1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
|
/*
* This is the Loris C++ Class Library, implementing analysis,
* manipulation, and synthesis of digitized sounds using the Reassigned
* Bandwidth-Enhanced Additive Sound Model.
*
* Loris is Copyright (c) 1999-2010 by Kelly Fitz and Lippold Haken
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY, without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*
* Dilator.C
*
* Implementation of class Dilator.
*
* Kelly Fitz, 26 Oct 1999
* loris@cerlsoundgroup.org
*
* http://www.cerlsoundgroup.org/Loris/
*
*/
#if HAVE_CONFIG_H
#include "config.h"
#endif
#include "Dilator.h"
#include "Breakpoint.h"
#include "LorisExceptions.h"
#include "Marker.h"
#include "Notifier.h"
#include "Partial.h"
#include "PartialList.h"
#include <algorithm>
// begin namespace
namespace Loris {
// ---------------------------------------------------------------------------
// constructor
// ---------------------------------------------------------------------------
//! Construct a new Dilator with
//! no time points.
Dilator::Dilator( void )
{
}
// ---------------------------------------------------------------------------
// insert
// ---------------------------------------------------------------------------
//! Insert a pair of initial and target time points.
//!
//! Specify a pair of initial and target time points to be used
//! by this Dilator, corresponding, for example, to the initial
//! and desired time of a particular temporal feature in an
//! analyzed sound.
//!
//! \param i is an initial, or source, time point
//! \param t is a target time point
//!
//! The time points will be sorted before they are used.
//! If, in the sequences of initial and target time points, there are
//! exactly the same number of initial time points preceding i as
//! target time points preceding t, then time i will be warped to
//! time t in the dilation process.
//
void
Dilator::insert( double i, double t )
{
_initial.push_back(i);
_target.push_back(t);
// sort the time points before dilating:
std::sort( _initial.begin(), _initial.end() );
std::sort( _target.begin(), _target.end() );
}
// ---------------------------------------------------------------------------
// warpTime
// --------------------------------------------------------------------------
//! Return the dilated time value corresponding to the specified initial time.
//!
//! \param currentTime is a pre-dilated time.
//! \return the dilated time corresponding to the initial time currentTime
//
double
Dilator::warpTime( double currentTime ) const
{
int idx = std::distance( _initial.begin(),
std::lower_bound( _initial.begin(), _initial.end(), currentTime ) );
Assert( idx == _initial.size() || currentTime <= _initial[idx] );
// compute a new time for the Breakpoint at pIter:
double newtime = 0;
if ( idx == 0 )
{
// all time points in _initial are later than
// the currentTime; stretch if no zero time
// point has been specified, otherwise, shift:
if ( _initial[idx] != 0. )
newtime = currentTime * _target[idx] / _initial[idx];
else
newtime = _target[idx] + (currentTime - _initial[idx]);
}
else if ( idx == _initial.size() )
{
// all time points in _initial are earlier than
// the currentTime; shift:
//
// note: size is already known to be > 0, so
// idx-1 is safe
newtime = _target[idx-1] + (currentTime - _initial[idx-1]);
}
else
{
// currentTime is between the time points at idx and
// idx-1 in _initial; shift and stretch:
//
// note: size is already known to be > 0, so
// idx-1 is safe
Assert( _initial[idx-1] < _initial[idx] ); // currentTime can't wind up
// between two equal times
double stretch = (_target[idx] - _target[idx-1]) / (_initial[idx] - _initial[idx-1]);
newtime = _target[idx-1] + ((currentTime - _initial[idx-1]) * stretch);
}
return newtime;
}
// ---------------------------------------------------------------------------
// dilate
// ---------------------------------------------------------------------------
//! Replace the Partial envelope with a new envelope having the
//! same Breakpoints at times computed to align temporal features
//! in the sorted sequence of initial time points with their
//! counterparts the sorted sequence of target time points.
//!
//! Depending on the specification of initial and target time
//! points, the dilated Partial may have Breakpoints at times
//! less than 0, even if the original Partial did not.
