1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
|
/*
* This is the Loris C++ Class Library, implementing analysis,
* manipulation, and synthesis of digitized sounds using the Reassigned
* Bandwidth-Enhanced Additive Sound Model.
*
* Loris is Copyright (c) 1999-2010 by Kelly Fitz and Lippold Haken
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY, without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*
* Channelizer.C
*
* Implementation of class Channelizer.
*
* Kelly Fitz, 21 July 2000
* loris@cerlsoundgroup.org
*
* http://www.cerlsoundgroup.org/Loris/
*
*/
#if HAVE_CONFIG_H
#include "config.h"
#endif
#include "Channelizer.h"
#include "Envelope.h"
#include "LinearEnvelope.h"
#include "Partial.h"
#include "PartialList.h"
#include "Notifier.h"
#include <cmath>
// begin namespace
namespace Loris {
// ---------------------------------------------------------------------------
// Channelizer constructor from reference envelope
// ---------------------------------------------------------------------------
//! Construct a new Channelizer using the specified reference
//! Envelope to represent the a numbered channel. If the sound
//! being channelized is known to have detuned harmonics, a
//! stretching factor can be specified (defaults to 0 for no
//! stretching). The stretching factor can be computed using
//! the static member computeStretchFactor.
//!
//! \param refChanFreq is an Envelope representing the center frequency
//! of a channel.
//! \param refChanLabel is the corresponding channel number (i.e. 1
//! if refChanFreq is the lowest-frequency channel, and all
//! other channels are harmonics of refChanFreq, or 2 if
//! refChanFreq tracks the second harmonic, etc.).
//! \param stretchFactor is a stretching factor to account for detuned
//! harmonics, default is 0.
//!
//! \throw InvalidArgument if refChanLabel is not positive.
//! \throw InvalidArgument if stretchFactor is negative.
//
Channelizer::Channelizer( const Envelope & refChanFreq, int refChanLabel, double stretchFactor ) :
_refChannelFreq( refChanFreq.clone() ),
_refChannelLabel( refChanLabel ),
_stretchFactor( stretchFactor ),
_ampWeighting( 0 )
{
if ( refChanLabel <= 0 )
{
Throw( InvalidArgument, "Channelizer reference label must be positive." );
}
if ( stretchFactor < 0. )
{
Throw( InvalidArgument, "Channelizer stretch factor must be non-negative." );
}
}
// ---------------------------------------------------------------------------
// Channelizer constructor from constant reference frequency
// ---------------------------------------------------------------------------
//! Construct a new Channelizer having a constant reference frequency.
//! The specified frequency is the center frequency of the lowest-frequency
//! channel (for a harmonic sound, the channel containing the fundamental
//! Partial.
//!
//! \param refFreq is the reference frequency (in Hz) corresponding
//! to the first frequency channel.
//! \param stretchFactor is a stretching factor to account for detuned
//! harmonics, default is 0.
//!
//! \throw InvalidArgument is the reference frequency is not positive
Channelizer::Channelizer( double refFreq, double stretchFactor ) :
_refChannelFreq( new LinearEnvelope( refFreq ) ),
_refChannelLabel( 1 ),
_stretchFactor( stretchFactor ),
_ampWeighting( 0 )
{
if ( refFreq <= 0 )
{
Throw( InvalidArgument, "Channelizer reference frequency must be positive." );
}
if ( stretchFactor < 0. )
{
Throw( InvalidArgument, "Channelizer stretch factor must be non-negative." );
}
}
// ---------------------------------------------------------------------------
// Channelizer copy constructor
// ---------------------------------------------------------------------------
//! Construct a new Channelizer that is an exact copy of another.
//! The copy represents the same set of frequency channels, constructed
//! from the same reference Envelope and channel number.
//!
