summaryrefslogtreecommitdiff
path: root/src/loris/Fundamental.C
blob: cddb226906458cfc64b27edbc08b7e5518357ecb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
/*
 * This is the Loris C++ Class Library, implementing analysis, 
 * manipulation, and synthesis of digitized sounds using the Reassigned 
 * Bandwidth-Enhanced Additive Sound Model.
 *
 * Loris is Copyright (c) 1999-2010 by Kelly Fitz and Lippold Haken
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY, without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 *
 *
 * Fundamental.C
 *
 * Definition of classes for computing an estimate of time-varying
 * fundamental frequency from either a sequence of samples or a
 * collection of Partials using a frequency domain maximum likelihood 
 * algorithm adapted from Quatieri's speech signal processing textbook. 
 *
 * Kelly Fitz, 25 March 2008
 * loris@cerlsoundgroup.org
 *
 * http://www.cerlsoundgroup.org/Loris/
 *
 */

#if HAVE_CONFIG_H
	#include "config.h"
#endif

#include "Fundamental.h"

#include "LorisExceptions.h"
#include "KaiserWindow.h"
#include "LinearEnvelope.h"
#include "Notifier.h"
#include "PartialUtils.h"
#include "ReassignedSpectrum.h"
#include "SpectralPeakSelector.h"

#include "F0Estimate.h" 

#include <algorithm>
#include <cmath>
#include <vector>

using namespace std;

#if defined(HAVE_M_PI) && (HAVE_M_PI)
	const double Pi = M_PI;
#else
	const double Pi = 3.14159265358979324;
#endif

//	begin namespace
namespace Loris {



#define VERIFY_ARG(func, test)											\
	do {																\
		if (!(test)) 													\
			Throw( Loris::InvalidArgument, #func ": " #test  );			\
	} while (false)


// ---------------------------------------------------------------------------
// ---------------------------------------------------------------------------
//  FundamentalEstimator members
// ---------------------------------------------------------------------------
// ---------------------------------------------------------------------------


//  -- lifecycle --

// ---------------------------------------------------------------------------
//  constructor (protected)
// ---------------------------------------------------------------------------
//! Construct a new estimator with specified precision and
//! other parameters given default values.
//!
//! The specified precision is used to terminate the iterative
//! estimation procedure. 
//!
//! \param precisionHz is the precision in Hz with which the 
//! fundamental estimates will be made.

FundamentalEstimator::FundamentalEstimator( double precisionHz ) :
    m_precision( precisionHz ),
    m_ampFloor( DefaultAmpFloor ),
    m_ampRange( DefaultAmpRange ),
    m_freqCeiling( DefaultFreqCeiling )
{
	VERIFY_ARG( FundamentalEstimator, precisionHz > 0 );
}

// ---------------------------------------------------------------------------
//  destructor
// ---------------------------------------------------------------------------
    
FundamentalEstimator::~FundamentalEstimator( void )
{
}

//  -- spectral analysis parameter access --

// ---------------------------------------------------------------------------
//	ampFloor
// ---------------------------------------------------------------------------
//! Return the absolute amplitude threshold in (negative) dB, 
//! below which spectral peaks will not be considered in the 
//! estimation of the fundamental (default is 30 dB).            
double 
FundamentalEstimator::ampFloor( void ) const
{ 
    return m_ampFloor; 
}

// ---------------------------------------------------------------------------
//	ampRange
// ---------------------------------------------------------------------------
//!	Return the amplitude range in dB, 
//! relative to strongest peak in a frame, floating
//! amplitude threshold below which spectral
//! peaks will not be considered in the estimation of 
//! the fundamental (default is 30 dB).			
//
double 
FundamentalEstimator::ampRange( void ) const 
{ 
    return m_ampRange; 
}

// ---------------------------------------------------------------------------
//	freqCeiling
// ---------------------------------------------------------------------------
//!	Return the frequency ceiling in Hz, the
//! frequency threshold above which spectral
//! peaks will not be considered in the estimation of 
//! the fundamental (default is 10 kHz).			
//
double 
FundamentalEstimator::freqCeiling( void ) const 
{ 
    return m_freqCeiling; 
}

// ---------------------------------------------------------------------------
//	precision
// ---------------------------------------------------------------------------
//!	Return the precision of the estimate in Hz, the
//! fundamental frequency will be estimated to 
//! within this range (default is 0.1 Hz).
//
double 
FundamentalEstimator::precision( void ) const 
{ 
    return m_precision; 
}

