1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
|
/*
* Copyright (c) 1997-1999 Massachusetts Institute of Technology
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*/
/* $Id: rfftwnd.c,v 1.1.1.1 2006/05/12 15:14:48 veplaini Exp $ */
#include <fftw-int.h>
#include <rfftw.h>
/********************** prototypes for rexec2 routines **********************/
extern void rfftw_real2c_aux(fftw_plan plan, int howmany,
fftw_real *in, int istride, int idist,
fftw_complex *out, int ostride, int odist,
fftw_real *work);
extern void rfftw_c2real_aux(fftw_plan plan, int howmany,
fftw_complex *in, int istride, int idist,
fftw_real *out, int ostride, int odist,
fftw_real *work);
extern void rfftw_real2c_overlap_aux(fftw_plan plan, int howmany,
fftw_real *in, int istride, int idist,
fftw_complex *out, int ostride, int odist,
fftw_real *work);
extern void rfftw_c2real_overlap_aux(fftw_plan plan, int howmany,
fftw_complex *in, int istride, int idist,
fftw_real *out, int ostride, int odist,
fftw_real *work);
/********************** Initializing the RFFTWND Plan ***********************/
/*
* Create an fftwnd_plan specialized for specific arrays. (These
* arrays are ignored, however, if they are NULL or if the flags
* do not include FFTW_MEASURE.) The main advantage of being
* provided arrays like this is that we can do runtime timing
* measurements of our options, without worrying about allocating
* excessive scratch space.
*/
fftwnd_plan rfftwnd_create_plan_specific(int rank, const int *n,
fftw_direction dir, int flags,
fftw_real *in, int istride,
fftw_real *out, int ostride)
{
fftwnd_plan p;
int i;
int rflags = flags & ~FFTW_IN_PLACE;
/* note that we always do rfftw transforms out-of-place in rexec2.c */
if (flags & FFTW_IN_PLACE) {
out = NULL;
ostride = istride;
}
istride = ostride = 1; /*
* strides don't work yet, since it is not
* clear whether they apply to real
* or complex data
*/
if (!(p = fftwnd_create_plan_aux(rank, n, dir, flags)))
return 0;
for (i = 0; i < rank - 1; ++i)
p->n_after[i] = (n[rank - 1]/2 + 1) * (p->n_after[i] / n[rank - 1]);
if (rank > 0)
p->n[rank - 1] = n[rank - 1] / 2 + 1;
p->plans = fftwnd_new_plan_array(rank);
if (rank > 0 && !p->plans) {
rfftwnd_destroy_plan(p);
return 0;
}
if (rank > 0) {
p->plans[rank - 1] = rfftw_create_plan(n[rank - 1], dir, rflags);
if (!p->plans[rank - 1]) {
rfftwnd_destroy_plan(p);
return 0;
}
}
if (rank > 1) {
if (!(flags & FFTW_MEASURE) || in == 0
|| (!p->is_in_place && out == 0)) {
if (!fftwnd_create_plans_generic(p->plans, rank - 1, n,
dir, flags | FFTW_IN_PLACE)) {
rfftwnd_destroy_plan(p);
return 0;
}
} else if (dir == FFTW_COMPLEX_TO_REAL || (flags & FFTW_IN_PLACE)) {
if (!fftwnd_create_plans_specific(p->plans, rank - 1, n,
p->n_after,
dir, flags | FFTW_IN_PLACE,
(fftw_complex *) in,
istride,
0, 0)) {
rfftwnd_destroy_plan(p);
return 0;
}
} else {
if (!fftwnd_create_plans_specific(p->plans, rank - 1, n,
p->n_after,
dir, flags | FFTW_IN_PLACE,
(fftw_complex *) out,
ostride,
0, 0)) {
rfftwnd_destroy_plan(p);
return 0;
}
}
}
p->nbuffers = 0;
p->nwork = fftwnd_work_size(rank, p->n, flags | FFTW_IN_PLACE,
p->nbuffers + 1);
if (p->nwork && !(flags & FFTW_THREADSAFE)) {
p->work = (fftw_complex *) fftw_malloc(p->nwork
* sizeof(fftw_complex));
if (!p->work) {
rfftwnd_destroy_plan(p);
return 0;
}
}
return p;
}
fftwnd_plan rfftw2d_create_plan_specific(int nx, int ny,
fftw_direction dir, int flags,
fftw_real *in, int istride,
fftw_real *out, int ostride)
{
int n[2];
n[0] = nx;
n[1] = ny;
return rfftwnd_create_plan_specific(2, n, dir, flags,
in, istride, out, ostride);
}
fftwnd_plan rfftw3d_create_plan_specific(int nx, int ny, int nz,
fftw_direction dir, int flags,
