summaryrefslogtreecommitdiff
path: root/src/loris/F0Estimate.C
blob: d03c1368d0e737a2b09efcfc7a1e7a77dbb8e431 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
/*
 * This is the Loris C++ Class Library, implementing analysis, 
 * manipulation, and synthesis of digitized sounds using the Reassigned 
 * Bandwidth-Enhanced Additive Sound Model.
 *
 * Loris is Copyright (c) 1999-2010 by Kelly Fitz and Lippold Haken
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY, without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 *
 *
 * F0Estimate.C
 *
 * Implementation of an iterative alrogithm for computing an 
 * estimate of fundamental frequency from a sequence of sinusoidal
 * frequencies and amplitudes using a likelihood estimator
 * adapted from Quatieri's Speech Signal Processing text. The 
 * algorithm here takes advantage of the fact that spectral peaks
 * have already been identified and extracted in the analysis/modeling
 * process.
 *
 * Kelly Fitz, 28 March 2006
 * loris@cerlsoundgroup.org
 *
 * http://www.cerlsoundgroup.org/Loris/
 *
 */

#if HAVE_CONFIG_H
	#include "config.h"
#endif

#include "F0Estimate.h"

#include "LorisExceptions.h"	// for Assert

#include "Notifier.h"

#include <algorithm>
#include <cmath>
#include <numeric>

#include <vector>
using std::vector;

#if defined(HAVE_M_PI) && (HAVE_M_PI)
	const double Pi = M_PI;
#else
	const double Pi = 3.14159265358979324;
#endif

// #if defined(HAVE_ISFINITE) && (HAVE_ISFINITE)
//     using std::isfinite;
//    
//	isfinite is not, after all, part of the standard, 
//	it is an extension. If it is not provided, the following
//	checks for NaN and finite-ness.
//
//	Use this instead.
// 	This code is taken from 
//		http://www.johndcook.com/IEEE_exceptions_in_cpp.html

#include <float.h>
inline bool IsFiniteNumber( double x )
{
	//	DBL_MAX is defined in float.h.
	//	Comparisons with NaN always fail. 
	
    return (x <= DBL_MAX && x >= -DBL_MAX);		
}
	



//	begin namespace
namespace Loris {

// ---------------------------------------------------------------------------
//	forward declarations for helpers, defined below
//  Q is the likelihood function, Qprime is its derivative w.r.t. frequency

static double
secant_method( const vector<double> & amps, 
               const vector<double> & freqs, 
               double f1, double f2,
               double precision );

static void
compute_candidate_freqs( const vector< double > & peak_freqs,
                         double fmin, double fmax, 
                         vector< double > & eval_freqs );                    			
static void
evaluate_Q( const vector<double> & amps, 
			const vector<double> & freqs, 
			const vector<double> & eval_freqs, 
			vector<double> & Q );
                    
static double
evaluate_Q( const vector<double> & amps, 
			const vector<double> & freqs, 
			double eval_freq,
            double norm );

static double
evaluate_Qprime( const vector<double> & amps, 
                 const vector<double> & freqs, 
                 double eval_freq );
         
static void
evaluate_Q( const vector<double> & amps, 
            const vector<double> & freqs, 
            const vector<double> & eval_freqs, 
            vector<double> & Q,
            double norm );
            
// ---------------------------------------------------------------------------
                                    
               
// ---------------------------------------------------------------------------
//  F0Estimate constructor
// ---------------------------------------------------------------------------
//  Construct from parameters of the iterative F0 estimation 
//  algorithm. Find candidate F0 estimates as integer divisors
//  of the peak frequencies, pick the highest frequency of the
//  most likely candidates, and refine that estiamte using the
//  secant method. 
//
//  Store the frequency and the normalized value of the 
//  likelihood function at that frequency (1.0 indicates that
//  all the peaks are perfect harmonics of the estimated
//  frequency).
//
//  See the F0Estimate.h for a description of the algorithm, also
//  outlined inline below.