                       
//  -- spectral analysis parameter mutation --

// ---------------------------------------------------------------------------
//	setAmpFloor
// ---------------------------------------------------------------------------
//! Set the absolute amplitude threshold in (negative) dB, 
//! below which spectral peaks will not be considered in the 
//! estimation of the fundamental (default is 30 dB).            
//! 
//! \param x is the new value of this parameter.            
void 
FundamentalEstimator::setAmpFloor( double x )
{ 
	VERIFY_ARG( setAmpFloor, x < 0 );
    m_ampFloor = x; 
}

// ---------------------------------------------------------------------------
//	setAmpRange
// ---------------------------------------------------------------------------
//!	Set the amplitude range in dB, 
//! relative to strongest peak in a frame, floating
//! amplitude threshold (negative) below which spectral
//! peaks will not be considered in the estimation of 
//! the fundamental (default is 30 dB).	
//!	
//!	\param x is the new value of this parameter. 				
//
void 
FundamentalEstimator::setAmpRange( double x ) 
{ 
	VERIFY_ARG( setAmpRange, x > 0 );
    m_ampRange = x; 
}

// ---------------------------------------------------------------------------
//	setFreqCeiling
// ---------------------------------------------------------------------------
//!	Set the frequency ceiling in Hz, the
//! frequency threshold above which spectral
//! peaks will not be considered in the estimation of 
//! the fundamental (default is 10 kHz). Must be
//! greater than the lower bound.
//!	
//!	\param x is the new value of this parameter. 				
//
void 
FundamentalEstimator::setFreqCeiling( double x ) 
{ 
    m_freqCeiling = x; 
}

// ---------------------------------------------------------------------------
//	setPrecision
// ---------------------------------------------------------------------------
//!	Set the precision of the estimate in Hz, the
//! fundamental frequency will be estimated to 
//! within this range (default is 0.1 Hz).
//!	
//!	\param x is the new value of this parameter. 				
//
void 
FundamentalEstimator::setPrecision( double x ) 
{ 
	VERIFY_ARG( setPrecision, x > 0 );
    m_precision = x; 
}


// ---------------------------------------------------------------------------
// ---------------------------------------------------------------------------
//  FundamentalFromSamples members
// ---------------------------------------------------------------------------
// ---------------------------------------------------------------------------

//  -- lifecycle --

// ---------------------------------------------------------------------------
//  constructor
// ---------------------------------------------------------------------------
//! Construct a new estimator configured with the given  
//! analysis window width (main lobe, zero-to-zero). All other 
//! spectrum analysis parameters are computed from the specified 
//! window width. 
//!
//! The specified precision is used to terminate the iterative
//! estimation procedure. If unspecified, the default value,
//! DefaultPrecisionOver100 * 100 is used. 
//! 
//! \param windowWidthHz is the main lobe width of the Kaiser
//! analysis window in Hz.
//!
//! \param precisionHz is the precision in Hz with which the 
//! fundamental estimates will be made.

FundamentalFromSamples::FundamentalFromSamples( double winWidthHz, 
                                                double precisionHz ) :
    m_cacheSampleRate( 0 ),
    m_windowWidth( winWidthHz ), 
    FundamentalEstimator( precisionHz )
{
	VERIFY_ARG( FundamentalFromSamples, winWidthHz > 0 );
}

// ---------------------------------------------------------------------------
//  destructor
// ---------------------------------------------------------------------------
    
FundamentalFromSamples::~FundamentalFromSamples( void )
{
}

//  -- fundamental frequency estimation --



// ---------------------------------------------------------------------------
//  buildEnvelope
// ---------------------------------------------------------------------------
//! Construct a linear envelope from fundamental frequency 
//! estimates taken at the specified interval in seconds.
//! 