fftw_real *in, int istride,
fftw_real *out, int ostride)
{
int n[3];
n[0] = nx;
n[1] = ny;
n[2] = nz;
return rfftwnd_create_plan_specific(3, n, dir, flags,
in, istride, out, ostride);
}
/* Create a generic fftwnd plan: */
fftwnd_plan rfftwnd_create_plan(int rank, const int *n,
fftw_direction dir, int flags)
{
return rfftwnd_create_plan_specific(rank, n, dir, flags, 0, 1, 0, 1);
}
fftwnd_plan rfftw2d_create_plan(int nx, int ny,
fftw_direction dir, int flags)
{
return rfftw2d_create_plan_specific(nx, ny, dir, flags, 0, 1, 0, 1);
}
fftwnd_plan rfftw3d_create_plan(int nx, int ny, int nz,
fftw_direction dir, int flags)
{
return rfftw3d_create_plan_specific(nx, ny, nz, dir, flags, 0, 1, 0, 1);
}
/************************ Freeing the RFFTWND Plan ************************/
void rfftwnd_destroy_plan(fftwnd_plan plan)
{
fftwnd_destroy_plan(plan);
}
/************************ Printing the RFFTWND Plan ************************/
void rfftwnd_fprint_plan(FILE *f, fftwnd_plan plan)
{
fftwnd_fprint_plan(f, plan);
}
void rfftwnd_print_plan(fftwnd_plan plan)
{
rfftwnd_fprint_plan(stdout, plan);
}
/*********** Computing the N-Dimensional FFT: Auxiliary Routines ************/
void rfftwnd_real2c_aux(fftwnd_plan p, int cur_dim,
fftw_real *in, int istride,
fftw_complex *out, int ostride,
fftw_real *work)
{
int n_after = p->n_after[cur_dim], n = p->n[cur_dim];
if (cur_dim == p->rank - 2) {
/* just do the last dimension directly: */
if (p->is_in_place)
rfftw_real2c_aux(p->plans[p->rank - 1], n,
in, istride, (n_after * istride) * 2,
out, istride, n_after * istride,
work);
else
rfftw_real2c_aux(p->plans[p->rank - 1], n,
in, istride, p->plans[p->rank - 1]->n * istride,
out, ostride, n_after * ostride,
work);
} else { /* we have at least two dimensions to go */
int nr = p->plans[p->rank - 1]->n;
int n_after_r = p->is_in_place ? n_after * 2
: nr * (n_after / (nr/2 + 1));
int i;
/*
* process the subsequent dimensions recursively, in hyperslabs,
* to get maximum locality:
*/
for (i = 0; i < n; ++i)
rfftwnd_real2c_aux(p, cur_dim + 1,
in + i * n_after_r * istride, istride,
out + i * n_after * ostride, ostride, work);
}
/* do the current dimension (in-place): */
fftw(p->plans[cur_dim], n_after,
out, n_after * ostride, ostride,
(fftw_complex *) work, 1, 0);
/* I hate this cast */
}
void rfftwnd_c2real_aux(fftwnd_plan p, int cur_dim,
fftw_complex *in, int istride,
fftw_real *out, int ostride,
fftw_real *work)
{
int n_after = p->n_after[cur_dim], n = p->n[cur_dim];
/* do the current dimension (in-place): */
fftw(p->plans[cur_dim], n_after,
in, n_after * istride, istride,
(fftw_complex *) work, 1, 0);
if (cur_dim == p->rank - 2) {
/* just do the last dimension directly: */
if (p->is_in_place)
rfftw_c2real_aux(p->plans[p->rank - 1], n,
in, istride, n_after * istride,
out, istride, (n_after * istride) * 2,
work);
else
rfftw_c2real_aux(p->plans[p->rank - 1], n,
in, istride, n_after * istride,
out, ostride, p->plans[p->rank - 1]->n * ostride,
work);
} else { /* we have at least two dimensions to go */
int nr = p->plans[p->rank - 1]->n;
int n_after_r = p->is_in_place ? n_after * 2 :
nr * (n_after / (nr/2 + 1));
int i;
/*
* process the subsequent dimensions recursively, in hyperslabs,
* to get maximum locality:
*/
for (i = 0; i < n; ++i)
rfftwnd_c2real_aux(p, cur_dim + 1,
in + i * n_after * istride, istride,
out + i * n_after_r * ostride, ostride, work);
}
}
/*
* alternate version of rfftwnd_aux -- this version pushes the howmany
* loop down to the leaves of the computation, for greater locality
* in cases where dist < stride. It is also required for correctness
* if in==out, and we must call a special version of the executor.
