summaryrefslogtreecommitdiff
path: root/src/loris/AssociateBandwidth.C
blob: e72c52fb23dddaa7eb6a7fefb878ad2b8146c06f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
/*
 * This is the Loris C++ Class Library, implementing analysis, 
 * manipulation, and synthesis of digitized sounds using the Reassigned 
 * Bandwidth-Enhanced Additive Sound Model.
 *
 * Loris is Copyright (c) 1999-2010 by Kelly Fitz and Lippold Haken
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY, without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 *
 *
 * AssociateBandwidth.C
 *
 * Implementation of a class representing a policy for associating noise
 * (bandwidth) energy with reassigned spectral peaks to be used in
 * Partial formation.
 *
 * Kelly Fitz, 20 Jan 2000
 * loris@cerlsoundgroup.org
 *
 * http://www.cerlsoundgroup.org/Loris/
 *
 */

#if HAVE_CONFIG_H
	#include "config.h"
#endif

#include "AssociateBandwidth.h"
#include "Breakpoint.h"
#include "BreakpointUtils.h"
#include "LorisExceptions.h"
#include "Notifier.h"
#include "SpectralPeaks.h"

#include <algorithm>
#include <cmath>

using namespace Loris;

// ---------------------------------------------------------------------------
//	AssociateBandwidth constructor
// ---------------------------------------------------------------------------
//	Association regions are centered on all integer bin frequencies, regionWidth
//	is the total width (in Hz) of the overlapping bandwidth association regions, 
//	the region centers are spaced at half this width.
//
AssociateBandwidth::AssociateBandwidth( double regionWidth, double srate ) :
	_regionRate( 0 )
{
	if ( ! (regionWidth>0) )
		Throw( InvalidArgument, "The regionWidth must be greater than 0 Hz." );
	if ( ! (srate>0) )
		Throw( InvalidArgument, "The sample rate must be greater than 0 Hz." );
		
		
	_weights.resize( int(srate/regionWidth) );
	_surplus.resize( int(srate/regionWidth) );
	_regionRate = 2./regionWidth;
}	

// ---------------------------------------------------------------------------
//	AssociateBandwidth destructor
// ---------------------------------------------------------------------------
//
AssociateBandwidth::~AssociateBandwidth( void )
{
}

// ---------------------------------------------------------------------------
//	binFrequency
// ---------------------------------------------------------------------------
//	Compute the warped fractional bin/region frequency corresponding to 
//	freqHz. (_regionRate is the number of regions per hertz.)
//
//	Once, we used bark frequency scale warping here, but there seems to be
//	no reason to do so. The best results seem to be indistinguishable from
// 	plain 'ol 1k bins, and some results are much worse.
//	
static double binFrequency( double freqHz, double regionRate )
{
//#define Use_Barks
#ifndef Use_Barks
	return freqHz * regionRate;
#else
	//	Compute Bark frequency from Hertz.
	//	Got this formula for Bark frequency from Sciarraba's thesis.
	//	Ignore region rate when using barks
	double tmp = std::atan( ( 0.001 / 7.5 ) * freqHz );
	return  13. * std::atan( 0.76 * 0.001 * freqHz ) + 3.5 * ( tmp * tmp );
#endif
	
}

// ---------------------------------------------------------------------------
//	findRegionBelow
// ---------------------------------------------------------------------------
//	Return the index of the last region having center frequency less than
//	or equal to freq, or -1 if no region is low enough. 
//
//	Note: the zeroeth region is centered at bin frequency 1 and tapers
//	to zero at bin frequency 0! (when booger is 1.)
//
static int findRegionBelow( double binfreq, unsigned int howManyBins )
{
	const double booger = 0.;
	if ( binfreq < booger ) 
	{
		return -1;
	}
	else 
	{
		return int( std::min( std::floor(binfreq - booger), howManyBins - 1. ) );
	}
}

// ---------------------------------------------------------------------------
//	computeAlpha
// ---------------------------------------------------------------------------
//	binfreq is a warped, fractional bin frequency, and bin frequencies 
//	are integers. Return the relative contribution of a component at
//	binfreq to the bins (bw association regions) below and above
//	binfreq. 
//
static double computeAlpha( double binfreq, unsigned int howManyBins )
{
	//	everything above the center of the highest
	//	bin is lumped into that bin; i.e it does
	//	not taper off at higher frequencies:	
	if ( binfreq > howManyBins ) 
	{
		return 0.;
	}
	else 
	{
		return binfreq - std::floor( binfreq );
	}
}

// ---------------------------------------------------------------------------
//	distribute
// ---------------------------------------------------------------------------
//
static void distribute( double fractionalBin, double x, std::vector<double> & regions )
{
	//	contribute x to two regions having center
	//	frequencies less and greater than freqHz:
	int posBelow = findRegionBelow( fractionalBin, regions.size() );
	int posAbove = posBelow + 1;
	
	double alpha = computeAlpha( fractionalBin, regions.size() );
	
	if ( posAbove < regions.size() )
		regions[posAbove] += alpha * x;
	
	if ( posBelow >= 0 )
		regions[posBelow] += (1. - alpha) * x;
}

// ---------------------------------------------------------------------------
//	computeNoiseEnergy
// ---------------------------------------------------------------------------
//	Return the noise energy to be associated with a component at freqHz.
//	_surplus contains the surplus spectral energy in each region, which is,
//	by defintion, non-negative.
//
double 
AssociateBandwidth::computeNoiseEnergy( double freq, double amp )
{
	//	don't mess with negative frequencies:
	if ( freq < 0. )
		return 0.;
	
