summaryrefslogtreecommitdiff
path: root/src/loris/FourierTransform.C
blob: b67e6de09772185b5a5484d4dbceba7cb9586277 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
/*
 * This is the Loris C++ Class Library, implementing analysis, 
 * manipulation, and synthesis of digitized sounds using the Reassigned 
 * Bandwidth-Enhanced Additive Sound Model.
 *
 * Loris is Copyright (c) 1999-2010 by Kelly Fitz and Lippold Haken
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY, without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 *
 *
 * FourierTransform.C
 *
 * Implementation of class Loris::FourierTransform, providing a simplified
 * uniform interface to the FFTW library (www.fftw.org), version 2.1.3
 * or newer (including version 3), or to the General Purpose FFT package
 * by Takuya OOURA, http://momonga.t.u-tokyo.ac.jp/~ooura/fft.html if
 * FFTW is unavailable. 
 *
 * Kelly Fitz, 2 Jun 2006
 * loris@cerlsoundgroup.org
 *
 * http://www.cerlsoundgroup.org/Loris/
 *
 */

#if HAVE_CONFIG_H
	#include "config.h"
#endif

#include "FourierTransform.h"
#include "LorisExceptions.h"
#include "Notifier.h"

#include <cmath>
#include <complex>

#if defined(HAVE_M_PI) && (HAVE_M_PI)
	const double Pi = M_PI;
#else
	const double Pi = std::acos( -1.0 );
#endif

#if defined(HAVE_FFTW3_H) && HAVE_FFTW3_H
    #include <fftw3.h>
#elif defined(HAVE_FFTW_H) && HAVE_FFTW_H
    #include <fftw.h>
#endif

// ---------------------------------------------------------------------------
//	isPO2 - return true if N is a power of two
// ---------------------------------------------------------------------------
//  If out_expon is non-zero, return the exponent in that address.
//
static bool isPO2( unsigned int N, int * out_expon = 0 )
{
    unsigned int M = 1;
    int exp = 0;
    while ( M < N )
    {
        M *= 2;
        ++exp;
    }
    if ( 0 != out_expon && M == N )
    {
        *out_expon = exp;
    }
    return M == N;
}

// ===========================================================================
// No longer matters that fftw and this class use the same floating point
// data format. The insulating implementation class now does its job of
// really insulating clients completely from FFTW, by copying data between
// buffers of std::complex< double > and fftw_complex, rather than 
// relying on those two complex types to have the same memory layout.
// The overhead of copying is probably not significant, compared to 
// the expense of computing the transform. 
//
// about complex math functions for fftw_complex:
//
// These functions are all defined as templates in <complex>.
// Regrettably, they are all implemented using real() and 
// imag() _member_ functions of the template argument, T. 
// If they had instead been implemented in terms of the real()
// and imag() (template) free functions, then I could just specialize
// those two for the fftw complex data type, and the other template
// functions would work. Instead, I have to specialize _all_ of
// those functions that I want to use. I hope this was a learning 
// experience for someone... In the mean time, the alternative I 
// have is to take advantage of the fact that fftw_complex and 
// std::complex<double> have the same footprint, so I can just
// cast back and forth between the two types. Its icky, but it 
// works, and its a lot faster than converting, and more palatable
// than redefining all those operators.
//
// On the subject of brilliant designs, fftw_complex is defined as
// a typedef of an anonymous struct, as in typedef struct {...} fftw_complex,
// so I cannot forward-declare that type.
//
// In other good news, the planning structure got a slight name change
// in version 3, making it even more important to remove all traces of
// FFTW from the FourierTransform class definition.
//
// ===========================================================================

//	begin namespace
namespace Loris {

using std::complex;
using std::vector;