* Note that work must point to 'howmany' copies of its data
* if in == out.
*/
void rfftwnd_real2c_aux_howmany(fftwnd_plan p, int cur_dim,
int howmany,
fftw_real *in, int istride, int idist,
fftw_complex *out, int ostride, int odist,
fftw_complex *work)
{
int n_after = p->n_after[cur_dim], n = p->n[cur_dim];
int k;
if (cur_dim == p->rank - 2) {
/* just do the last dimension directly: */
if (p->is_in_place)
for (k = 0; k < n; ++k)
rfftw_real2c_overlap_aux(p->plans[p->rank - 1], howmany,
in + (k * n_after * istride) * 2,
istride, idist,
out + (k * n_after * ostride),
ostride, odist,
(fftw_real *) work);
else {
int nlast = p->plans[p->rank - 1]->n;
for (k = 0; k < n; ++k)
rfftw_real2c_aux(p->plans[p->rank - 1], howmany,
in + k * nlast * istride,
istride, idist,
out + k * n_after * ostride,
ostride, odist,
(fftw_real *) work);
}
} else { /* we have at least two dimensions to go */
int nr = p->plans[p->rank - 1]->n;
int n_after_r = p->is_in_place ? n_after * 2 :
nr * (n_after / (nr/2 + 1));
int i;
/*
* process the subsequent dimensions recursively, in hyperslabs,
* to get maximum locality:
*/
for (i = 0; i < n; ++i)
rfftwnd_real2c_aux_howmany(p, cur_dim + 1, howmany,
in + i * n_after_r * istride, istride, idist,
out + i * n_after * ostride, ostride, odist,
work);
}
/* do the current dimension (in-place): */
for (k = 0; k < n_after; ++k)
fftw(p->plans[cur_dim], howmany,
out + k * ostride, n_after * ostride, odist,
work, 1, 0);
}
void rfftwnd_c2real_aux_howmany(fftwnd_plan p, int cur_dim,
int howmany,
fftw_complex *in, int istride, int idist,
fftw_real *out, int ostride, int odist,
fftw_complex *work)
{
int n_after = p->n_after[cur_dim], n = p->n[cur_dim];
int k;
/* do the current dimension (in-place): */
for (k = 0; k < n_after; ++k)
fftw(p->plans[cur_dim], howmany,
in + k * istride, n_after * istride, idist,
work, 1, 0);
if (cur_dim == p->rank - 2) {
/* just do the last dimension directly: */
if (p->is_in_place)
for (k = 0; k < n; ++k)
rfftw_c2real_overlap_aux(p->plans[p->rank - 1], howmany,
in + (k * n_after * istride),
istride, idist,
out + (k * n_after * ostride) * 2,
ostride, odist,
(fftw_real *) work);
else {
int nlast = p->plans[p->rank - 1]->n;
for (k = 0; k < n; ++k)
rfftw_c2real_aux(p->plans[p->rank - 1], howmany,
in + k * n_after * istride,
istride, idist,
out + k * nlast * ostride,
ostride, odist,
(fftw_real *) work);
}
} else { /* we have at least two dimensions to go */
int nr = p->plans[p->rank - 1]->n;
int n_after_r = p->is_in_place ? n_after * 2
: nr * (n_after / (nr/2 + 1));
int i;
/*
* process the subsequent dimensions recursively, in hyperslabs,
* to get maximum locality:
*/
for (i = 0; i < n; ++i)
rfftwnd_c2real_aux_howmany(p, cur_dim + 1, howmany,
in + i * n_after * istride, istride, idist,
out + i * n_after_r * ostride, ostride, odist,
work);
}
}
/********** Computing the N-Dimensional FFT: User-Visible Routines **********/
void rfftwnd_real_to_complex(fftwnd_plan p, int howmany,
fftw_real *in, int istride, int idist,
fftw_complex *out, int ostride, int odist)
{
fftw_complex *work = p->work;
int rank = p->rank;
int free_work = 0;
if (p->dir != FFTW_REAL_TO_COMPLEX)
fftw_die("rfftwnd_real_to_complex with complex-to-real plan");
#ifdef FFTW_DEBUG