//! \param other is the Channelizer to copy
//
Channelizer::Channelizer( const Channelizer & other ) :
_refChannelFreq( other._refChannelFreq->clone() ),
_refChannelLabel( other._refChannelLabel ),
_stretchFactor( other._stretchFactor ),
_ampWeighting( other._ampWeighting )
{
}
// ---------------------------------------------------------------------------
// Channelizer assignment
// ---------------------------------------------------------------------------
//! Assignment operator: make this Channelizer an exact copy of another.
//! This Channelizer is made to represent the same set of frequency channels,
//! constructed from the same reference Envelope and channel number as @a rhs.
//!
//! \param rhs is the Channelizer to copy
//
Channelizer &
Channelizer::operator=( const Channelizer & rhs )
{
if ( &rhs != this )
{
_refChannelFreq.reset( rhs._refChannelFreq->clone() );
_refChannelLabel = rhs._refChannelLabel;
_stretchFactor = rhs._stretchFactor;
_ampWeighting = rhs._ampWeighting;
}
return *this;
}
// ---------------------------------------------------------------------------
// Channelizer destructor
// ---------------------------------------------------------------------------
//! Destroy this Channelizer.
//
Channelizer::~Channelizer( void )
{
}
// ---------------------------------------------------------------------------
// amplitudeWeighting
// ---------------------------------------------------------------------------
//! Return the exponent applied to amplitude before weighting
//! the instantaneous estimate of the frequency channel number
//! for a Partial. zero (default) for no weighting, 1 for linear
//! amplitude weighting, 2 for power weighting, etc.
//! Amplitude weighting is a bad idea for many sounds, particularly
//! those with transients, for which it may emphasize the part of
//! the Partial having the least reliable frequency estimate.
//
double Channelizer::amplitudeWeighting( void ) const
{
return _ampWeighting;
}
// ---------------------------------------------------------------------------
// setAmplitudeWeighting
// ---------------------------------------------------------------------------
//! Set the exponent applied to amplitude before weighting
//! the instantaneous estimate of the frequency channel number
//! for a Partial. zero (default) for no weighting, 1 for linear
//! amplitude weighting, 2 for power weighting, etc.
//! Amplitude weighting is a bad idea for many sounds, particularly
//! those with transients, for which it may emphasize the part of
//! the Partial having the least reliable frequency estimate.
//
void Channelizer::setAmplitudeWeighting( double x )
{
_ampWeighting = x;
}
// ---------------------------------------------------------------------------
// stretchFactor
// ---------------------------------------------------------------------------
//! Return the stretching factor used to account for detuned
//! harmonics, as in a piano tone. Normally set to 0 for
//! in-tune harmonics.
//!
//! The stretching factor is a small positive number for
//! heavy vibrating strings (as in pianos) for which the
//! mass of the string significantly affects the frequency
//! of the vibrating modes. See Martin Keane, "Understanding
//! the complex nature of the piano tone", 2004, for a discussion
//! and the source of the mode frequency stretching algorithms
//! implemented here.
//
double Channelizer::stretchFactor( void ) const
{
return _stretchFactor;
}
// ---------------------------------------------------------------------------
// setStretchFactor
// ---------------------------------------------------------------------------
//! Set the stretching factor used to account for detuned
//! harmonics, as in a piano tone. Normally set to 0 for
//! in-tune harmonics. The stretching factor for massy
//! vibrating strings (like pianos) can be computed from
//! the physical characteristics of the string, or using
//! computeStretchFactor().
//!
//! The stretching factor is a small positive number for
//! heavy vibrating strings (as in pianos) for which the
//! mass of the string significantly affects the frequency
//! of the vibrating modes. See Martin Keane, "Understanding
//! the complex nature of the piano tone", 2004, for a discussion
//! and the source of the mode frequency stretching algorithms
//! implemented here.
//!
//! \throw InvalidArgument if stretch is negative.
//
void Channelizer::setStretchFactor( double stretch )
{
if ( stretch < 0. )
{
Throw( InvalidArgument, "Channelizer stretch factor must be non-negative." );
}
_stretchFactor = stretch;
}
// ---------------------------------------------------------------------------
// setStretchFactor
// ---------------------------------------------------------------------------
//! Set the stretching factor used to account for (consistently)
//! detuned harmonics, as in a piano tone, from a pair of
//! mode (harmonic) frequencies and numbers.