F0Estimate::F0Estimate( const vector<double> & amps, 
                        const vector<double> & freqs, 
                        double fmin, double fmax,
                        double resolution ) :
    m_frequency( 0 ), 
    m_confidence( 0 )
{
    if ( fmin > fmax )
    {
        std::swap( fmin, fmax );
    }
	//	never consider DC (0 Hz) to be a valid fundamental
	fmin = std::max( 1., fmin );
    
    // -------------------------------------------------------------------------    
    // 1)  Identify candidate F0s as the integer divisors of the sinusoidal 
    //     frequencies provided, within the specified range (this algorithm
    //     relies on the reasonable assumption that for any frequency recognized 
    //     as a likely F0, at least one of the sinusoidal frequencies must 
    //     represent a harmonic, the likelihood function makes this same     
    
    //  First collect candidate frequencies: all integer 
    //  divisors of the peak frequencies that are between 
    //  fmin and fmax.
    vector< double > eval_freqs;
    compute_candidate_freqs( freqs, fmin, fmax, eval_freqs );

    if ( ! eval_freqs.empty() )
    {
        //  Compute a normalization factor equal to the total
        //  energy represented by all the peaks passed in
        //  amps and freqs, so that the value of the likelihood
        //  function does not depend on the overall signal 
        //  amplitude, but instead depends only on the quality
        //  of the estimate, or the confidence in the result, 
        //  and the quality of the final estimate can be evaluated
        //  by the value of the likelihood function.
        double normalization = 
            1.0 / std::inner_product( amps.begin(), amps.end(), amps.begin(), 0.0 );
            
        //  Evaluate the likelihood function at the candidate frequencies.
        vector < double > Q( eval_freqs.size() );
        evaluate_Q( amps, freqs, eval_freqs, Q, normalization );

        // -------------------------------------------------------------------------    
        // 2)  Select the highest frequency candidate that nearly maximizes the 
        //     likelihood function (because all subharmonics of the true F0 will
        //     be equal in likelihood to the true F0, but no higher frequency can
        //     be as likely).
    
        //  Find the highest frequency corresponding to a high value of Q
        //  (the most likely candidate).            

        vector<double>::size_type idx = 
            std::max_element( Q.begin(), Q.end() ) - Q.begin();
        
        double bestFreq = eval_freqs[ idx ];
        double bestQ = Q[ idx ];
        
        // -------------------------------------------------------------------------    
        // 2a) Check the likelihood of integer multiples of the best candidate,
        //     choose the highest multiple (within the specified range) that
        //     as likely as the best candidate frequency to be the new best
        //     candidate. 

        //  Check integer multiples of the best candidate frequency, 
        //  so that we can be certain that the peak doesn't 
        //  correspond to a subharmonic of the true most-likely
        //  F0 in the range [fmin,fmax].
        //
        //  While the next octave up is in range, and its likelihood
        //  is within 5% of the previously found peak, accept the
        //  octave as the better candidate (when we reach the true
        //  best candidate frequency, the next multiple should be
        //  much less likely).
        
        double nextF = 2 * bestFreq;
        double nextQ = evaluate_Q( amps, freqs, nextF, normalization );
        
        while ( fmax > nextF && ( 0.95 * bestQ ) <  nextQ )
        {
            //  update best candidate:
            bestFreq = nextF;
            bestQ = nextQ;
            
            //  consider the next multiple
            nextF += bestFreq;
            nextQ = evaluate_Q( amps, freqs, nextF, normalization );                        
        }          
  
//        notifier << "peak is : " << bestFreq
//                 << " Hz, Q: " << bestQ << endl;
        
        // -------------------------------------------------------------------------    
        // 3)  Refine the best candidate using the secant method for refining the 
        //     root of the derivative of the likelihood function in the neighborhood
        //     of the best candidate (because a peak in the likelihood function is
        //     a root of the derivative of that function).