	//	compute the fractional bin frequency 
	//	corresponding to freqHz:
	double bin = binFrequency( freq, _regionRate );
	
	//	contribute x to two regions having center
	//	frequencies less and greater than freqHz:
	int posBelow = findRegionBelow( bin, _surplus.size() );
	int posAbove = posBelow + 1;

	double alpha = computeAlpha( bin, _surplus.size() );

	double noise = 0.;
	//	Have to check for alpha == 0, because 
	//	the weights will be zero (see computeAlpha()):
	//	(ignore lowest regions)
	const int LowestRegion = 2;
	/*
	if ( posAbove < _surplus.size() && alpha != 0. && posAbove >= LowestRegion )
		noise += _surplus[posAbove] * alpha / _weights[posAbove];
	
	if ( posBelow >= LowestRegion )
		noise += _surplus[posBelow] * (1. - alpha) / _weights[posBelow];
	*/
	//	new idea, weight Partials by amplitude:	
	if ( posAbove < _surplus.size() && alpha != 0. && posAbove >= LowestRegion )
		noise += _surplus[posAbove] * alpha * amp / _weights[posAbove];
	
	if ( posBelow >= LowestRegion )
		noise += _surplus[posBelow] * (1. - alpha) * amp / _weights[posBelow];
		
	return noise;
}

// ---------------------------------------------------------------------------
//	accumulateSinusoid
// ---------------------------------------------------------------------------
//	Accumulate sinusoidal energy at frequency f and amplitude a.
//	The amplitude isn't used for anything.
//	
void
AssociateBandwidth::accumulateSinusoid( double freq, double amp )
{
	//	distribute weight at the peak frequency,
	//	don't mess with negative frequencies:
	if ( freq > 0. )
	{
		//distribute( binFrequency( freq, _regionRate ), 1., _weights );
		//	new idea: weight Partials by amplitude:
		distribute( binFrequency( freq, _regionRate ), amp, _weights );
	}
}

// ---------------------------------------------------------------------------
//	accumulateNoise
// ---------------------------------------------------------------------------
//	Accumulate a rejected spectral peak as surplus (noise) energy.
//
void
AssociateBandwidth::accumulateNoise( double freq, double amp )
{
	//	compute energy contribution and distribute 
	//	at frequency f, don't mess with negative 
	//	frequencies:
	if ( freq > 0. )
    {
		distribute( binFrequency( freq, _regionRate ), amp * amp, _surplus  );
    }
}

// ---------------------------------------------------------------------------
//	associate
// ---------------------------------------------------------------------------
//	Associate bandwidth with a single SpectralPeak.
//
void 
AssociateBandwidth::associate( SpectralPeak & pk )
{		
    pk.setBandwidth(0);
    pk.addNoiseEnergy( computeNoiseEnergy( pk.frequency(), pk.amplitude() ) );
}

// ---------------------------------------------------------------------------
//	reset
// ---------------------------------------------------------------------------
//	This is called after each distribution of bandwidth energy.
//
void
AssociateBandwidth::reset( void )
{
	std::fill( _weights.begin(), _weights.end(), 0. );
	std::fill( _surplus.begin(), _surplus.end(), 0. );
}

// ---------------------------------------------------------------------------
//	associate
// ---------------------------------------------------------------------------
//	Perform bandwidth association on a collection of reassigned spectral peaks
//	or ridges. The range [begin, rejected) spans the Peaks selected to form
//	Partials. The range [rejected, end) spans the Peaks that were found in
//	the reassigned spectrum, but rejected as too weak or too close (in 
//	frequency) to another stronger Peak. 
//
void 
AssociateBandwidth::associateBandwidth( Peaks::iterator begin, 		//	beginning of Peaks
										Peaks::iterator rejected, 	//	first rejected Peak
										Peaks::iterator end )		//	end of Peaks
{		
	if ( begin == rejected )
		return;
		
	//	accumulate retained Breakpoints as sinusoids, 
	for ( Peaks::iterator it = begin; it != rejected; ++it )
	{
		accumulateSinusoid( it->frequency(), it->amplitude() );
	}
	
	//	accumulate rejected breakpoints as noise:
	for ( Peaks::iterator it = rejected; it != end; ++it )
	{
		accumulateNoise( it->frequency(), it->amplitude() );
	}

	//	associate bandwidth with each retained Breakpoint:
	for ( Peaks::iterator it = begin; it != rejected; ++it )
	{
        //  sets bandwidth to zero, then calls addNoiseEnergy()
		associate( *it );
	}
	
	//	reset after association, yuk:
	reset();

}