summaryrefslogtreecommitdiff
path: root/src/loris/Analyzer.C
blob: 5b4996c7865d931e8a37f3503a666b55356028f8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
/*
 * This is the Loris C++ Class Library, implementing analysis, 
 * manipulation, and synthesis of digitized sounds using the Reassigned 
 * Bandwidth-Enhanced Additive Sound Model.
 *
 * Loris is Copyright (c) 1999-2010 by Kelly Fitz and Lippold Haken
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY, without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 *
 *
 * Analyzer.C
 *
 * Implementation of class Loris::Analyzer.
 *
 * Kelly Fitz, 5 Dec 99
 * loris@cerlsoundgroup.org
 *
 * http://www.cerlsoundgroup.org/Loris/
 *
 */

#if HAVE_CONFIG_H
    #include "config.h"
#endif

#include "Analyzer.h"

#include "AssociateBandwidth.h"
#include "Breakpoint.h"
#include "BreakpointEnvelope.h"
#include "Envelope.h"
#include "F0Estimate.h"
#include "LorisExceptions.h"
#include "KaiserWindow.h"
#include "Notifier.h"
#include "Partial.h"
#include "PartialPtrs.h"
#include "ReassignedSpectrum.h"
#include "SpectralPeakSelector.h"
#include "PartialBuilder.h"

#include "phasefix.h"   //  for frequency/phase fixing at end of analysis



#include <algorithm>
#include <cmath>
#include <functional>   //  for std::plus
#include <memory>
#include <numeric>      //  for std::inner_product
#include <utility>
#include <vector>

using namespace std;

#if defined(HAVE_M_PI) && (HAVE_M_PI)
    const double Pi = M_PI;
#else
    const double Pi = 3.14159265358979324;
#endif

//  begin namespace
namespace Loris {

// ---------------------------------------------------------------------------
//  helpers, used below
// ---------------------------------------------------------------------------
static double accumPeakSquaredAmps( double init, 
                                    const SpectralPeak & pk )
{
    return init + (pk.amplitude() * pk.amplitude());
}

template < class Pair >
static double compare2nd( const Pair & p1, const Pair & p2 )
{
    return p1.second < p2.second;
}

// ---------------------------------------------------------------------------
//  LinearEnvelopeBuilder
// ---------------------------------------------------------------------------
//  Base class for envelope builders that add a point (possibly) at each
//  analysis frame. 
//
//  TODO: make a dictionary of these things and allow clients to add their
//  own envelope builders and builder functions, and retrieve them after
//  analysis.
class LinearEnvelopeBuilder
{
public:
    virtual ~LinearEnvelopeBuilder( void ) {}
    virtual LinearEnvelopeBuilder * clone( void ) const = 0;
    virtual void build( const Peaks & peaks, double frameTime ) = 0;
    
    const LinearEnvelope & envelope( void ) const { return mEnvelope; }
    
    //  reset (clear) envelope, override if necesssary:
    virtual void reset( void ) { mEnvelope.clear(); }
    
protected:

    LinearEnvelope mEnvelope;   //  build this
};

// ---------------------------------------------------------------------------
//  FundamentalBuilder - for constructing an F0 envelope during analysis
// ---------------------------------------------------------------------------
class FundamentalBuilder : public LinearEnvelopeBuilder
{
    std::auto_ptr< Envelope > mFminEnv;
    std::auto_ptr< Envelope > mFmaxEnv; 
    
    double mAmpThresh, mFreqThresh;
    
    std::vector< double > amplitudes, frequencies;
    
    const double mMinConfidence;    // 0.9, this could be made a parameter, 
                                    // or raised to make estimates smoother
    
public:
    FundamentalBuilder( double fmin, double fmax, double threshDb = -60, double threshHz = 8000 ) :
        mFminEnv( new LinearEnvelope( fmin ) ), 
        mFmaxEnv( new LinearEnvelope( fmax ) ), 
        mAmpThresh( std::pow( 10., 0.05*(threshDb) ) ),
        mFreqThresh( threshHz ),
        mMinConfidence( 0.9 )
        {}

    FundamentalBuilder( const Envelope & fmin, const Envelope & fmax, 
    					double threshDb = -60, double threshHz = 8000 ) :
        mFminEnv( fmin.clone() ), 
        mFmaxEnv( fmax.clone() ), 
        mAmpThresh( std::pow( 10., 0.05*(threshDb) ) ),
        mFreqThresh( threshHz ),
        mMinConfidence( 0.9 )
        {}
        	
    FundamentalBuilder( const FundamentalBuilder & rhs ) :
        mFminEnv( rhs.mFminEnv->clone() ), 
        mFmaxEnv( rhs.mFmaxEnv->clone() ), 
        mAmpThresh( rhs.mAmpThresh ),
        mFreqThresh( rhs.mFreqThresh ),
        mMinConfidence( rhs.mMinConfidence )
        {}
    
        
	FundamentalBuilder * clone( void ) const { return new FundamentalBuilder(*this); }
	
    void build( const Peaks & peaks, double frameTime );
};

// ---------------------------------------------------------------------------
//  FundamentalBuilder::build
// ---------------------------------------------------------------------------
//
void FundamentalBuilder::build( const Peaks & peaks, double frameTime )
{
    amplitudes.clear();
    frequencies.clear();
    for ( Peaks::const_iterator spkpos = peaks.begin(); spkpos != peaks.end(); ++spkpos )
    {
        if ( spkpos->amplitude() > mAmpThresh &&
             spkpos->frequency() < mFreqThresh )
        {
            amplitudes.push_back( spkpos->amplitude() );
            frequencies.push_back( spkpos->frequency() );
        }
    }
    if ( ! amplitudes.empty() )
    {
        const double fmin = mFminEnv->valueAt( frameTime );
        const double fmax = mFmaxEnv->valueAt( frameTime );
        