        //  Refine this estimate using the secant method.    
        //
        //  Check the derivative function: if the slope (derivative)
        //  is positive, then assume that bestFreq is just below the
        //  root, and choose a second frequency just greater than
        //  bestFreq. Otherwise, assume that bestFreq is just above
        //  the root of the derivative function, and choose a second
        //  frequency just below bestFreq.
        
        double altFreq = bestFreq - resolution;
        if ( 0 < evaluate_Qprime( amps, freqs, bestFreq ) )
        {
            altFreq = bestFreq + resolution;
        }
        
        //  Now invoke the secant method to attempt to refine
        //  the root estimate:
        m_frequency = secant_method( amps, freqs, 
                                     bestFreq, altFreq,
                                     resolution );


//        notifier << "best candidate is : " << bestFreq
//                 << " Hz, Q: " << bestQ << endl;
//        notifier << "secant method found : " << m_frequency
//                 << " Hz, Q: " 
//                 << evaluate_Q( amps, freqs, m_frequency, normalization ) << endl;
//                 
        
        //  What if the secant method flies off to some other root? 
        //  Check that the root is still between fmin and fmax.
        if ( m_frequency < fmin || m_frequency > fmax )
        {
            //  If refining fails, just use the best candidate estimate.
            m_frequency = bestFreq;
        }
        
        
        //
        //  Could also use the bisection method, or the false position method, which 
        //  always converge. All that is required is that two points on the
        //  function (the derivative of the likelihood function, in this case)
        //  having opposite signs are used to begin the search. So we need
        //  to first find a nearby freq at which the derivative of Q evaluates
        //  with the opposite sign as bestFreq.         
        //
        
                        
        //  Compute the value of the likelihood function at this frequency.
        m_confidence = evaluate_Q( amps, freqs, m_frequency, normalization );  
        
        //  If the secant method makes things worse, then just go with the
        //  the most likely candidate.
        //
        //  This is a sanity measure, should never happen.
        if ( bestQ > m_confidence )
        {
            m_confidence = bestQ;
            m_frequency = bestFreq;
        }
        
//        notifier << "refined to: " << m_frequency
//                 << " Hz, Q: " << m_confidence << endl;
    
    }

}
                                        

// ---------------------------------------------------------------------------
//  --- local helpers ---
// ---------------------------------------------------------------------------


//  Collect candidate frequencies in eval_freqs.
//  Candidates are all integer divisors
//  between fmin and fmax of any frequency in the
//  vector of peak frequencies provided.

static void
compute_candidate_freqs( const vector< double > & peak_freqs,
                         double fmin, double fmax, 
                         vector< double > & eval_freqs )
{
	Assert( fmax > fmin );
    
    eval_freqs.clear();
    
    for ( vector< double >::const_iterator pk = peak_freqs.begin();
         pk != peak_freqs.end();
         ++pk )
    {    
        //  check all integer divisors of *pk
        double div = 1;
        double f = *pk;

        //  reject all the ones greater than fmax
        while( f > fmax )
        {
            ++div;
            f = *pk / div;
        }          
        
        //  keep the the ones that are between fmin 
        //  and fmax
        while( f >= fmin )
        {
            eval_freqs.push_back( f );
            ++div;
            f = *pk / div;
        }        
    }
    
    //  sort the candidats
    sort( eval_freqs.begin(), eval_freqs.end() );
}


// ---------------------------------------------------------------------------
//  --- likelihood function evaluation ---
// ---------------------------------------------------------------------------


//	Qterm is a functor to help compute terms
//	in the likelihood function sum.

struct Qterm
{
	double f0;
	Qterm( double f ) : f0(f) {}
	
	double operator()( double amp, double freq ) const
	{
		double arg = 2*Pi*freq/f0;
		return amp*amp*std::cos(arg);
	}
};

//	evaluate_Q
//
//	Evaluate the likelihood function at the specified
//	frequency.

static double
evaluate_Q( const vector<double> & amps, 
            const vector<double> & freqs, 
            double eval_freq,
            double norm )
{
    double prod = 
        std::inner_product( amps.begin(), amps.end(),
                            freqs.begin(),
                            0.,
                            std::plus< double >(),
                            Qterm( eval_freq ) );
                            
    return prod * norm;
}    

//	evaluate_Q
//
//	Evaluate the normalized likelihood function at a range of 
//	frequencies, return the results in the vector Q.

static void
evaluate_Q( const vector<double> & amps, 
            const vector<double> & freqs, 
            const vector<double> & eval_freqs, 
            vector<double> & Q )
{
	Assert( eval_freqs.size() == Q.size() );
	Assert( amps.size() == freqs.size() );
	
