoints() )
{
// no corresponding source Partial exists:
if ( 0 == _srcRefPartial.numBreakpoints() )
{
// no reference Partial specified for src,
// fade tgt instead:
newp.insert( time, fadeTgtBreakpoint( tgtBkpt, time ) );
}
else
{
// reference Partial has been provided for src,
// use it to construct a fake Breakpoint to morph
// with the tgt:
Breakpoint srcBkpt = _srcRefPartial.parametersAt( time );
double fscale = (double) newp.label() / _srcRefPartial.label();
srcBkpt.setFrequency( fscale * srcBkpt.frequency() );
srcBkpt.setPhase( fscale * srcBkpt.phase() );
srcBkpt.setAmplitude( 0 );
srcBkpt.setBandwidth( 0 );
// compute interpolated Breakpoint parameters:
newp.insert( time, interpolateParameters( srcBkpt, tgtBkpt, fweight,
aweight, bweight ) );
}
}
else
{
Breakpoint srcBkpt = srcPartial.parametersAt( time );
// adjust source Breakpoint frequencies according to the reference
// Partial (if a reference has been specified):
adjustFrequency( srcBkpt, _srcRefPartial, newp.label(), _freqFixThresholdDb, time );
// compute interpolated Breakpoint parameters:
Breakpoint morphed = interpolateParameters( srcBkpt, tgtBkpt, fweight,
aweight, bweight );
newp.insert( time, morphed );
}
}
}
} // end of namespace Loris
|