// --- private implementation class ---

// ---------------------------------------------------------------------------
//  FTimpl
//
// Insulating implementation class to insulate clients
// completely from everything about the interaction between
// Loris and FFTW. There is more copying of data between buffers,
// but this is not the expensive part of computing Fourier transforms
// and we don't have to do unsavory things that require std::complex
// and fftw_complex to have the same memory layout (we could even get
// by with single-precision floats in FFTW if necessary). Also got
// rid of lots of shared buffer stuff that just made the implementation
// lots more complicated than necessary. This one is simple, if not
// as memory efficient.
//

#if defined(HAVE_FFTW3_H) && HAVE_FFTW3_H

class FTimpl    //  FFTW version 3
{
private:

	fftw_plan plan;
	FourierTransform::size_type N;
	fftw_complex * ftIn;   
	fftw_complex * ftOut;

public:
   
	// Construct an implementation instance:
	// allocate an input buffer, and an output buffer
	// and make a plan.
	FTimpl( FourierTransform::size_type sz ) : 
	  plan( 0 ), N( sz ), ftIn( 0 ), ftOut( 0 ) 
	{      
		// allocate buffers:
		ftIn = (fftw_complex *)fftw_malloc( sizeof( fftw_complex ) * N );
		ftOut = (fftw_complex *)fftw_malloc( sizeof( fftw_complex ) * N );
		if ( 0 == ftIn || 0 == ftOut )
		{
			fftw_free( ftIn );
			fftw_free( ftOut );
			throw RuntimeError( "cannot allocate Fourier transform buffers" );
		}
	  
		//	create a plan:
		plan = fftw_plan_dft_1d( N, ftIn, ftOut, FFTW_FORWARD, FFTW_ESTIMATE );

		//	verify:
		if ( 0 == plan )
		{
			Throw( RuntimeError, "FourierTransform could not make a (fftw) plan." );
		}
	}
   
	// Destroy the implementation instance:
	// dump the plan.
	~FTimpl( void )
	{
		if ( 0 != plan )
		{
            fftw_destroy_plan( plan );
		}         
		
		fftw_free( ftIn );
		fftw_free( ftOut );
	}
	
	// Copy complex< double >'s from a buffer into ftIn, 
	// the buffer must be as long as ftIn.
	void loadInput( const complex< double > * bufPtr )
	{
		for ( FourierTransform::size_type k = 0; k < N; ++k )
		{
			ftIn[ k ][0] = bufPtr->real();  //  real part
			ftIn[ k ][1] = bufPtr->imag();  //  imaginary part
			++bufPtr;
		}
	}
   
	// Copy complex< double >'s from ftOut into a buffer,
	// which must be as long as ftOut.
	void copyOutput( complex< double > * bufPtr ) const
	{
		for ( FourierTransform::size_type k = 0; k < N; ++k )
		{
			*bufPtr = complex< double >( ftOut[ k ][0], ftOut[ k ][1] );
			++bufPtr;
		}
	}
    
    // Compute a forward transform.
    void forward( void )
    {
        fftw_execute( plan );
    }
    
}; // end of class FTimpl for FFTW version 3

#elif defined(HAVE_FFTW_H) && HAVE_FFTW_H

//	"die hook" for FFTW, which otherwise try to write to a
//	non-existent console.
static void fftw_die_Loris( const char * s )
{
	using namespace std; // exit might be hidden in there
	
	notifier << "The FFTW library used by Loris has encountered a fatal error: " << s << endl;
	exit(EXIT_FAILURE);
}

class FTimpl    //  FFTW version 2
{
private:

	fftw_plan plan;
	FourierTransform::size_type N;
	fftw_complex * ftIn;   
	fftw_complex * ftOut;
   
public:

	// Construct an implementation instance:
	// allocate an input buffer, and an output buffer
	// and make a plan.
	FTimpl( FourierTransform::size_type sz ) : 
	  plan( 0 ), N( sz ), ftIn( 0 ), ftOut( 0 ) 
	{      
		// allocate buffers:
		ftIn = (fftw_complex *)fftw_malloc( sizeof( fftw_complex ) * N );
		ftOut = (fftw_complex *)fftw_malloc( sizeof( fftw_complex ) * N );
		if ( 0 == ftIn || 0 == ftOut )
		{
			fftw_free( ftIn );
			fftw_free( ftOut );
			Throw( RuntimeError, "cannot allocate Fourier transform buffers" );
		}
	  