        //  estimate f0
        F0Estimate est( amplitudes, frequencies, fmin, fmax, 0.1 );
        
        if ( est.confidence() >= mMinConfidence &&
             est.frequency() > fmin && est.frequency() < fmax  )
        {
            // notifier << "f0 is " << est.frequency << endl;
            //  add breakpoint to fundamental envelope
            mEnvelope.insert( frameTime, est.frequency() );
        }
    }
    
}

// ---------------------------------------------------------------------------
//  AmpEnvBuilder - for constructing an amplitude envelope during analysis
// ---------------------------------------------------------------------------
class AmpEnvBuilder : public LinearEnvelopeBuilder
{
public:
    AmpEnvBuilder( void ) {}
		
	AmpEnvBuilder * clone( void ) const { return new AmpEnvBuilder(*this); }
	
    void build( const Peaks & peaks, double frameTime );

};

// ---------------------------------------------------------------------------
//  AmpEnvBuilder::build
// ---------------------------------------------------------------------------
//
void AmpEnvBuilder::build( const Peaks & peaks, double frameTime )
{
    double x = std::accumulate( peaks.begin(), peaks.end(), 0.0, accumPeakSquaredAmps );
    mEnvelope.insert( frameTime, std::sqrt( x ) );
}


// ---------------------------------------------------------------------------
//  Analyzer constructor - frequency resolution only
// ---------------------------------------------------------------------------
//! Construct a new Analyzer configured with the given  
//! frequency resolution (minimum instantaneous frequency   
//! difference between Partials). All other Analyzer parameters     
//! are computed from the specified frequency resolution.   
//! 
//! \param resolutionHz is the frequency resolution in Hz.
//
Analyzer::Analyzer( double resolutionHz )
{
    configure( resolutionHz, 2.0 * resolutionHz );
}

// ---------------------------------------------------------------------------
//  Analyzer constructor
// ---------------------------------------------------------------------------
//! Construct a new Analyzer configured with the given  
//! frequency resolution (minimum instantaneous frequency   
//! difference between Partials) and analysis window width
//! (main lobe, zero-to-zero). All other Analyzer parameters    
//! are computed from the specified resolution and window width.    
//! 
//! \param resolutionHz is the frequency resolution in Hz.
//! \param windowWidthHz is the main lobe width of the Kaiser
//! analysis window in Hz.
//
Analyzer::Analyzer( double resolutionHz, double windowWidthHz )
{
    configure( resolutionHz, windowWidthHz );
}

// ---------------------------------------------------------------------------
//  Analyzer constructor
// ---------------------------------------------------------------------------
//! Construct a new Analyzer configured with the given time-varying
//! frequency resolution (minimum instantaneous frequency   
//! difference between Partials) and analysis window width
//! (main lobe, zero-to-zero). All other Analyzer parameters    
//! are computed from the specified resolution and window width.    
//! 
//! \param resolutionHz is the frequency resolution in Hz.
//! \param windowWidthHz is the main lobe width of the Kaiser
//! analysis window in Hz.
//
Analyzer::Analyzer( const Envelope & resolutionEnv, double windowWidthHz )
{
    configure( resolutionEnv, windowWidthHz );
}

// ---------------------------------------------------------------------------
//  Analyzer copy constructor
// ---------------------------------------------------------------------------
//! Construct  a new Analyzer having identical
//! parameter configuration to another Analyzer. 
//! The list of collected Partials is not copied.       
//! 
//! \param other is the Analyzer to copy.   
//
Analyzer::Analyzer( const Analyzer & other ) :
    m_freqResolutionEnv( other.m_freqResolutionEnv->clone() ),
    m_ampFloor( other.m_ampFloor ),
    m_windowWidth( other.m_windowWidth ),
    m_freqFloor( other.m_freqFloor ),
    m_freqDrift( other.m_freqDrift ),
    m_hopTime( other.m_hopTime ),
    m_cropTime( other.m_cropTime ),
    m_bwAssocParam( other.m_bwAssocParam ),
    m_sidelobeLevel( other.m_sidelobeLevel ),
    m_phaseCorrect( other.m_phaseCorrect ),
    m_partials( other.m_partials )
{
    m_f0Builder.reset( other.m_f0Builder->clone() );
    m_ampEnvBuilder.reset( other.m_ampEnvBuilder->clone() );
}

// ---------------------------------------------------------------------------
//  Analyzer assignment
// ---------------------------------------------------------------------------
//! Construct  a new Analyzer having identical
//! parameter configuration to another Analyzer. 
//! The list of collected Partials is not copied.       
//! 
//! \param rhs is the Analyzer to copy. 
//
Analyzer & 
Analyzer::operator=( const Analyzer & rhs )
{
    if ( this != & rhs ) 
    {
        m_freqResolutionEnv.reset( rhs.m_freqResolutionEnv->clone() );
        m_ampFloor = rhs.m_ampFloor;
        m_windowWidth = rhs.m_windowWidth;
        m_freqFloor = rhs.m_freqFloor;  
        m_freqDrift = rhs.m_freqDrift;
        m_hopTime = rhs.m_hopTime;
        m_cropTime = rhs.m_cropTime;
        m_bwAssocParam = rhs.m_bwAssocParam;
        m_sidelobeLevel = rhs.m_sidelobeLevel;
        m_phaseCorrect = rhs.m_phaseCorrect;
        m_partials = rhs.m_partials;

        m_f0Builder.reset( rhs.m_f0Builder->clone() );
        m_ampEnvBuilder.reset( rhs.m_ampEnvBuilder->clone() );
                
    }
    return *this;
}

// ---------------------------------------------------------------------------
//  Analyzer destructor
// ---------------------------------------------------------------------------
//! Destroy this Analyzer.
//
Analyzer::~Analyzer( void )
{
}

// -- configuration --

// ---------------------------------------------------------------------------
//  configure
// ---------------------------------------------------------------------------
//! Configure this Analyzer with the given frequency resolution 
//! (minimum instantaneous frequency difference between Partials, 
//! in Hz). All other Analyzer parameters are (re-)computed from the 
//! frequency resolution, including the window width, which is
//!	twice the resolution.      
//! 
//! \param resolutionHz is the frequency resolution in Hz.
//
void
Analyzer::configure( double resolutionHz )
{
	configure( resolutionHz, 2.0 * resolutionHz );
}

