1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
|
////////////////////////////////////////////////////////////////////////
// This file is part of the SndObj library
//
// This program is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
//
// Copyright (c)Victor Lazzarini, 1997-2004
// See License.txt for a disclaimer of all warranties
// and licensing information
#include "AdSyn.h"
AdSyn::AdSyn(){
}
AdSyn::AdSyn(SinAnal* input, int maxtracks, Table* table,
float pitch, float scale, int vecsize, float sr)
:ReSyn(input, maxtracks, table, pitch, scale, 1.f, vecsize, sr){
}
AdSyn::~AdSyn(){
}
short
AdSyn::DoProcess() {
if(m_input){
float ampnext,amp,freq,freqnext,phase;
int i3, i, j, ID, track;
int notcontin = 0;
bool contin = false;
int oldtracks = m_tracks;
float* tab = m_ptable->GetTable();
if((m_tracks = ((SinAnal *)m_input)->GetTracks()) >
m_maxtracks) m_tracks = m_maxtracks;
memset(m_output, 0, sizeof(float)*m_vecsize);
// for each track
i = j = 0;
while(i < m_tracks*3){
i3 = i/3;
ampnext = m_input->Output(i)*m_scale;
freqnext = m_input->Output(i+1)*m_pitch;
ID = ((SinAnal *)m_input)->GetTrackID(i3);
j = i3+notcontin;
if(i3 < oldtracks-notcontin){
if(m_trackID[j]==ID){
// if this is a continuing track
track = j;
contin = true;
freq = m_freqs[track];
phase = m_phases[track];
amp = m_amps[track];
}
else {
// if this is a dead track
contin = false;
track = j;
freqnext = freq = m_freqs[track];
phase = m_phases[track];
amp = m_amps[track];
ampnext = 0.f;
}
}
else{
// new tracks
contin = true;
track = -1;
freq = freqnext;
phase = -freq*m_factor;
amp = 0.f;
}
// interpolation & track synthesis loop
float a,f,frac,incra,incrph;
int ndx;
a = amp;
f = freq;
incra = (ampnext - amp)/m_vecsize;
incrph = (freqnext - freq)/m_vecsize;
for(m_vecpos=0; m_vecpos < m_vecsize; m_vecpos++){
if(m_enable) {
// table lookup oscillator
phase += f*m_ratio;
while(phase < 0) phase += m_size;
while(phase >= m_size) phase -= m_size;
ndx = Ftoi(phase);
frac = phase - ndx;
m_output[m_vecpos] += a*(tab[ndx] + (tab[ndx+1] - tab[ndx])*frac);
a += incra;
f += incrph;
}
else m_output[m_vecpos] = 0.f;
}
// keep amp, freq, and phase values for next time
if(contin){
m_amps[i3] = ampnext;
m_freqs[i3] = freqnext;
m_phases[i3] = phase;
m_trackID[i3] = ID;
i += 3;
} else notcontin++;
}
return 1;
}
else {
m_error = 1;
return 0;
}
}
|