//!
//! The stretching factor is a small positive number for
//! heavy vibrating strings (as in pianos) for which the
//! mass of the string significantly affects the frequency
//! of the vibrating modes. See Martin Keane, "Understanding
//! the complex nature of the piano tone", 2004, for a discussion
//! and the source of the mode frequency stretching algorithms
//! implemented here.
//!
//! The stretching factor is computed using computeStretchFactor,
//! but only a valid stretch factor will ever be assigned. If an
//! invalid (negative) stretching factor is computed for the
//! specified frequencies and mode numbers, the stretch factor
//! will be set to zero.
//!
//! \param fm is the frequency of the Mth stretched harmonic
//! \param m is the harmonic number of the harmonic whose frequnecy is fm
//! \param fn is the frequency of the Nth stretched harmonic
//! \param n is the harmonic number of the harmonic whose frequnecy is fn
void Channelizer::setStretchFactor( double fm, int m, double fn, int n )
{
const double B = computeStretchFactor( fm, m, fn, n );
if ( 0 < B )
{
_stretchFactor = B;
}
else
{
_stretchFactor = 0;
}
}
// ---------------------------------------------------------------------------
// computeStretchFactor (STATIC class member)
// ---------------------------------------------------------------------------
//! Static member to compute the stretch factor for a sound having
//! (consistently) detuned harmonics, like piano tones.
//!
//! The stretching factor is a small positive number for
//! heavy vibrating strings (as in pianos) for which the
//! mass of the string significantly affects the frequency
//! of the vibrating modes. See Martin Keane, "Understanding
//! the complex nature of the piano tone", 2004, for a discussion
//! and the source of the mode frequency stretching algorithms
//! implemented here.
//!
//! The value returned by this function MAY NOT be a valid stretch
//! factor. If this function returns a negative stretch factor,
//! then the specified pair of frequencies and mode numbers cannot
//! be used to estimate the effects of string mass on mode frequency
//! (because the negative stretch factor implies a physical
//! impossibility, like negative mass or negative length).
//!
//! \param fm is the frequency of the Mth stretched harmonic
//! \param m is the harmonic number of the harmonic whose frequnecy is fm
//! \param fn is the frequency of the Nth stretched harmonic
//! \param n is the harmonic number of the harmonic whose frequnecy is fn
//! \returns the stretching factor, usually a very small positive
//! floating point number, or 0 for pefectly tuned harmonics
//! (that is, if fn = n*f1).
//
double
Channelizer::computeStretchFactor( double fm, int m, double fn, int n )
{
if ( fm <= 0. || fn <= 0. )
{
Throw( InvalidArgument, "Channelizer stretched harmonic frequencies must be positive." );
}
if ( m <= 0 || n <= 0 )
{
Throw( InvalidArgument, "Channelizer stretched harmonic numbers must be positive." );
}
// K is a factor that depends on the frequencies
// of the two stretched harmonics, equal to 1.0 for
// perfectly tuned (not stretched) harmonics
const double K = (m*fn) / (n*fm);
const double num = 1. - (K*K);
const double denom = (K*K*m*m) - (n*n);
/*
OLD and wrong I think
double num = (fn*fn) - (n*n*fref*fref);
double denom = (n*n*n*n)*(fref*fref);
*/
return num / denom;
}
// ---------------------------------------------------------------------------
// computeStretchFactor (STATIC class member)
// ---------------------------------------------------------------------------
//! Static member to compute the stretch factor for a sound having
//! (consistently) detuned harmonics, like piano tones. Legacy version
//! that assumes the first argument corresponds to the first partial.
//!
//! \param f1 is the frequency of the lowest numbered (1) partial.
