summaryrefslogtreecommitdiff
path: root/sndobj/rfftw/rexec2.c
blob: ffdcf00b6fa67dda910816182f21f300c20ae605 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
/*
 * Copyright (c) 1997-1999 Massachusetts Institute of Technology
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 *
 */

/* $Id: rexec2.c,v 1.1.1.1 2006/05/12 15:14:52 veplaini Exp $ */
/*
 * rexec2.c -- alternate rfftw executor, specifically designed for the
 *             multidimensional transforms.  Given an extra work array,
 *             expects complex data in FFTW_COMPLEX format, and does
 *             not destroy the input in hc2real transforms.
 */

#include <fftw-int.h>
#include <rfftw.h>

/* copies halfcomplex array in (contiguous) to fftw_complex array out. */
void rfftw_hc2c(int n, fftw_real *in, fftw_complex *out, int ostride)
{
     int n2 = (n + 1) / 2;
     int i = 1;

     c_re(out[0]) = in[0];
     c_im(out[0]) = 0.0;
     for (; i < ((n2 - 1) & 3) + 1; ++i) {
	  c_re(out[i * ostride]) = in[i];
	  c_im(out[i * ostride]) = in[n - i];
     }
     for (; i < n2; i += 4) {
	  fftw_real r0, r1, r2, r3;
	  fftw_real i0, i1, i2, i3;
	  r0 = in[i];
	  r1 = in[i + 1];
	  r2 = in[i + 2];
	  r3 = in[i + 3];
	  i3 = in[n - (i + 3)];
	  i2 = in[n - (i + 2)];
	  i1 = in[n - (i + 1)];
	  i0 = in[n - i];
	  c_re(out[i * ostride]) = r0;
	  c_im(out[i * ostride]) = i0;
	  c_re(out[(i + 1) * ostride]) = r1;
	  c_im(out[(i + 1) * ostride]) = i1;
	  c_re(out[(i + 2) * ostride]) = r2;
	  c_im(out[(i + 2) * ostride]) = i2;
	  c_re(out[(i + 3) * ostride]) = r3;
	  c_im(out[(i + 3) * ostride]) = i3;
     }
     if ((n & 1) == 0) {	/* store the Nyquist frequency */
	  c_re(out[n2 * ostride]) = in[n2];
	  c_im(out[n2 * ostride]) = 0.0;
     }
}

/* reverse of rfftw_hc2c */
void rfftw_c2hc(int n, fftw_complex *in, int istride, fftw_real *out)
{
     int n2 = (n + 1) / 2;
     int i = 1;

     out[0] = c_re(in[0]);
     for (; i < ((n2 - 1) & 3) + 1; ++i) {
	  out[i] = c_re(in[i * istride]);
	  out[n - i] = c_im(in[i * istride]);
     }
     for (; i < n2; i += 4) {
	  fftw_real r0, r1, r2, r3;
	  fftw_real i0, i1, i2, i3;
	  r0 = c_re(in[i * istride]);
	  i0 = c_im(in[i * istride]);
	  r1 = c_re(in[(i + 1) * istride]);
	  i1 = c_im(in[(i + 1) * istride]);
	  r2 = c_re(in[(i + 2) * istride]);
	  i2 = c_im(in[(i + 2) * istride]);
	  r3 = c_re(in[(i + 3) * istride]);
	  i3 = c_im(in[(i + 3) * istride]);
	  out[i] = r0;
	  out[i + 1] = r1;
	  out[i + 2] = r2;
	  out[i + 3] = r3;
	  out[n - (i + 3)] = i3;
	  out[n - (i + 2)] = i2;
	  out[n - (i + 1)] = i1;
	  out[n - i] = i0;
     }
     if ((n & 1) == 0)		/* store the Nyquist frequency */
	  out[n2] = c_re(in[n2 * istride]);
}