    //  Compute a normalization factor equal to the total
    //  energy represented by all the peaks passed in
    //  amps and freqs, so that the value of the likelihood
    //  function does not depend on the overall signal 
    //  amplitude, but instead depends only on the quality
    //  of the estimate, or the confidence in the result, 
    //  and the quality of the final estimate can be evaluated
    //  by the value of the likelihood function.
    double etotal = std::inner_product( amps.begin(), amps.end(), amps.begin(), 0.0 );
	double norm = 1.0 / etotal;
    
    evaluate_Q( amps, freqs, eval_freqs, Q, norm );
}


                                                    
//	evaluate_Q
//
//	Evaluate the normalized likelihood function at a range of 
//	frequencies, using the normalization factor provided, and
//  return the results in the vector Q.

static void
evaluate_Q( const vector<double> & amps, 
            const vector<double> & freqs, 
            const vector<double> & eval_freqs, 
            vector<double> & Q,
            double norm )
{
	Assert( eval_freqs.size() == Q.size() );
	Assert( amps.size() == freqs.size() );
    
	//	iterate over the frequencies at which to 
	//	evaluate the likelihood function:
	vector<double>::const_iterator freq_it = eval_freqs.begin();
	vector<double>::iterator Q_it = Q.begin();
	while ( freq_it != eval_freqs.end() )
	{
        double f = *freq_it;
        
		double result = evaluate_Q( amps, freqs, f, norm );
                                                              
		*Q_it++ = result;
		++freq_it;
	}
}
            
// ---------------------------------------------------------------------------
//  --- likelihood function derivative evaluation ---
// ---------------------------------------------------------------------------


//	Qprimeterm is a functor to help compute terms
//	in the likelihood function derivative sum, used
//  in the secant method of root refinement.

struct Qprimeterm
{
	double f0;
	Qprimeterm( double f ) : f0(f) {}
	
	double operator()( double amp, double freq ) const
	{
		double arg = 2*Pi*freq/f0;
		return amp*amp*std::sin(arg)*arg/f0;
	}
};


//	evaluate_Qprime
//
//	Evaluate the derivative of the likelihood function (w.r.t. frequency)
//  at the specified frequency.

static double
evaluate_Qprime( const vector<double> & amps, 
                 const vector<double> & freqs, 
                 double eval_freq )
{
    double prod = 
        std::inner_product( amps.begin(), amps.end(),
                            freqs.begin(),
                            0.,
                            std::plus< double >(),
                            Qprimeterm( eval_freq ) );

    return prod;
}                                        

// ---------------------------------------------------------------------------
//  --- secant method of refining a root/peak estimate ---
// ---------------------------------------------------------------------------

//	secant_method
//
//	Find roots of the derivative of the likelihood
// 	function using the secant method, return the 
//  value of x (frequency) at which the roots is found.

static double
secant_method( const vector<double> & amps, 
               const vector<double> & freqs, 
               double f1, double f2, double precision )
{
	double xn = f1;
	double xnm1 = f2;
	double fxnm1 = evaluate_Qprime( amps, freqs, xnm1 );
    
    const unsigned int MaxIters = 20;
    
    unsigned int iters = 0;
    double deltax = 0.0;
	
    //  Iterate until delta is small, or blows up, 
    //  or we have iterated too many times.
	do 
    {        		        
		double fxn = evaluate_Qprime( amps, freqs, xn );

		deltax = fxn * (xn - xnm1)/(fxn - fxnm1);
        
        xnm1 = xn;
        xn = xn - deltax;	
        
        fxnm1 = fxn;

	} 	while( // fabs( deltax ) > precision && 
               IsFiniteNumber( deltax )  &&
               ++iters < MaxIters );
    
    
    //  Check whether delta blew up. If it did, revert to the
    //  previous value of x.
    
    if ( ! IsFiniteNumber( deltax )  )
    {
        xn = xnm1;
    }
	
	return xn;
}

#if 0
// ---------------------------------------------------------------------------
//  --- local helpers - dumb old way ---
// ---------------------------------------------------------------------------

               
static void
compute_eval_freqs( double fmin, double fmax, 
                    vector<double> & eval_freqs );	
                    
static vector<double>::const_iterator
choose_peak( const vector<double> & Q );