LinearEnvelope 
FundamentalFromSamples::buildEnvelope( const double * sampsBeg, 
                                       const double * sampsEnd, 
                                       double sampleRate, 
                                       double tbeg, double tend, 
                                       double interval,
                                       double lowerFreqBound, double upperFreqBound, 
                                       double confidenceThreshold )
{
    //  sanity check
    if ( tbeg > tend )
    {
        std::swap( tbeg, tend );
    }

    LinearEnvelope env;
    
    std::vector< double > amplitudes, frequencies;

    double time = tbeg;
    while ( time < tend )
    {
        collectFreqsAndAmps( sampsBeg, sampsEnd-sampsBeg, sampleRate,
                             frequencies, amplitudes, time );
        if ( ! amplitudes.empty() )
        {
            F0Estimate est( amplitudes, frequencies, lowerFreqBound, upperFreqBound, 
                            m_precision );

            if ( est.confidence() >= confidenceThreshold )
            {   
                env.insert( time, est.frequency() );
            }
        }
        
        time += interval;
    }
    
    return env;            
}                                       
                             
                             
// ---------------------------------------------------------------------------
//  estimateAt
// ---------------------------------------------------------------------------
//! Return an estimate of the fundamental frequency computed 
//! at the specified time. 

FundamentalFromSamples::value_type 
FundamentalFromSamples::estimateAt( const double * sampsBeg, 
                                    const double * sampsEnd, 
                                    double sampleRate, 
                                    double time,
                                    double lowerFreqBound, double upperFreqBound )
{
    std::vector< double > amplitudes, frequencies;
    
    collectFreqsAndAmps( sampsBeg, sampsEnd-sampsBeg, sampleRate,
                         frequencies, amplitudes, time );
                         
    F0Estimate est( amplitudes, frequencies, lowerFreqBound, upperFreqBound, m_precision );

    return est;
}                                    

//  -- spectral analysis parameter access/mutation --

// ---------------------------------------------------------------------------
//  windowWidth
// ---------------------------------------------------------------------------
//! Return the frequency-domain main lobe width (in Hz) (measured between 
//! zero-crossings) of the analysis window used in spectral
//! analysis.               
double FundamentalFromSamples::windowWidth( void ) const
{
    return m_windowWidth;
}

// ---------------------------------------------------------------------------
//  setWindowWidth
// ---------------------------------------------------------------------------
//! Set the frequency-domain main lobe width (in Hz) (measured between 
//! zero-crossings) of the analysis window used in spectral
//! analysis.   
//! 
//! \param x is the new value of this parameter.            
void FundamentalFromSamples::setWindowWidth( double x )
{
	VERIFY_ARG( setWindowWidth, x > 0 );
    m_windowWidth = x; 
}



//  -- private auxiliary functions --

// ---------------------------------------------------------------------------
//  buildSpectrumAnalyzer
// ---------------------------------------------------------------------------
//! Construct the ReassignedSpectrum that will be used to perform
//! spectral analysis from which peak frequencies and amplitudes 
//! will be drawn. This construction is performed in a lazy fashion,
//! and needs to be done again when certain of the parameters change.
//!
//! The spectrum analyzer cannot be constructed without knowledge of
//! the sample rate, specified in Hz, which is needed to determine the
//! parameters of the analysis window. (The sample rate is cached in
//! this class in order that it be possible to determine whether the
//! spectrum analyzer can be reused from one estimate to another.)
//
void 
FundamentalFromSamples::buildSpectrumAnalyzer( double srate )
{
 	//	configure the reassigned spectral analyzer, 
    //	always use odd-length windows:
    const double sidelobeLevel = - m_ampFloor; // amp floor is negative
    double winshape = KaiserWindow::computeShape( sidelobeLevel );
    long winlen = KaiserWindow::computeLength( m_windowWidth / srate, winshape );    
    if ( 1 != (winlen % 2) ) 
    {
        ++winlen;
    }
    
    std::vector< double > window( winlen );
    KaiserWindow::buildWindow( window, winshape );
    
    std::vector< double > windowDeriv( winlen );
    KaiserWindow::buildTimeDerivativeWindow( windowDeriv, winshape );
   
    m_spectrum.reset( new ReassignedSpectrum( window, windowDeriv ) );    
    
    //  remember the sample rate used to build this spectrum
    //  analyzer:
    m_cacheSampleRate = srate;
}

// ---------------------------------------------------------------------------
//	sort_peaks_greater_amplitude
// ---------------------------------------------------------------------------
//	predicate used for sorting peaks in order of decreasing amplitude:
static bool sort_peaks_greater_amplitude( const SpectralPeak & lhs, 
										  const SpectralPeak & rhs )
{ 
	return lhs.amplitude() > rhs.amplitude(); 
}