// ---------------------------------------------------------------------------
//  configure
// ---------------------------------------------------------------------------
//! Configure this Analyzer with the given frequency resolution 
//! (minimum instantaneous frequency difference between Partials)
//! and analysis window width (main lobe, zero-to-zero, in Hz). 
//! All other Analyzer parameters are (re-)computed from the 
//! frequency resolution and window width.      
//! 
//! \param resolutionHz is the frequency resolution in Hz.
//! \param windowWidthHz is the main lobe width of the Kaiser
//! analysis window in Hz.
//!     
//! There are three categories of analysis parameters:
//! - the resolution, and params that are usually related to (or
//! identical to) the resolution (frequency floor and drift)
//! - the window width and params that are usually related to (or
//! identical to) the window width (hop and crop times)
//! - independent parameters (bw region width and amp floor)
//
void
Analyzer::configure( double resolutionHz, double windowWidthHz )
{
    //  use specified resolution:
    setFreqResolution( resolutionHz );
    
    //  floor defaults to -90 dB:
    setAmpFloor( -90. );
    
    //  window width should generally be approximately 
    //  equal to, and never more than twice the 
    //  frequency resolution:
    setWindowWidth( windowWidthHz );
    
    //  the Kaiser window sidelobe level can be the same
    //  as the amplitude floor (except in positive dB):
    setSidelobeLevel( - m_ampFloor );
    
    //  for the minimum frequency, below which no data is kept,
    //  use the frequency resolution by default (this makes 
    //  Lip happy, and is always safe?) and allow the client 
    //  to change it to anything at all.
    setFreqFloor( resolutionHz );
    
    //  frequency drift in Hz is the maximum difference
    //  in frequency between consecutive Breakpoints in
    //  a Partial, by default, make it equal to one half
    //  the frequency resolution:
    setFreqDrift( .5 * resolutionHz );
    
    //  hop time (in seconds) is the inverse of the
    //  window width....really. Smith and Serra (1990) cite 
    //  Allen (1977) saying: a good choice of hop is the window 
    //  length divided by the main lobe width in frequency samples,
    //  which turns out to be just the inverse of the width.
    setHopTime( 1. / m_windowWidth );
    
    //  crop time (in seconds) is the maximum allowable time
    //  correction, beyond which a reassigned spectral component
    //  is considered unreliable, and not considered eligible for
    //  Breakpoint formation in extractPeaks(). By default, use
    //  the hop time (should it be half that?):
    setCropTime( m_hopTime );
    
    //  bandwidth association region width 
    //  defaults to 2 kHz, corresponding to 
    //  1 kHz region center spacing:
    storeResidueBandwidth();

	//  configure the envelope builders using default 
	//  parameters:
	buildFundamentalEnv( 0.99 * resolutionHz,
                         1.5 * resolutionHz );
    m_ampEnvBuilder.reset( new AmpEnvBuilder );
    
    //  enable phase-correct Partial construction:
    m_phaseCorrect = true;
}

// ---------------------------------------------------------------------------
//  configure
// ---------------------------------------------------------------------------
//! Configure this Analyzer with the given time-varying frequency resolution 
//! (minimum instantaneous frequency difference between Partials)
//! and analysis window width (main lobe, zero-to-zero, in Hz). 
//! All other Analyzer parameters are (re-)computed from the 
//! frequency resolution and window width.      
//! 
//! \param resolutionEnv is the time-varying frequency resolution 
//!	in Hz.
//! \param windowWidthHz is the main lobe width of the Kaiser
//! analysis window in Hz.
//!     
//! There are three categories of analysis parameters:
//! - the resolution, and params that are usually related to (or
//! identical to) the resolution (frequency floor and drift)
//! - the window width and params that are usually related to (or
//! identical to) the window width (hop and crop times)
//! - independent parameters (bw region width and amp floor)
//
void
Analyzer::configure( const Envelope & resolutionEnv, double windowWidthHz )
{
    //  use specified resolution:
    setFreqResolution( resolutionEnv );
    
    //  floor defaults to -90 dB:
    setAmpFloor( -90. );
    
    //  window width should generally be approximately 
    //  equal to, and never more than twice the 
    //  frequency resolution:
    setWindowWidth( windowWidthHz );
    
    //  the Kaiser window sidelobe level can be the same
    //  as the amplitude floor (except in positive dB):
    setSidelobeLevel( - m_ampFloor );
    
    //  for the minimum frequency, below which no data is kept,
    //  use the frequency resolution by default (this makes 
    //  Lip happy, and is always safe?) and allow the client 
    //  to change it to anything at all.
    setFreqFloor( windowWidthHz * 0.5 );		//	!!!!!
    
    //  frequency drift in Hz is the maximum difference
    //  in frequency between consecutive Breakpoints in
    //  a Partial, by default, make it equal to one half
    //  the frequency resolution:
    setFreqDrift( windowWidthHz * 0.25 );		//	!!!!!
    
    //  hop time (in seconds) is the inverse of the
    //  window width....really. Smith and Serra (1990) cite 
    //  Allen (1977) saying: a good choice of hop is the window 
    //  length divided by the main lobe width in frequency samples,
    //  which turns out to be just the inverse of the width.
    setHopTime( 1. / m_windowWidth );
    
    //  crop time (in seconds) is the maximum allowable time
    //  correction, beyond which a reassigned spectral component
    //  is considered unreliable, and not considered eligible for
    //  Breakpoint formation in extractPeaks(). By default, use
    //  the hop time (should it be half that?):
    setCropTime( m_hopTime );
    
    //  bandwidth association region width 
    //  defaults to 2 kHz, corresponding to 
    //  1 kHz region center spacing:
    storeResidueBandwidth();

	//  configure the envelope builders using default 
	//  parameters:
	/*
	buildFundamentalEnv( *m_freqResolutionEnv * 0.99,
                         *m_freqResolutionEnv * 1.5 );
      
