1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
|
////////////////////////////////////////////////////////////////////////
// This file is part of the SndObj library
//
// This program is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
//
// Copyright (c)Victor Lazzarini, 1997-2004
// See License.txt for a disclaimer of all warranties
// and licensing information
#include "IFAdd.h"
IFAdd::IFAdd(){
}
IFAdd::IFAdd(IFGram* input, int bins, Table* table,
float pitch, float scale, float tscal, int vecsize, float sr)
: ReSyn((SinAnal *)input, bins, table, pitch, scale, tscal, vecsize, sr){
}
IFAdd::~IFAdd(){
}
short
IFAdd::DoProcess() {
if(m_input){
float ampnext,amp,freq, freqnext, phase;
float inc1, inc2, a, ph, cnt, frac;
float a2, a3, phasediff, phasenext, cph, shf;
bool lock;
int i2, i, bins = m_maxtracks, ndx;
float* tab = m_ptable->GetTable();
memset(m_output, 0, sizeof(float)*m_vecsize);
shf = m_tscal*m_pitch;
if(shf - Ftoi(shf)) lock = false;
else lock = true;
// for each bin from 1
for(i=1; i < bins; i++){
i2 = i<<1;
ampnext = m_input->Output(i2)*m_scale;
freqnext = m_input->Output(i2+1)*TWOPI*m_pitch;
phasenext = ((IFGram *)m_input)->Outphases(i)*shf;
freq = m_freqs[i];
phase = m_phases[i];
amp = m_amps[i];
//phase difference
phasediff = phasenext - phase;
while(phasediff >= PI) phasediff -= TWOPI;
while(phasediff < -PI) phasediff += TWOPI;
// update phasediff to match the freq
cph = ((freq+freqnext)*m_factor/2. - phasediff)/TWOPI;
phasediff += TWOPI* (lock ? Ftoi(cph + 0.5) : cph);
// interpolation coefs
a2 = 3./m_facsqr * (phasediff - m_factor/3.*(2*freq+freqnext));
a3 = 1./(3*m_facsqr) * (freqnext - freq - 2*a2*m_factor);
// interpolation resynthesis loop
a = amp;
ph = phase;
cnt = 0;
inc1 = (ampnext - amp)/m_vecsize;
inc2 = 1/m_sr;
for(m_vecpos=0; m_vecpos < m_vecsize; m_vecpos++){
if(m_enable) {
// table lookup oscillator
ph *= m_LoTWOPI;
while(ph < 0) ph += m_size;
while(ph >= m_size) ph -= m_size;
ndx = Ftoi(ph);
frac = ph - ndx;
m_output[m_vecpos] += a*(tab[ndx] + (tab[ndx+1] - tab[ndx])*frac);
a += inc1;
cnt += inc2;
ph = phase + cnt*(freq + cnt*(a2 + a3*cnt));
}
else m_output[m_vecpos] = 0.f;
}
// keep amp, freq, and update phase for next time
m_amps[i] = ampnext;
m_freqs[i] = freqnext;
phasenext += (lock ? 0 : (cph - Ftoi(cph))*TWOPI);
while(phasenext < 0) phasenext += TWOPI;
while(phasenext >= TWOPI) phasenext -= TWOPI;
m_phases[i] = phasenext;
}
return 1;
}
else {
m_error = 1;
return 0;
}
}
|