// ---------------------------------------------------------------------------
//  collectFreqsAndAmps
// ---------------------------------------------------------------------------
//! Perform spectral analysis on a sequence of samples, using
//! an analysis window centered at the specified time in seconds.
//! Collect the frequencies and amplitudes of the peaks and return
//! them in the vectors provided. 
//
   
void 
FundamentalFromSamples::collectFreqsAndAmps( const double * samps,
                                             unsigned long nsamps,
                                             double sampleRate,
                                             std::vector< double > & frequencies, 
                                             std::vector< double > & amplitudes,
                                             double time )
{
    amplitudes.clear();
    frequencies.clear();

    //  build the spectrum analyzer if necessary:
    if ( m_cacheSampleRate != sampleRate ||
         0 == m_spectrum.get() )
    {
        buildSpectrumAnalyzer( sampleRate );
    }
    
    
    //	configure the peak selection and partial formation policies:    
    unsigned long winlen = m_spectrum->window().size();
    const double maxTimeCorrection = 0.25 * winlen / sampleRate;   //  one-quarter the window width
    SpectralPeakSelector selector( sampleRate, maxTimeCorrection );  
 	
    
     
    //	compute reassigned spectrum:
    //  sampsBegin is the position of the first sample to be transformed,
    //	sampsEnd is the position after the last sample to be transformed.
    //	(these computations work for odd length windows only)
    unsigned long winMiddle = (unsigned long)( sampleRate * time );
    unsigned long sampsBegin = std::max( long(winMiddle) - long(winlen / 2), 0L );
    unsigned long sampsEnd = std::min( winMiddle + (winlen / 2) + 1, nsamps );
    
    if ( winMiddle < sampsEnd )
    {
        m_spectrum->transform( samps + sampsBegin, samps + winMiddle, samps + sampsEnd );
                     
        //	extract peaks from the spectrum, no fading:
        Peaks peaks = selector.selectPeaks( *m_spectrum ); 
        
        if ( ! peaks.empty() )
        {
            //  sort the peaks in order of decreasing amplitude
            //
            //  (HEY is there any reason to do this, other than to find the largest?)
            //std::sort( peaks.begin(), peaks.end(), sort_peaks_greater_amplitude );
            Peaks::iterator maxpos = std::max_element( peaks.begin(), peaks.end(), sort_peaks_greater_amplitude );
            
            //  determine the floating amplitude threshold
            const double thresh = 
                std::max( std::pow( 10.0, - 0.05 * - m_ampFloor ), 
                          std::pow( 10.0, - 0.05 * m_ampRange ) * maxpos->amplitude() );
                        
            //  collect amplitudes and frequencies and try to 
            //  estimate the fundamental
            for ( Peaks::const_iterator spkpos = peaks.begin(); spkpos != peaks.end(); ++spkpos )
            {
                if ( spkpos->amplitude() > thresh &&
                     spkpos->frequency() < m_freqCeiling )
                {
                    amplitudes.push_back( spkpos->amplitude() );
                    frequencies.push_back( spkpos->frequency() );
                }
            }
        }
    }
}

// ---------------------------------------------------------------------------
// ---------------------------------------------------------------------------
//  FundamentalFromPartials members
// ---------------------------------------------------------------------------
// ---------------------------------------------------------------------------

// ---------------------------------------------------------------------------
//  constructor
// ---------------------------------------------------------------------------
//! Construct a new estimator configured with the given precision.
//! The specified precision is used to terminate the iterative
//! estimation procedure. If unspecified, the default value,
//! DefaultPrecisionOver100 * 100 is used. 
//!
//! \param precisionHz is the precision in Hz with which the 
//! fundamental estimates will be made.

FundamentalFromPartials::FundamentalFromPartials( double precisionHz ) :
    FundamentalEstimator( precisionHz )
{
}

// ---------------------------------------------------------------------------
//  copy constructor
// ---------------------------------------------------------------------------
//! Construct a copy of an estimator. Nothing much to do since this class
//! has no data members.
//

FundamentalFromPartials::FundamentalFromPartials( const FundamentalFromPartials & rhs ) :
    FundamentalEstimator( rhs )
{
}

// ---------------------------------------------------------------------------
//  destructor
// ---------------------------------------------------------------------------
    
FundamentalFromPartials::~FundamentalFromPartials( void )
{
}

// ---------------------------------------------------------------------------
//  assignment
// ---------------------------------------------------------------------------
//! Pass the assignment opertion up to the base class.
//

FundamentalFromPartials &
FundamentalFromPartials::operator=( const FundamentalFromPartials & rhs )
{
    FundamentalEstimator::operator=( rhs );
    
    return *this;
}

//  -- fundamental frequency estimation --

// ---------------------------------------------------------------------------
//  buildEnvelope
// ---------------------------------------------------------------------------
//! Construct a linear envelope from fundamental frequency 
//! estimates taken at the specified interval in seconds.
//! 