     */	//	!!!!!!!
	m_f0Builder.reset( 
        new FundamentalBuilder( *m_freqResolutionEnv * 0.99,
        						*m_freqResolutionEnv * 1.5,
        						-60., 8000. ) );
        
    m_ampEnvBuilder.reset( new AmpEnvBuilder );
    
    //  enable phase-correct Partial construction:
    m_phaseCorrect = true;
}

// -- analysis --
// ---------------------------------------------------------------------------
//  analyze
// ---------------------------------------------------------------------------
//! Analyze a vector of (mono) samples at the given sample rate         
//! (in Hz) and store the extracted Partials in the Analyzer's
//! PartialList (std::list of Partials). 
//! 
//! \param vec is a vector of floating point samples
//! \param srate is the sample rate of the samples in the vector 
//
void 
Analyzer::analyze( const std::vector<double> & vec, double srate )      
{ 
    BreakpointEnvelope reference( 1.0 );
    analyze( &(vec[0]),  &(vec[0]) + vec.size(), srate, reference ); 
}

// ---------------------------------------------------------------------------
//  analyze
// ---------------------------------------------------------------------------
//! Analyze a range of (mono) samples at the given sample rate      
//! (in Hz) and store the extracted Partials in the Analyzer's
//! PartialList (std::list of Partials). 
//! 
//! \param bufBegin is a pointer to a buffer of floating point samples
//! \param bufEnd is (one-past) the end of a buffer of floating point 
//! samples
//! \param srate is the sample rate of the samples in the buffer
//
void 
Analyzer::analyze( const double * bufBegin, const double * bufEnd, double srate )
{ 
    BreakpointEnvelope reference( 1.0 );
    analyze( bufBegin,  bufEnd, srate, reference ); 
}

// ---------------------------------------------------------------------------
//  analyze
// ---------------------------------------------------------------------------
//! Analyze a vector of (mono) samples at the given sample rate         
//! (in Hz) and store the extracted Partials in the Analyzer's
//! PartialList (std::list of Partials). Use the specified envelope
//! as a frequency reference for Partial tracking.
//!
//! \param vec is a vector of floating point samples
//! \param srate is the sample rate of the samples in the vector
//! \param reference is an Envelope having the approximate
//! frequency contour expected of the resulting Partials.
//
void 
Analyzer::analyze( const std::vector<double> & vec, double srate, 
                   const Envelope & reference )     
{ 
    analyze( &(vec[0]),  &(vec[0]) + vec.size(), srate, reference ); 
}


// ---------------------------------------------------------------------------
//  analyze
// ---------------------------------------------------------------------------
//! Analyze a range of (mono) samples at the given sample rate      
//! (in Hz) and store the extracted Partials in the Analyzer's
//! PartialList (std::list of Partials). Use the specified envelope
//! as a frequency reference for Partial tracking.
//! 
//! \param bufBegin is a pointer to a buffer of floating point samples
//! \param bufEnd is (one-past) the end of a buffer of floating point 
//! samples
//! \param srate is the sample rate of the samples in the buffer
//! \param reference is an Envelope having the approximate
//! frequency contour expected of the resulting Partials.
//
void 
Analyzer::analyze( const double * bufBegin, const double * bufEnd, double srate,
                   const Envelope & reference )
{ 
    //  configure the reassigned spectral analyzer, 
    //  always use odd-length windows:

    //  Kaiser window
    double winshape = KaiserWindow::computeShape( sidelobeLevel() );
    long winlen = KaiserWindow::computeLength( windowWidth() / srate, winshape );    
    if (! (winlen % 2)) 
    {
        ++winlen;
    }
    debugger << "Using Kaiser window of length " << winlen << endl;
    
    std::vector< double > window( winlen );
    KaiserWindow::buildWindow( window, winshape );
    
    std::vector< double > windowDeriv( winlen );
    KaiserWindow::buildTimeDerivativeWindow( windowDeriv, winshape );
       
    ReassignedSpectrum spectrum( window, windowDeriv );   
    
    //  configure the peak selection and partial formation policies:
    SpectralPeakSelector selector( srate, m_cropTime );
    PartialBuilder builder( m_freqDrift, reference );
    
    //  configure bw association policy, unless
    //  bandwidth association is disabled:
    std::auto_ptr< AssociateBandwidth > bwAssociator;
    if( m_bwAssocParam > 0 )
    {
        debugger << "Using bandwidth association regions of width " 
                 << bwRegionWidth() << " Hz" << endl;
        bwAssociator.reset( new AssociateBandwidth( bwRegionWidth(), srate ) );
    }
    else
    {
        debugger << "Bandwidth association disabled" << endl;
    }

    //  reset envelope builders:
    m_ampEnvBuilder->reset();
    m_f0Builder->reset();
    
    m_partials.clear();
        
    try 
    { 
        const double * winMiddle = bufBegin; 

        //  loop over short-time analysis frames:
        while ( winMiddle < bufEnd )
        {
            //  compute the time of this analysis frame:
            const double currentFrameTime = long(winMiddle - bufBegin) / srate;
            
            //  compute reassigned spectrum:
            //  sampsBegin is the position of the first sample to be transformed,
            //  sampsEnd is the position after the last sample to be transformed.
            //  (these computations work for odd length windows only)
            const double * sampsBegin = std::max( winMiddle - (winlen / 2), bufBegin );
            const double * sampsEnd = std::min( winMiddle + (winlen / 2) + 1, bufEnd );
            spectrum.transform( sampsBegin, winMiddle, sampsEnd );
            
             
            //  extract peaks from the spectrum, and thin
            Peaks peaks = selector.selectPeaks( spectrum, m_freqFloor ); 
			Peaks::iterator rejected = thinPeaks( peaks, currentFrameTime );