// ---------------------------------------------------------------------------
//  F0Estimate constructor -- iterative method
// ---------------------------------------------------------------------------
//	Iteratively compute the value of the likelihood function
//	at a range of frequencies around the peak likelihood.
//	Store the maximum value when the range of likelihood
//	values computed is less than the specified resolution.
//  Store the frequency and the normalized value of the 
//  likelihood function at that frequency (1.0 indicates that
//  all the peaks are perfect harmonics of the estimated
//  frequency).
    
void 
F0Estimate::construct_iterative_method( const vector<double> & amps, 
                                        const vector<double> & freqs, 
                                        double fmin, double fmax,
                                        double resolution )
{

    //	when the frequency range is small, few samples are
    //	needed, but initially make sure to sample at least
    //	every 20 Hz. 
    // Scratch that, 20 Hz isn't fine enough, could miss a 
    // peak that way, try 2 Hz. There might be some room to
    // adjust this parameter to trade off speed for robustness.
	int Nsamps = std::max( 8, (int)std::ceil((fmax-fmin)*0.5) );
	vector<double> eval_freqs, Q;
	double peak_freq = fmin, peak_Q = 0;
	
	//	invariant:
	//	the likelihood function for the estimate of the fundamental
	//	frequency is maximized at some frequency between
	//	fmin and fmax (stop when that range is smaller
	//	than the resolution)
	do
	{
		//	determine the frequencies at which to evaluate
		//	the likelihood function
		eval_freqs.resize( Nsamps );
		compute_eval_freqs( fmin, fmax, eval_freqs );
		
		//	evaluate the likelihood function at those 
		//	frequencies:
		Q.resize( Nsamps );
		evaluate_Q( amps, freqs, eval_freqs, Q );
		
		//	find the highest frequency at which the likelihood
		//	function peaks:
		vector<double>::const_iterator peak = choose_peak( Q );
		int peak_idx = peak - Q.begin();
		peak_Q = *peak;
		peak_freq = eval_freqs[ peak_idx ];
		
		//	update search range:
		fmin = eval_freqs[ std::max(peak_idx - 1, 0) ];
		fmax = eval_freqs[ std::min(peak_idx + 1, Nsamps - 1) ];
		Nsamps = std::max( 8, (int)std::ceil((fmax-fmin)*0.05) );
		
	} while ( (fmax - fmin) > resolution );

    m_frequency = peak_freq;
    m_confidence = peak_Q;
}

//	compute_eval_freqs
//
//	Fill the frequency vector with a sampling
//	of the range [fmin,fmax].
//
//  (used by dumb old iterative method)
//
static void
compute_eval_freqs( double fmin, double fmax, 
					vector<double> & eval_freqs )
{
	Assert( fmax > fmin );
	
	double delta = (fmax-fmin)/(eval_freqs.size()-1);
	double f = fmin;
	vector<double>::iterator it = eval_freqs.begin();
	while( it != eval_freqs.end() )
	{
		*it++ = f;
		f += delta;
	}
	eval_freqs.back() = fmax;
}

//	choose_peak
//
//	Return the position of last peak that 
//	in the vector Q.
//
static vector<double>::const_iterator
choose_peak( const vector<double> & Q )
{
	Assert( !Q.empty() );
	
	double Qmax = *std::max_element( Q.begin(), Q.end() );
	vector<double>::const_iterator it = (Q.end()) - 1;
	double tmp = *it;
	
   // this threshold determines how strong the 
   // highest-frequency peak in the likelihood 
   // function needs to be relative to the overall
   // peak. For strongly periodic signals, this can
   // be quite near to 1, but for things that are 
   // somewhat non-harmonic, setting it too high
   // gives octave errors. Cannot tell whether errors
   // will be introduced by having it too low.
	const double threshold = 0.85 * Qmax;
	while( (it != Q.begin()) && ((*it < threshold) || (*it < *(it-1))) )
	{
		--it;
		tmp = *it;
	}
	
	return it;
}

#endif

}	//	end of namespace Loris