		//	create a plan:
		plan = fftw_create_plan_specific( N, FFTW_FORWARD, FFTW_ESTIMATE,
                                          ftIn, 1, ftOut, 1 );

		//	verify:
		if ( 0 == plan )
		{
			Throw( RuntimeError, "FourierTransform could not make a (fftw) plan." );
		}

        //	FFTW calls fprintf a lot, which may be a problem in
        //	non-console-enabled applications. Catch fftw_die()
        //	calls by routing the error message to our own Notifier
        //	and exiting, using the function defined above.
        //
        //	(version 2 only)
        fftw_die_hook = fftw_die_Loris;
	}
   
	// Destroy the implementation instance:
	// dump the plan.
	~FTimpl( void )
	{
		if ( 0 != plan )
		{
            fftw_destroy_plan( plan );
		}         
		
		fftw_free( ftIn );
		fftw_free( ftOut );
	}
	
	// Copy complex< double >'s from a buffer into ftIn, 
	// the buffer must be as long as ftIn.
	void loadInput( const complex< double > * bufPtr )
	{
		for ( FourierTransform::size_type k = 0; k < N; ++k )
		{
			c_re( ftIn[ k ] ) = bufPtr->real();
			c_im( ftIn[ k ] ) = bufPtr->imag();
			++bufPtr;
		}
	}
   
	// Copy complex< double >'s from ftOut into a buffer,
	// which must be as long as ftOut.
	void copyOutput( complex< double > * bufPtr ) const
	{
		for ( FourierTransform::size_type k = 0; k < N; ++k )
		{
			*bufPtr = complex< double >( c_re( ftOut[ k ] ), c_im( ftOut[ k ] ) );
			++bufPtr;
		}
	}
    
    // Compute a forward transform.
    void forward( void )
    {
        fftw_one( plan, ftIn, ftOut );	
    }
    
}; // end of class FTimpl for FFTW version 2

#else

#define SORRY_NO_FFTW  1

//  function prototype, definition in fftsg.c
/* extern "C" void cdft(int, int, double *, int *, double *); */

//  function prototype, definition below
static void slowDFT( double * in, double * out, int N );

//  Uses General Purpose FFT (Fast Fourier/Cosine/Sine Transform) Package
//  by Takuya OOURA, http://momonga.t.u-tokyo.ac.jp/~ooura/fft.html defined
//  in fftsg.c.
//
//  In the event that the size is not a power of two, uses a (very) slow
//  direct DFT computation, defined below. In this case, the workspace
//  array is not used, and the twiddle factor array is used to store the
//  transform result.

class FTimpl    //  platform-neutral stand-alone implementation
{
private:

	double * mTxInOut;      //	input/output buffer for in-place transform                                
	double * mTwiddle;      //	storage for twiddle factors
	int * mWorkspace;		//	workspace storage

	FourierTransform::size_type N;
    
    bool mIsPO2;
   
public:

	// Construct an implementation instance:
	// allocate buffers and workspace, and
	// initialize the twiddle factors.
	FTimpl( FourierTransform::size_type sz ) : 
	  mTxInOut( 0 ), mTwiddle( 0 ), mWorkspace( 0 ), N( sz ), mIsPO2( isPO2( sz ) )
	{      
        mTxInOut = new double[ 2*N ]; 	
            //	input/output buffer for in-place transform
            
        if ( mIsPO2 )
        {    
            mTwiddle = new double[ N/2 ]; 		
                //	storage for twiddle factors
                
            mWorkspace = new int[ 2*int( std::sqrt((double)N) + 0.5 ) ];		
                //	workspace 
                
            if ( 0 == mTxInOut || 0 == mTwiddle || 0 == mWorkspace )
            {
                delete [] mTxInOut;
                delete [] mTwiddle;
                delete [] mWorkspace;
                Throw( RuntimeError, "FourierTransform: could not initialize tranform" );
            }