            //	fix the stored bandwidth values
            //	KLUDGE: need to do this before the bandwidth
            //	associator tries to do its job, because the mixed
            //	derivative is temporarily stored in the Breakpoint 
            //	bandwidth!!! FIX!!!!
            fixBandwidth( peaks );
            
            if ( m_bwAssocParam > 0 )
            {
                bwAssociator->associateBandwidth( peaks.begin(), rejected, peaks.end() );
            }
            
            //  remove rejected Breakpoints (needed above to 
            //  compute bandwidth envelopes):
            peaks.erase( rejected, peaks.end() );
            
            //  estimate the amplitude in this frame:
            m_ampEnvBuilder->build( peaks, currentFrameTime );
                        
            //  collect amplitudes and frequencies and try to 
            //  estimate the fundamental
            m_f0Builder->build( peaks, currentFrameTime );          

            //  form Partials from the extracted Breakpoints:
            builder.buildPartials( peaks, currentFrameTime );
            
            //  slide the analysis window:
            winMiddle += long( m_hopTime * srate ); //  hop in samples, truncated

        }   //  end of loop over short-time frames
        
        //  unwarp the Partial frequency envelopes:
        builder.finishBuilding( m_partials );
        
        //  fix the frequencies and phases to be consistent.
        if ( m_phaseCorrect )
        {
            fixFrequency( m_partials.begin(), m_partials.end() );
        }
        
        
        //  for debugging:
        /*
        if ( ! m_ampEnv.empty() )
        {
            LinearEnvelope::iterator peakpos = 
                std::max_element( m_ampEnv.begin(), m_ampEnv.end(), 
                                  compare2nd<LinearEnvelope::iterator::value_type> );
            notifier << "Analyzer found amp peak at time : " << peakpos->first
                     << " value: " << peakpos->second << endl;
        }
        */
    }
    catch ( Exception & ex ) 
    {
        ex.append( "analysis failed." );
        throw;
    }
}

void 
Analyzer::analyze_peaks( const std::vector<double> & vec, double srate )
{
    printf("analyze_peaks\n");
}
// -- parameter access --

// ---------------------------------------------------------------------------
//  ampFloor
// ---------------------------------------------------------------------------
//! Return the amplitude floor (lowest detected spectral amplitude),            
//! in (negative) dB, for this Analyzer.                
//
double 
Analyzer::ampFloor( void ) const 
{ 
    return m_ampFloor; 
}

// ---------------------------------------------------------------------------
//  cropTime
// ---------------------------------------------------------------------------
//! Return the crop time (maximum temporal displacement of a time-
//! frequency data point from the time-domain center of the analysis
//! window, beyond which data points are considered "unreliable")
//! for this Analyzer.
//
double 
Analyzer::cropTime( void ) const 
{ 
    // debugger << "Analyzer::cropTime() is a deprecated member, and will be removed in a future Loris release." << endl;
    return m_cropTime; 
}

// ---------------------------------------------------------------------------
//  freqDrift
// ---------------------------------------------------------------------------
//! Return the maximum allowable frequency difference 
//! consecutive Breakpoints in a Partial envelope for this Analyzer.                
//
double 
Analyzer::freqDrift( void ) const 
{ 
    return m_freqDrift;
}

// ---------------------------------------------------------------------------
//  freqFloor
// ---------------------------------------------------------------------------
//! Return the frequency floor (minimum instantaneous Partial               
//! frequency), in Hz, for this Analyzer.               
//
double 
Analyzer::freqFloor( void ) const 
{ 
    return m_freqFloor; 
}

// ---------------------------------------------------------------------------
//  freqResolution
// ---------------------------------------------------------------------------
//! Return the frequency resolution (minimum instantaneous frequency        
//! difference between Partials) for this Analyzer at the specified
//! time in seconds. If no time is specified, then the initial resolution
//!	(at 0 seconds) is returned.
//! 
//! \param time is the time in seconds at which to evaluate the 
//!		   frequency resolution
//
double 
Analyzer::freqResolution( double time /* = 0.0 */ ) const 
{ 
    return m_freqResolutionEnv->valueAt( time ); 
}

// ---------------------------------------------------------------------------
//  hopTime
// ---------------------------------------------------------------------------
//! Return the hop time (which corresponds approximately to the 
//! average density of Partial envelope Breakpoint data) for this 
//! Analyzer.
//
double 
Analyzer::hopTime( void ) const 
{ 
    return m_hopTime; 
}

// ---------------------------------------------------------------------------
//  sidelobeLevel
// ---------------------------------------------------------------------------
//! Return the sidelobe attenutation level for the Kaiser analysis window in
//! positive dB. Larger numbers (e.g. 90) give very good sidelobe 
//! rejection but cause the window to be longer in time. Smaller numbers 
//! (like 60) raise the level of the sidelobes, increasing the likelihood
//! of frequency-domain interference, but allow the window to be shorter
//! in time.
//
double 
Analyzer::sidelobeLevel( void ) const 
{ 
    return m_sidelobeLevel; 
}

// ---------------------------------------------------------------------------
//  windowWidth
// ---------------------------------------------------------------------------
//! Return the frequency-domain main lobe width (measured between 
//! zero-crossings) of the analysis window used by this Analyzer.               
//
double 
Analyzer::windowWidth( void ) const 
{ 
    return m_windowWidth; 
}

// ---------------------------------------------------------------------------
//  phaseCorrect
// ---------------------------------------------------------------------------
//! Return true if the phases and frequencies of the constructed
//! partials should be modified to be consistent at the end of the
//! analysis, and false otherwise. (Default is true.)
//!
//! \param  TF is a flag indicating whether or not to construct
//!         phase-corrected Partials
bool 
Analyzer::phaseCorrect( void ) const
{
    return m_phaseCorrect;
}

// -- parameter mutation --

#define VERIFY_ARG(func, test)                                          \
    do {                                                                \
        if (!(test))                                                    \
            Throw( Loris::InvalidArgument, #func ": " #test  );         \
    } while (false)