//! \param fn is the frequency of the Nth stretched harmonic
//! \param n is the harmonic number of the harmonic whose frequnecy is fn
//! \returns the stretching factor, usually a very small positive
//! floating point number, or 0 for pefectly tuned harmonics
//! (that is, for harmonic frequencies fn = n*f1).
//
double
Channelizer::computeStretchFactor( double f1, double fn, double n )
{
return computeStretchFactor( f1, 1, fn, int(n + 0.5) );
}
// ---------------------------------------------------------------------------
// referenceFrequencyAt
// ---------------------------------------------------------------------------
//! Compute the reference frequency at the specified time. For non-stretched
//! harmonics, this is simply the ratio of the reference envelope evaluated
//! at that time to the reference channel number, and is the center frequecy
//! for the lowest channel. For stretched harmonics, the reference frequency
//! is NOT equal to the center frequency of any of the channels, and is also
//! a function of the stretch factor.
//
double Channelizer::referenceFrequencyAt( double time ) const
{
const double N = _refChannelLabel;
double fref = _refChannelFreq->valueAt( time ) / N;
if ( 0 != _stretchFactor )
{
double divisor = std::sqrt( 1.0 + ( _stretchFactor*N*N) );
fref = fref / divisor;
}
return fref;
}
// ---------------------------------------------------------------------------
// computeFractionalChannelNumber
// ---------------------------------------------------------------------------
//! Compute the (fractional) channel number estimate for a Partial having a
//! given frequency at a specified time. For ordinary harmonics, this
//! is simply the ratio of the specified frequency to the reference
//! frequency at the specified time. For stretched harmonics (as in
//! a piano), the stretching factor is used to compute the frequency
//! of the corresponding modes of a massy string. See Martin Keane,
//! "Understanding the complex nature of the piano tone", 2004, for
//! the source of the mode frequency stretching algorithms
//! implemented here.
//!
//! The fractional channel number is used internally to determine
//! a best estimate for the channel number (label) for a Partial
//! having time-varying frequency.
//!
//! \param time is the time (in seconds) at which to evalute
//! the reference envelope
//! \param frequency is the frequency (in Hz) for wihch the channel
//! number is to be determined
//! \return the fractional channel number corresponding to the specified
//! frequency and time
//
double
Channelizer::computeFractionalChannelNumber( double time, double frequency ) const
{
double refFreq = referenceFrequencyAt( time );
if ( 0 == _stretchFactor )
{
return frequency / refFreq;
}
/*
const double frefsqrd = fref*fref;
double num = sqrt( (frefsqrd*frefsqrd) + (4*stretch*frefsqrd*fn*fn) ) - (frefsqrd);
double denom = 2*stretch*frefsqrd;
return sqrt( num / denom );
*/
// else:
// avoid squaring big numbers... two sqrts kind of sucks too.
const double rB = 1. / _stretchFactor; // reciprocal of B, the stretch factor
const double fratio = frequency / refFreq;
return std::sqrt( std::sqrt( (.25 * rB * rB) + (fratio * fratio * rB) ) - (.5 * rB) );
}
// ---------------------------------------------------------------------------
// computeChannelNumber
// ---------------------------------------------------------------------------
//! Compute the (fractional) channel number estimate for a Partial having a
//! given frequency at a specified time. For ordinary harmonics, this
//! is simply the ratio of the specified frequency to the reference
//! frequency at the specified time. For stretched harmonics (as in
//! a piano), the stretching factor is used to compute the frequency
//! of the corresponding modes of a massy string. See Martin Keane,
//! "Understanding the complex nature of the piano tone", 2004, for
//! the source of the mode frequency stretching algorithms
//! implemented here.
//!