//!
//! It is possible to have duplicate time points in either sequence.
//! Duplicate initial time points result in very localized stretching.
//! Duplicate target time points result in very localized compression.
//!
//! If all initial time points are greater than 0, then an implicit
//! time point at 0 is assumed in both initial and target sequences,
//! so the onset of a sound can be stretched without explcitly specifying a
//! zero point in each vector. (This seems most intuitive, and only looks
//! like an inconsistency if clients are using negative time points in
//! their Dilator, or Partials having Breakpoints before time 0, both
//! of which are probably unusual circumstances.)
//!
//! \param p is the Partial to dilate.
//
void
Dilator::dilate( Partial & p ) const
{
debugger << "dilating Partial having " << p.numBreakpoints()
<< " Breakpoints" << endl;
// sanity check:
Assert( _initial.size() == _target.size() );
// don't dilate if there's no time points, or no Breakpoints:
if ( 0 == _initial.size() ||
0 == p.numBreakpoints() )
{
return;
}
// create the new Partial:
Partial newp;
newp.setLabel( p.label() );
// timepoint index:
int idx = 0;
for ( Partial::const_iterator iter = p.begin(); iter != p.end(); ++iter )
{
// find the first initial time point later
// than the currentTime:
double currentTime = iter.time();
idx = std::distance( _initial.begin(),
std::lower_bound( _initial.begin(), _initial.end(), currentTime ) );
Assert( idx == _initial.size() || currentTime <= _initial[idx] );
// compute a new time for the Breakpoint at pIter:
double newtime = 0;
if ( idx == 0 )
{
// all time points in _initial are later than
// the currentTime; stretch if no zero time
// point has been specified, otherwise, shift:
if ( _initial[idx] != 0. )
newtime = currentTime * _target[idx] / _initial[idx];
else
newtime = _target[idx] + (currentTime - _initial[idx]);
}
else if ( idx == _initial.size() )
{
// all time points in _initial are earlier than
// the currentTime; shift:
//
// note: size is already known to be > 0, so
// idx-1 is safe
newtime = _target[idx-1] + (currentTime - _initial[idx-1]);
}
else
{
// currentTime is between the time points at idx and
// idx-1 in _initial; shift and stretch:
//
// note: size is already known to be > 0, so
// idx-1 is safe
Assert( _initial[idx-1] < _initial[idx] ); // currentTime can't wind up
// between two equal times
double stretch = (_target[idx] - _target[idx-1]) / (_initial[idx] - _initial[idx-1]);
newtime = _target[idx-1] + ((currentTime - _initial[idx-1]) * stretch);
}
// add a Breakpoint at the computed time:
newp.insert( newtime, iter.breakpoint() );
}
// new Breakpoints need to be added to the Partial at times corresponding
// to all target time points that are after the first Breakpoint and
// before the last, otherwise, Partials may be briefly out of tune with
// each other, since our Breakpoints are non-uniformly distributed in time:
for ( idx = 0; idx < _initial.size(); ++ idx )
{
if ( _initial[idx] <= p.startTime() )
{
continue;
}
else if ( _initial[idx] >= p.endTime() )
{
break;
}
else
{
newp.insert( _target[idx],
Breakpoint( p.frequencyAt(_initial[idx]), p.amplitudeAt(_initial[idx]),
p.bandwidthAt(_initial[idx]), p.phaseAt(_initial[idx]) ) );
}
}
// store the new Partial:
p = newp;
}
// ---------------------------------------------------------------------------
// dilate
// ---------------------------------------------------------------------------
//! Compute a new time for the specified Marker using
//! warpTime(), exactly as Partial Breakpoint times are
//! recomputed. This can be used to dilate the Markers
//! corresponding to a collection of Partials.
//!
//! \param m is the Marker whose time should be recomputed.
//
void
Dilator::dilate( Marker & m ) const
{
m.setTime( warpTime( m.time() ) );
}
} // end of namespace Loris
|