// ---------------------------------------------------------------------------
//  setAmpFloor
// ---------------------------------------------------------------------------
//! Set the amplitude floor (lowest detected spectral amplitude), in            
//! (negative) dB, for this Analyzer. 
//! 
//! \param x is the new value of this parameter.                
//
void 
Analyzer::setAmpFloor( double x ) 
{ 
    VERIFY_ARG( setAmpFloor, x < 0 );
    m_ampFloor = x; 
}


// ---------------------------------------------------------------------------
//  setCropTime
// ---------------------------------------------------------------------------
//! Set the crop time (maximum temporal displacement of a time-
//! frequency data point from the time-domain center of the analysis
//! window, beyond which data points are considered "unreliable")
//! for this Analyzer.
//! 
//! \param x is the new value of this parameter.
//
void 
Analyzer::setCropTime( double x ) 
{ 
    VERIFY_ARG( setCropTime, x > 0 );
   // debugger << "Analyzer::setCropTime() is a deprecated member, and will be removed in a future Loris release." << endl;
    m_cropTime = x; 
}

// ---------------------------------------------------------------------------
//  setFreqDrift
// ---------------------------------------------------------------------------
//! Set the maximum allowable frequency difference between                  
//! consecutive Breakpoints in a Partial envelope for this Analyzer.                
//! 
//! \param x is the new value of this parameter.            
//
void 
Analyzer::setFreqDrift( double x ) 
{ 
    VERIFY_ARG( setFreqDrift, x > 0 );
    m_freqDrift = x; 
}

// ---------------------------------------------------------------------------
//  setFreqFloor
// ---------------------------------------------------------------------------
//! Set the frequency floor (minimum instantaneous Partial                  
//! frequency), in Hz, for this Analyzer.
//! 
//! \param x is the new value of this parameter.                    
//
void 
Analyzer::setFreqFloor( double x ) 
{ 
    VERIFY_ARG( setFreqFloor, x >= 0 );
    m_freqFloor = x; 
}

// ---------------------------------------------------------------------------
//  setFreqResolution (constant)
// ---------------------------------------------------------------------------
//! Set the frequency resolution (minimum instantaneous frequency       
//! difference between Partials) for this Analyzer. (Does not cause     
//! other parameters to be recomputed.)                                     
//! 
//! \param x is the new value of this parameter.                                        
//
void 
Analyzer::setFreqResolution( double x ) 
{ 
    VERIFY_ARG( setFreqResolution, x > 0 );
    m_freqResolutionEnv.reset( new LinearEnvelope( x ) ); 
}

// ---------------------------------------------------------------------------
//  setFreqResolution (envelope)
// ---------------------------------------------------------------------------
//! Set the time-varying frequency resolution (minimum instantaneous frequency       
//! difference between Partials) for this Analyzer. (Does not cause     
//! other parameters to be recomputed.)                                     
//! 
//! \param e is the envelope to copy for this parameter.                                        
//
void 
Analyzer::setFreqResolution( const Envelope & e ) 
{ 
	//	No mechanism exists to verify that the envelope never
	//	drops below zero, this can only be checked at analysis-time.
    // VERIFY_ARG( setFreqResolution, x > 0 );
    m_freqResolutionEnv.reset( e.clone() ); 
}

// ---------------------------------------------------------------------------
//  setSidelobeLevel
// ---------------------------------------------------------------------------
//! Set the sidelobe attenutation level for the Kaiser analysis window in
//! positive dB. Higher numbers (e.g. 90) give very good sidelobe 
//! rejection but cause the window to be longer in time. Lower 
//! numbers raise the level of the sidelobes, increasing the likelihood
//! of frequency-domain interference, but allow the window to be shorter
//! in time.
//! 
//! \param x is the new value of this parameter.    
//
void 
Analyzer::setSidelobeLevel( double x ) 
{ 
    VERIFY_ARG( setSidelobeLevel, x > 0 );
    m_sidelobeLevel = x; 
}

// ---------------------------------------------------------------------------
//  setHopTime
// ---------------------------------------------------------------------------
//! Set the hop time (which corresponds approximately to the average
//! density of Partial envelope Breakpoint data) for this Analyzer.
//! 
//! \param x is the new value of this parameter.
//
void 
Analyzer::setHopTime( double x ) 
{ 
    VERIFY_ARG( setHopTime, x > 0 );
    m_hopTime = x; 
}

// ---------------------------------------------------------------------------
//  setWindowWidth
// ---------------------------------------------------------------------------
//! Set the frequency-domain main lobe width (measured between 
//! zero-crossings) of the analysis window used by this Analyzer.   
//! 
//! \param x is the new value of this parameter.            
//
void 
Analyzer::setWindowWidth( double x ) 
{ 
    VERIFY_ARG( setWindowWidth, x > 0 );
    m_windowWidth = x; 
}

// ---------------------------------------------------------------------------
//  setPhaseCorrect
// ---------------------------------------------------------------------------
//! Indicate whether the phases and frequencies of the constructed
//! partials should be modified to be consistent at the end of the
//! analysis. (Default is true.)
//!
//! \param  TF is a flag indicating whether or not to construct
//!         phase-corrected Partials
void 
Analyzer::setPhaseCorrect( bool TF )
{
    m_phaseCorrect = TF;
}

//  -- bandwidth envelope specification --


// ---------------------------------------------------------------------------
//  storeResidueBandwidth
// ---------------------------------------------------------------------------
//!	Construct Partial bandwidth envelopes during analysis
//!	by associating residual energy in the spectrum (after
//! peak extraction) with the selected spectral peaks that
//!	are used to construct Partials. 
//!	
//!	\param regionWidth is the width (in Hz) of the bandwidth 
//!	association regions used by this process, must be positive.
//!	If unspecified, a default value is used.
//
void 
Analyzer::storeResidueBandwidth( double regionWidth ) 
{ 
    VERIFY_ARG( storeResidueBandwidth, regionWidth > 0 );
    m_bwAssocParam = regionWidth; 
}   