/* 
 * in: array of n real numbers (* howmany).
 * out: array of n/2 + 1 complex numbers (* howmany).
 * work: array of n real numbers (stride 1) 
 * 
 * We must have out != in if dist < stride. 
 */
void rfftw_real2c_aux(fftw_plan plan, int howmany,
		      fftw_real *in, int istride, int idist,
		      fftw_complex *out, int ostride, int odist,
		      fftw_real *work)
{
     fftw_plan_node *p = plan->root;
     int j;

     switch (p->type) {
	 case FFTW_REAL2HC:
	      {
		   fftw_real2hc_codelet *codelet = p->nodeu.real2hc.codelet;
		   int n = plan->n;
		   int n2 = (n & 1) ? 0 : (n + 1) / 2;

		   HACK_ALIGN_STACK_ODD;
		   for (j = 0; j < howmany; ++j, out += odist) {
			codelet(in + j * idist,
				&c_re(*out),
				&c_im(*out),
				istride, ostride * 2, ostride * 2);
			c_im(out[0]) = 0.0;
			c_im(out[n2 * ostride]) = 0.0;
		   }
		   break;
	      }

	 default:
	      {
		   int n = plan->n;
		   fftw_recurse_kind recurse_kind = plan->recurse_kind;

		   for (j = 0; j < howmany; ++j, in += idist, out += odist) {
			rfftw_executor_simple(n, in, work, p, istride, 1,
					      recurse_kind);
			rfftw_hc2c(n, work, out, ostride);
		   }
		   break;
	      }
     }
}

/*
 * in: array of n/2 + 1 complex numbers (* howmany).
 * out: array of n real numbers (* howmany).
 * work: array of n real numbers (stride 1)
 * 
 * We must have out != in if dist < stride.  
 */
void rfftw_c2real_aux(fftw_plan plan, int howmany,
		      fftw_complex *in, int istride, int idist,
		      fftw_real *out, int ostride, int odist,
		      fftw_real *work)
{
     fftw_plan_node *p = plan->root;

     switch (p->type) {
	 case FFTW_HC2REAL:
	      {
		   fftw_hc2real_codelet *codelet = p->nodeu.hc2real.codelet;
		   int j;

		   HACK_ALIGN_STACK_ODD;
		   for (j = 0; j < howmany; ++j)
			codelet(&c_re(*(in + j * idist)),
				&c_im(*(in + j * idist)),
				out + j * odist,
				istride * 2, istride * 2, ostride);
		   break;
	      }

	 default:
	      {
		   int j, n = plan->n;
		   fftw_recurse_kind recurse_kind = plan->recurse_kind;

		   for (j = 0; j < howmany; ++j, in += idist, out += odist) {
			rfftw_c2hc(n, in, istride, work);
			rfftw_executor_simple(n, work, out, p, 1, ostride,
					      recurse_kind);
		   }
		   break;
	      }
     }
}

/*
 * The following two functions are similar to the ones above, BUT:
 * 
 * work must contain n * howmany elements (stride 1)
 * 
 * Can handle out == in for any stride/dist. 
 */
void rfftw_real2c_overlap_aux(fftw_plan plan, int howmany,
			      fftw_real *in, int istride, int idist,
			      fftw_complex *out, int ostride, int odist,
			      fftw_real *work)
{
     int n = plan->n;
     int j;

     rfftw(plan, howmany, in, istride, idist, work, 1, n);

     /* copy from work to out: */
     for (j = 0; j < howmany; ++j, work += n, out += odist)
	  rfftw_hc2c(n, work, out, ostride);
}

void rfftw_c2real_overlap_aux(fftw_plan plan, int howmany,
			      fftw_complex *in, int istride, int idist,
			      fftw_real *out, int ostride, int odist,
			      fftw_real *work)
{
     int n = plan->n;
     int j;

     /* copy from in to work: */
     for (j = 0; j < howmany; ++j, in += idist)
	  rfftw_c2hc(n, in, istride, work + j * n);

     rfftw(plan, howmany, work, 1, n, out, ostride, odist);
}