            mWorkspace[0] = 0;  // first time only, triggers setup    
                                // no need to do it now, it will happen the 
                                // first time a transform is computed
            // cdft_double( 2*N, -1, mTxInOut, mWorkspace, mTwiddle );
        }
        else
        {
            mTwiddle = new double[ 2*N ]; 	
                //	use for result in slowDFT 
                
            if ( 0 == mTxInOut || 0 == mTwiddle )
            {
                delete [] mTxInOut;
                delete [] mTwiddle;
                Throw( RuntimeError, "FourierTransform: could not initialize tranform" );
            }
        }
	}
   
	// Destroy the implementation instance:
	~FTimpl( void )
	{
        delete [] mTxInOut;
        delete [] mTwiddle;
        delete [] mWorkspace;
	}
	
	// Copy complex< double >'s from a buffer into ftIn, 
	// the buffer must be as long as ftIn.
	void loadInput( const complex< double > * bufPtr )
	{
		for ( FourierTransform::size_type k = 0; k < N; ++k )
		{
			mTxInOut[ 2*k ] = bufPtr->real();
			mTxInOut[ 2*k+1 ] = bufPtr->imag();
			++bufPtr;
		}
	}
   
	//  Copy complex< double >'s from ftOut into a buffer,
	//  which must be as long as ftOut. Result might be
    //  stored in the twiddle factor array if this is not
    //  power of two length DFT.
	void copyOutput( complex< double > * bufPtr ) const
	{
        double * result = mTxInOut;
        if ( !mIsPO2 )
        {
            result = mTwiddle;
        }

		for ( FourierTransform::size_type k = 0; k < N; ++k )
		{
			*bufPtr = complex< double >( result[ 2*k ], result[ 2*k+1 ] );
			++bufPtr;
		}
	}
    
    // Compute a forward transform.
    void forward( void )
    {        
        if ( mIsPO2 )
        {
            /* cdft( 2*N, -1, mTxInOut, mWorkspace, mTwiddle ); */
            slowDFT( mTxInOut, mTwiddle, N );
        }
        else
        {
            slowDFT( mTxInOut, mTwiddle, N );
        }
    }
    
}; // end of class platform-neutral stand-alone FTimpl 

#endif

// --- FourierTransform members ---

// ---------------------------------------------------------------------------
//	FourierTransform constructor
// ---------------------------------------------------------------------------
//! Initialize a new FourierTransform of the specified size.
//!
//! \param  len is the length of the transform in samples (the
//!         number of samples in the transform)
//! \throw  RuntimeError if the necessary buffers cannot be 
//!         allocated, or there is an error configuring FFTW.
//
FourierTransform::FourierTransform( size_type len ) :
	_buffer( len ),
	_impl( new FTimpl( len ) )
{
	//	zero:
	std::fill( _buffer.begin(), _buffer.end(), 0. );
}

// ---------------------------------------------------------------------------
//	FourierTransform copy constructor
// ---------------------------------------------------------------------------
//! Initialize a new FourierTransform that is a copy of another,
//! having the same size and the same buffer contents.
//!
//! \param  rhs is the instance to copy
//! \throw  RuntimeError if the necessary buffers cannot be 
//!         allocated, or there is an error configuring FFTW.
//
FourierTransform::FourierTransform( const FourierTransform & rhs ) :
	_buffer( rhs._buffer ),
	_impl( new FTimpl( rhs._buffer.size() ) ) // not copied
{
}

// ---------------------------------------------------------------------------
//	FourierTransform destructor
// ---------------------------------------------------------------------------
//! Free the resources associated with this FourierTransform.
//
FourierTransform::~FourierTransform( void )
{	
   delete _impl;
}