if (p->rank > 0 && (p->plans[0]->flags & FFTW_THREADSAFE)
&& p->nwork && p->work)
fftw_die("bug with FFTW_THREADSAFE flag");
#endif
if (p->is_in_place) {
ostride = istride;
odist = (idist == 1 && idist < istride) ? 1 : (idist / 2); /* ugh */
out = (fftw_complex *) in;
if (howmany > 1 && istride > idist && rank > 0) {
int new_nwork;
new_nwork = p->n[rank - 1] * howmany;
if (new_nwork > p->nwork) {
work = (fftw_complex *)
fftw_malloc(sizeof(fftw_complex) * new_nwork);
if (!work)
fftw_die("error allocating work array");
free_work = 1;
}
}
}
if (p->nwork && !work) {
work = (fftw_complex *) fftw_malloc(sizeof(fftw_complex) * p->nwork);
free_work = 1;
}
switch (rank) {
case 0:
break;
case 1:
if (p->is_in_place && howmany > 1 && istride > idist)
rfftw_real2c_overlap_aux(p->plans[0], howmany,
in, istride, idist,
out, ostride, odist,
(fftw_real *) work);
else
rfftw_real2c_aux(p->plans[0], howmany,
in, istride, idist,
out, ostride, odist,
(fftw_real *) work);
break;
default: /* rank >= 2 */
{
if (howmany > 1 && ostride > odist)
rfftwnd_real2c_aux_howmany(p, 0, howmany,
in, istride, idist,
out, ostride, odist,
work);
else {
int i;
for (i = 0; i < howmany; ++i)
rfftwnd_real2c_aux(p, 0,
in + i * idist, istride,
out + i * odist, ostride,
(fftw_real *) work);
}
}
}
if (free_work)
fftw_free(work);
}
void rfftwnd_complex_to_real(fftwnd_plan p, int howmany,
fftw_complex *in, int istride, int idist,
fftw_real *out, int ostride, int odist)
{
fftw_complex *work = p->work;
int rank = p->rank;
int free_work = 0;
if (p->dir != FFTW_COMPLEX_TO_REAL)
fftw_die("rfftwnd_complex_to_real with real-to-complex plan");
#ifdef FFTW_DEBUG
if (p->rank > 0 && (p->plans[0]->flags & FFTW_THREADSAFE)
&& p->nwork && p->work)
fftw_die("bug with FFTW_THREADSAFE flag");
#endif
if (p->is_in_place) {
ostride = istride;
odist = idist;
odist = (idist == 1 && idist < istride) ? 1 : (idist * 2); /* ugh */
out = (fftw_real *) in;
if (howmany > 1 && istride > idist && rank > 0) {
int new_nwork = p->n[rank - 1] * howmany;
if (new_nwork > p->nwork) {
work = (fftw_complex *)
fftw_malloc(sizeof(fftw_complex) * new_nwork);
if (!work)
fftw_die("error allocating work array");
free_work = 1;
}
}
}
if (p->nwork && !work) {
work = (fftw_complex *) fftw_malloc(sizeof(fftw_complex) * p->nwork);
free_work = 1;
}
switch (rank) {
case 0:
break;
case 1:
if (p->is_in_place && howmany > 1 && istride > idist)
rfftw_c2real_overlap_aux(p->plans[0], howmany,
in, istride, idist,
out, ostride, odist,
(fftw_real *) work);
else
rfftw_c2real_aux(p->plans[0], howmany,
in, istride, idist,
out, ostride, odist,
(fftw_real *) work);
break;
default: /* rank >= 2 */
{
if (howmany > 1 && ostride > odist)
rfftwnd_c2real_aux_howmany(p, 0, howmany,
in, istride, idist,
out, ostride, odist,
work);
else {
int i;
for (i = 0; i < howmany; ++i)
rfftwnd_c2real_aux(p, 0,
in + i * idist, istride,
out + i * odist, ostride,
(fftw_real *) work);
}
}
}
if (free_work)
fftw_free(work);
}
void rfftwnd_one_real_to_complex(fftwnd_plan p,
fftw_real *in, fftw_complex *out)
{
rfftwnd_real_to_complex(p, 1, in, 1, 1, out, 1, 1);
}
void rfftwnd_one_complex_to_real(fftwnd_plan p,
fftw_complex *in, fftw_real *out)
{
rfftwnd_complex_to_real(p, 1, in, 1, 1, out, 1, 1);
}
|