LinearEnvelope 
FundamentalFromPartials::buildEnvelope( PartialList::const_iterator begin_partials, 
                                        PartialList::const_iterator end_partials,
                                        double tbeg, double tend, 
                                        double interval,
                                        double lowerFreqBound, double upperFreqBound, 
                                        double confidenceThreshold )
{
    //  sanity check
    if ( tbeg > tend )
    {
        std::swap( tbeg, tend );
    }

    LinearEnvelope env;
    
    std::vector< double > amplitudes, frequencies;

    double time = tbeg;
    while ( time < tend )
    {
        collectFreqsAndAmps( begin_partials, end_partials, frequencies, amplitudes, time );
                  
        if (! amplitudes.empty() )
        {
            F0Estimate est( amplitudes, frequencies, lowerFreqBound, upperFreqBound, 
                            m_precision );
        
            if ( est.confidence() >= confidenceThreshold )
            {   
                env.insert( time, est.frequency() );
            }
        }
        
        time += interval;
    }
    
    return env;            
}                         

// ---------------------------------------------------------------------------
//  estimateAt
// ---------------------------------------------------------------------------
//! Return an estimate of the fundamental frequency computed 
//! at the specified time. 

FundamentalFromPartials::value_type 
FundamentalFromPartials::estimateAt( PartialList::const_iterator begin_partials, 
                                     PartialList::const_iterator end_partials,
                                     double time,
                                     double lowerFreqBound, double upperFreqBound )
{
    std::vector< double > amplitudes, frequencies;
    
    collectFreqsAndAmps( begin_partials, end_partials, frequencies, amplitudes, time );
                         
    F0Estimate est( amplitudes, frequencies, lowerFreqBound, upperFreqBound, m_precision );

    return est;
}  


//  -- private auxiliary functions --

// ---------------------------------------------------------------------------
//  collectFreqsAndAmps
// ---------------------------------------------------------------------------
//! Perform spectral analysis on a sequence of samples, using
//! an analysis window centered at the specified time in seconds.
//! Collect the frequencies and amplitudes of the peaks and return
//! them in the vectors provided. 
//
   
void 
FundamentalFromPartials::collectFreqsAndAmps( PartialList::const_iterator begin_partials, 
                                              PartialList::const_iterator end_partials,
                                              std::vector< double > & frequencies, 
                                              std::vector< double > & amplitudes,
                                              double time )
{
    amplitudes.clear();
    frequencies.clear();
    
    if ( begin_partials != end_partials )
    {            
        //  determine the absolute amplitude threshold 
        double thresh = std::pow( 10.0, - 0.05 * - m_ampFloor );
        
        double max_amp = 0;        
        for ( PartialList::const_iterator it = begin_partials; it != end_partials; ++it )
        {
            //  compute the sinusoidal amplitude (without bandwidth energy)
            double sine_amp = std::sqrt(1 - it->bandwidthAt( time )) * it->amplitudeAt( time );        
            double freq = it->frequencyAt( time );
            
            if ( sine_amp > thresh &&
                 freq < m_freqCeiling )
            {
                amplitudes.push_back( sine_amp );
                frequencies.push_back( freq );
            }
            
            max_amp = std::max( sine_amp, max_amp );                        
        }
        
        //  remove quietest ones - this isn't very efficient, 
        //  but it is much faster than making two passes (and 
        //  computing two sequences of sinusoidal amplitudes).
        thresh = std::pow( 10.0, - 0.05 * m_ampRange ) * max_amp;
        vector< double >::size_type N = amplitudes.size();
        vector< double >::size_type k = 0;
        while ( k < N )
        {
            if ( amplitudes[k] < thresh )
            {
                amplitudes.erase( amplitudes.begin() + k );
                frequencies.erase( frequencies.begin() + k );
                --N;
            }
            else
            {
                ++k;
            }
        }
    }
    
}

}   //  end of namespace Loris