// ---------------------------------------------------------------------------
//	FourierTransform assignment operator
// ---------------------------------------------------------------------------
//! Make this FourierTransform a copy of another, having
//! the same size and buffer contents.
//!
//! \param  rhs is the instance to copy
//! \return a refernce to this instance
//! \throw  RuntimeError if the necessary buffers cannot be 
//!         allocated, or there is an error configuring FFTW.
//
FourierTransform &
FourierTransform::operator=( const FourierTransform & rhs )
{
   if ( this != &rhs )
   {
      _buffer = rhs._buffer;
      
      // The implementation instance is not assigned, 
      // but a new one is created.
      delete _impl;
      _impl = 0;
      _impl = new FTimpl( _buffer.size() );
   }
   
   return *this;
}

// ---------------------------------------------------------------------------
//	size
// ---------------------------------------------------------------------------
//! Return the length of the transform (in samples).
//! 
//! \return the length of the transform in samples.
FourierTransform::size_type 
FourierTransform::size( void ) const 
{ 
   return _buffer.size(); 
}
	
// ---------------------------------------------------------------------------
//	transform
// ---------------------------------------------------------------------------
//! Compute the Fourier transform of the samples stored in the 
//! transform buffer. The samples stored in the transform buffer
//! (accessed by index or by iterator) are replaced by the 
//! transformed samples, in-place. 
//
void
FourierTransform::transform( void )
{
    // copy data into the transform input buffer:
    _impl->loadInput( &_buffer.front() );
    
    //	crunch:	
    _impl->forward();
    
    // copy the data out of the transform output buffer:
    _impl->copyOutput( &_buffer.front() );
}


// --- slow non-power-of-two DFT implementation ---

#if defined(SORRY_NO_FFTW) 

// ---------------------------------------------------------------------------
//	slowDFT
// ---------------------------------------------------------------------------
//  Non-power-of-two DFT implementation. in and out cannot be the same,
//  and each is 2*N long, storing interleaved complex numbers.
//  This version is only used when FFTW is unavailable.
//
static
void slowDFT( double * in, double * out, int N )
{
#if 1 
    // slow DFT 
    // This version of the direct DFT computation is tolerably
    // speedy, even for rather long transforms (like 8k).
    // There is only one expensive call to std::polar, and
    // twiddle factors are updated by multiplying. This
    // causes some loss in numerical accuracy, worse for
    // longer transforms, but even for 10k long transforms,
    // accuracy is within hundredths of a percent in my experiments.
    
    const std::complex< double > eminj2pioN = 
        std::polar( 1.0, -2.0 * Pi / N );
              
    std::complex< double > Wn = 1;
    for ( int n = 0; n < N; ++n )
    {
        std::complex< double > Wkn = 1;
        std::complex< double > Xkn = 0;
        for ( int k = 0; k < N; ++k )
        {
            Xkn += std::complex< double >( in[ 2*k ], in[ 2*k+1 ] ) * Wkn;
            Wkn *= Wn;
        }
        
        out[ 2*n ] = Xkn.real();
        out[ 2*n+1 ] = Xkn.imag();
        Wn *= eminj2pioN;
    }

#else 
    // very, very slow
    // This version of the direct DFT computation is slightly
    // more accurate, increasingly so for longer transforms, 
    // but it is so much slower (4-5x) that the small improvement
    // in accuracy is probably not worth the extra wait. For
    // short transforms, the accuracy of both algorithms is
    // very high, and for long transforms, this algorithm is
    // too slow.
    //
    // Both algorithms are retained here, so that this 
    // tradeoff can be re-evaluated if necessary.

    for ( int n = 0; n < N; ++n )
    {
        std::complex< double > Xkn = 0;
        for ( int k = 0; k < N; ++k )
        {
            std::complex< double > Wkn = std::polar( 1.0, -2.0 * Pi * k * n / N );
            Xkn += std::complex< double >( in[ 2*k ], in[ 2*k+1 ] ) * Wkn;
        }
        
        out[ 2*n ] = Xkn.real();
        out[ 2*n+1 ] = Xkn.imag();
    }
    
#endif    
}

#endif  //  defined(SORRY_NO_FFTW)

}	//	end of namespace Loris