// ---------------------------------------------------------------------------
//  storeConvergenceBandwidth
// ---------------------------------------------------------------------------
//!	Construct Partial bandwidth envelopes during analysis
//!	by storing the mixed derivative of short-time phase, 
//!	scaled and shifted so that a value of 0 corresponds
//!	to a pure sinusoid, and a value of 1 corresponds to a
//! bandwidth-enhanced sinusoid with maximal energy spread
//! (minimum sinusoidal convergence).
//!
//!	\param tolerance is the amount of range over which the 
//!	mixed derivative indicator should be allowed to drift away 
//!	from a pure sinusoid before saturating. This range is mapped
//!	to bandwidth values on the range [0,1]. Must be positive and 
//!	not greater than 1. If unspecified, a default value is used.
//
void 
Analyzer::storeConvergenceBandwidth( double tolerance ) 
{ 
	if ( 1.0 < tolerance )
	{
		//	notify and scale, in Loris 1.5, tolerance was
		//	specified as a percent
		notifier << "Analyzer::storeConvergenceBandwidth, conergence tolerance "
					"should be positive and less than 1.0, scaling by 1/100" << endl;
		tolerance *= 0.01;
	}
	
    VERIFY_ARG( storeConvergenceBandwidth, 
    			(tolerance > 0) && (tolerance <= 1) );
    			
	//	store a negative value so that it can be 
	//	identified when used:
    m_bwAssocParam = -tolerance; 
}   

// ---------------------------------------------------------------------------
//  storeNoBandwidth
// ---------------------------------------------------------------------------
//!	Disable bandwidth envelope construction. Bandwidth 
//!	will be zero for all Breakpoints in all Partials.
//
void 
Analyzer::storeNoBandwidth( void ) 
{ 
    m_bwAssocParam = 0; 
}   

// ---------------------------------------------------------------------------
//!	Return true if this Analyzer is configured to compute
//! bandwidth envelopes using the spectral residue after
//! peaks have been identified, and false otherwise.
// ---------------------------------------------------------------------------
bool 
Analyzer::bandwidthIsResidue( void ) const
{ 
    return m_bwAssocParam > 0.; 
}

// ---------------------------------------------------------------------------
//!	Return true if this Analyzer is configured to compute
//!	bandwidth envelopes using the mixed derivative convergence
//!	indicator, and false otherwise.
// ---------------------------------------------------------------------------
bool 
Analyzer::bandwidthIsConvergence( void ) const
{ 
    return m_bwAssocParam < 0.; 
}


// ---------------------------------------------------------------------------
//! Return the width (in Hz) of the Bandwidth Association regions
//! used by this Analyzer, only if the spectral residue method is
//!	used to compute bandwidth envelopes. Return zero if the mixed
//! derivative method is used, or if no bandwidth is computed.
// ---------------------------------------------------------------------------
double 
Analyzer::bwRegionWidth( void ) const
{
	if ( m_bwAssocParam > 0 )
	{
		return m_bwAssocParam;
	}
	return 0;
}

// ---------------------------------------------------------------------------
//!	Return the mixed derivative convergence tolerance (percent)
//!	only if the convergence indicator is used to compute
//!	bandwidth envelopes. Return zero if the spectral residue
//!	method is used or if no bandwidth is computed.
// ---------------------------------------------------------------------------
double 
Analyzer::bwConvergenceTolerance( void ) const
{
	if ( m_bwAssocParam < 0 )
	{
		return - m_bwAssocParam;
	}
	return 0;
}


// -- PartialList access --

// ---------------------------------------------------------------------------
//  partials
// ---------------------------------------------------------------------------
//! Return a mutable reference to this Analyzer's list of 
//! analyzed Partials. 
//
PartialList & 
Analyzer::partials( void ) 
{ 
    return m_partials; 
}

// ---------------------------------------------------------------------------
//  partials
// ---------------------------------------------------------------------------
//! Return an immutable (const) reference to this Analyzer's 
//! list of analyzed Partials. 
//
const PartialList & 
Analyzer::partials( void ) const
{ 
    return m_partials; 
}

// ---------------------------------------------------------------------------
//  buildFundamentalEnv
// ---------------------------------------------------------------------------
//! Specify parameters for constructing a fundamental frequency 
//! envelope for the analyzed sound during analysis. The fundamental 
//! frequency estimate can be accessed by fundamentalEnv() after the 
//! analysis is complete. 
//!
//! \param  fmin is the lower bound on the fundamental frequency estimate
//! \param  fmax is the upper bound on the fundamental frequency estimate
//! \param  threshDb is the lower bound on the amplitude of a spectral peak
//!         that will constribute to the fundamental frequency estimate (very
//!         low amplitude peaks tend to have less reliable frequency estimates).
//!         Default is -60 dB.
//! \param  threshHz is the upper bound on the frequency of a spectral
//!         peak that will constribute to the fundamental frequency estimate.
//!         Default is 8 kHz.
//
void Analyzer::buildFundamentalEnv( double fmin, double fmax, 
                                    double threshDb, double threshHz )
{
    m_f0Builder.reset( 
        new FundamentalBuilder( fmin, fmax, threshDb, threshHz ) );
}

// ---------------------------------------------------------------------------
//  fundamentalEnv
// ---------------------------------------------------------------------------
//! Return the fundamental frequency estimate envelope constructed
//! during the most recent analysis performed by this Analyzer.
//! Will be empty unless buildFundamentalEnv was invoked to enable the
//! construction of this envelope during analysis.
//
const LinearEnvelope &
Analyzer::fundamentalEnv( void ) const
{   
    return m_f0Builder->envelope(); 
}


// ---------------------------------------------------------------------------
//  ampEnv
// ---------------------------------------------------------------------------
//! Return the overall amplitude estimate envelope constructed
//! during the most recent analysis performed by this Analyzer.
//! Will be empty unless buildAmpEnv was invoked to enable the
//! construction of this envelope during analysis.
//
const LinearEnvelope & 
Analyzer::ampEnv( void ) const
{ 
    return m_ampEnvBuilder->envelope(); 
}