//! \param time is the time (in seconds) at which to evalute
//! the reference envelope
//! \param frequency is the frequency (in Hz) for wihch the channel
//! number is to be determined
//! \return the channel number corresponding to the specified
//! frequency and time
//
int
Channelizer::computeChannelNumber( double time, double frequency ) const
{
return int( computeFractionalChannelNumber( time, frequency ) + 0.5 );
}
// ---------------------------------------------------------------------------
// channelFrequencyAt
// ---------------------------------------------------------------------------
//! Compute the center frequency of one a channel at the specified
//! time. For non-stretched harmonics, this is simply the value
//! of the reference envelope scaled by the ratio of the specified
//! channel number to the reference channel number. For stretched
//! harmonics, the channel center frequency is computed using the
//! stretch factor. See Martin Keane, "Understanding
//! the complex nature of the piano tone", 2004, for a discussion
//! and the source of the mode frequency stretching algorithms
//! implemented here.
//!
//! \param time is the time (in seconds) at which to evalute
//! the reference envelope
//! \param channel is the frequency channel (or harmonic, or vibrational
//! mode) number whose frequency is to be determined
//! \return the center frequency in Hz of the specified frequency channel
//! at the specified time
//
double
Channelizer::channelFrequencyAt( double time, int channel ) const
{
const double fref = referenceFrequencyAt( time );
double fn = channel * fref;
if ( 0 != _stretchFactor )
{
const double scale = std::sqrt( 1.0 + (_stretchFactor*channel*channel) );
fn = fn * scale;
}
return fn;
}
// ---------------------------------------------------------------------------
// channelize (one Partial)
// ---------------------------------------------------------------------------
//! Label a Partial with the number of the frequency channel corresponding to
//! the average frequency over all the Partial's Breakpoints.
//!
//! \param partial is the Partial to label.
//
void
Channelizer::channelize( Partial & partial ) const
{
using std::pow;
debugger << "channelizing Partial with " << partial.numBreakpoints() << " Breakpoints" << endl;
// compute an amplitude-weighted average channel
// label for each Partial:
//double ampsum = 0.;
double weightedlabel = 0.;
Partial::const_iterator bp;
for ( bp = partial.begin(); bp != partial.end(); ++bp )
{
double f = bp.breakpoint().frequency();
double t = bp.time();
double weight = 1;
if ( 0 != _ampWeighting )
{
// This used to be an amplitude-weighted avg, but for many sounds,
// particularly those for which the weighted avg would be very
// different from the simple avg, the amplitude-weighted avg
// emphasized the part of the sound in which the frequency estimates
// are least reliable (e.g. a piano tone). The unweighted
// average should give more intuitive results in most cases.
// use sinusoidal amplitude:
double a = bp.breakpoint().amplitude() * std::sqrt( 1. - bp.breakpoint().bandwidth() );
weight = pow( a, _ampWeighting );
}
weightedlabel += weight * computeFractionalChannelNumber( t, f );
}
int label = 0;
if ( 0 < partial.numBreakpoints() ) // should always be the case
{
label = (int)((weightedlabel / partial.numBreakpoints()) + 0.5);
}
Assert( label >= 0 );
// assign label, and remember it, but
// only if it is a valid (positive)
// distillation label:
partial.setLabel( label );
}
// -- simplified interface --
// ---------------------------------------------------------------------------
// channelize (static simplified interface)
// ---------------------------------------------------------------------------
//! Static member that constructs an instance and applies
//! it to a PartialList (simplified interface).
//!
//! Construct a Channelizer using the specified Envelope
//! and reference label, and use it to channelize a
//! sequence of Partials.
//!
//! \param partials is the sequence of Partials to
//! channelize.
//! \param refChanFreq is an Envelope representing the center frequency
//! of a channel.
//! \param refChanLabel is the corresponding channel number (i.e. 1
//! if refChanFreq is the lowest-frequency channel, and all
//! other channels are harmonics of refChanFreq, or 2 if
//! refChanFreq tracks the second harmonic, etc.).
//! \throw InvalidArgument if refChanLabel is not positive.
//
void
Channelizer::channelize( PartialList & partials,
const Envelope & refChanFreq, int refChanLabel )
{
Channelizer instance( refChanFreq, refChanLabel );
for ( PartialList::iterator it = partials.begin(); it != partials.end(); ++it )
{
instance.channelize( *it );
}
}
} // end of namespace Loris
|