// -- private helpers --

// ---------------------------------------------------------------------------
//	can_mask
// ---------------------------------------------------------------------------
//	functor used for identying peaks that are too close
//	in frequency to another louder peak:
struct can_mask
{
	//	masking occurs if any (louder) peak falls
	//	in the frequency range delimited by fmin and fmax:
	bool operator()( const SpectralPeak & v )  const
	{ 
		return	( v.frequency() > _fmin ) && 
				( v.frequency() < _fmax ); 
	}
		
	//	constructor:
	can_mask( double x, double y ) : 
		_fmin( x ), _fmax( y ) 
		{ if (x>y) std::swap(x,y); }
		
	//	bounds:
private:
	double _fmin, _fmax;
};

// ---------------------------------------------------------------------------
//	negative_time
// ---------------------------------------------------------------------------
//	functor used to identify peaks that have reassigned times 
//	before 0:
struct negative_time
{
	//	negative times occur when the reassigned time
	// 	plus the current frame time is less than 0:
	bool operator()( const Peaks::value_type & v )  const
	{ 
		return 0 > ( v.time() + _frameTime );
	}
		
	//	constructor:
	negative_time( double t ) : 
		_frameTime( t ) {}
		
	//	bounds:
private:
	double _frameTime;
	
};


// ---------------------------------------------------------------------------
//	thinPeaks (HELPER)
// ---------------------------------------------------------------------------
//	Reject peaks that are too quiet (low amplitude). Peaks that are retained,
//	but are quiet enough to be in the specified fadeRange should be faded.
//	Peaks having negative times are also rejected.
//
//	This is exactly the same as the basic peak selection strategy, there
//	is no tracking here.
//	
//	Rejected peaks are placed at the end of the peak collection.
//	Return the first position in the collection containing a rejected peak,
//	or the end of the collection if no peaks are rejected.
//
//	This used to be part of SpectralPeakSelector, but it really had no place
//	there. It _should_ remove the rejected peaks, but for now, those are needed
//	by the bandwidth association strategy.
//
Peaks::iterator 
Analyzer::thinPeaks( Peaks & peaks, double frameTime  )
{
	const double ampFloordB = m_ampFloor;

	//  fade quiet peaks out over 10 dB:
	const double fadeRangedB = 10.0;

	//	compute absolute magnitude thresholds:
	const double threshold = std::pow( 10., 0.05 * ampFloordB );
	const double beginFade = std::pow( 10., 0.05 * (ampFloordB+fadeRangedB) );

	//	louder peaks are preferred, so consider them 
	//	in order of louder magnitude:
	std::sort( peaks.begin(), peaks.end(), SpectralPeak::sort_greater_amplitude );
	
    //  negative times are not real, but still might represent
    //  a noisy part of the spectrum...
	Peaks::iterator bogusTimes = 
		std::remove_if( peaks.begin(), peaks.end(), negative_time( frameTime ) );
		
	//	...get rid of them anyway
    peaks.erase( bogusTimes, peaks.end() );
    bogusTimes = peaks.end();
        
    
	Peaks::iterator it = peaks.begin();
	Peaks::iterator beginRejected = it;

    const double freqResolution = 
    	std::max( m_freqResolutionEnv->valueAt( frameTime ), 0.0 ); 
    
    
	while ( it != peaks.end() ) 
	{
		SpectralPeak & pk = *it;
		
		//	keep this peak if it is loud enough and not
		//	 too near in frequency to a louder one:
		double lower = pk.frequency() - freqResolution;
		double upper = pk.frequency() + freqResolution;
		if ( pk.amplitude() > threshold &&
			 beginRejected == std::find_if( peaks.begin(), beginRejected, can_mask(lower, upper) ) )
		{
			//	this peak is a keeper, fade its
			//	amplitude if it is too quiet:
			if ( pk.amplitude() < beginFade )
			{
				double alpha = (beginFade - pk.amplitude())/(beginFade - threshold);
				pk.setAmplitude( pk.amplitude() * (1. - alpha) );
			}
			
			//	keep retained peaks at the front of the collection:
			if ( it != beginRejected )
			{
				std::swap( *it, *beginRejected );
			}
			++beginRejected;
		}
		++it;
	}
	
	// debugger << "thinPeaks retained " << std::distance( peaks.begin(), beginRejected ) << endl;

	//  remove rejected Breakpoints:
	//peaks.erase( beginRejected, peaks.end() );
	
	return beginRejected;
}

// ---------------------------------------------------------------------------
//	fixBandwidth (HELPER)
// ---------------------------------------------------------------------------
//	Fix the bandwidth value stored in the specified Peaks. 
//	This function is invoked if the spectral residue method is
//	not used to compute bandwidth (that method overwrites the
//	bandwidth already). If the convergence method is used to 
//	compute bandwidth, the appropriate scaling is applied
//	to the stored mixed phase derivative. Otherwise, the
//	Peak bandwidth is set to zero.
//
//  The convergence value is on the range [0,1], 0 for a sinusoid, 
//  and 1 for an impulse. If convergence tolerance is specified (as
//  a negative value in m_bwAssocParam), it should be positive and 
//  less than 1, and specifies the convergence value that is to 
//  correspond to bandwidth equal to 1.0. This is achieved by scaling
//  the convergence by the inverse of the tolerance, and saturating
//  at 1.0.
void Analyzer::fixBandwidth( Peaks & peaks )
{
	
	if ( m_bwAssocParam < 0 )
	{
		double scale = 1.0 / (- m_bwAssocParam);	
			// m_bwAssocParam stores negative tolerance
	
		for ( Peaks::iterator it = peaks.begin(); it != peaks.end(); ++it )
		{
            SpectralPeak & pk = *it;
			pk.setBandwidth( std::min( 1.0, scale * pk.bandwidth() ) );
		}
	}
	else if ( m_bwAssocParam == 0 )
	{
		for ( Peaks::iterator it = peaks.begin(); it != peaks.end(); ++it )
		{
            SpectralPeak & pk = *it;
			pk.setBandwidth( 0 );
		}
	}
}

}   //  end of namespace Loris