summaryrefslogtreecommitdiff
path: root/sndobj.py
blob: 1b60f9ef2114dbf712b96ff2d4595eeb7ead68a3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
# Copyright (c) 2009 John Glover, National University of Ireland, Maynooth
# 
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of 
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA

import simpl
import pysndobj
import numpy as np

class SndObjPeakDetection(simpl.PeakDetection):
    "Sinusoidal peak detection using the SndObj library (Instantaneous Frequency)"
    def __init__(self):
        simpl.PeakDetection.__init__(self)
        self._input = pysndobj.SndObj()
        self._input.SetVectorSize(self.frame_size)
        self._window = pysndobj.HammingTable(self.frame_size, 0.5)
        self._ifgram = pysndobj.IFGram(self._window, self._input, 1, 
                                         self.frame_size, self.hop_size)
        self._threshold = 0.003
        self._analysis = pysndobj.SinAnal(self._ifgram, self._threshold,
                                             self.max_peaks)
        
    # properties
    threshold = property(lambda self: self.get_threshold(),
                         lambda self, x: self.set_threshold(x))
        
    def set_frame_size(self, frame_size):
        "Set the analysis frame size"
        self._input.SetVectorSize(frame_size)
        if self.window_type == "hamming":
            self._window = pysndobj.HammingTable(frame_size, 0.5)
        elif self.window_type >=0 and self.window_type <= 1:
            self._window = pysndobj.HammingTable(frame_size, self.window_type)
        self._ifgram.Connect("window", self._window)  
        self._ifgram.Set("fft size", frame_size)
        self._frame_size = frame_size
        
    def set_hop_size(self, hop_size):
        self._ifgram.Set("hop size", hop_size)
        self._hop_size = hop_size
     
    def set_max_peaks(self, max_peaks):
        "Set the maximum number of peaks detected"
        self._analysis.Set("max tracks", max_peaks)
        self._max_peaks = max_peaks
           
    def set_window_type(self, window_type):
        "Set the analysis window type"
        if window_type == "hamming":
            self._window = pysndobj.HammingTable(self.frame_size, 0.5)
        elif window_type >=0 and window_type <= 1:
            self._window = pysndobj.HammingTable(self.frame_size, window_type)
        else:
            raise Exception("UnknownWindowType")
        self._ifgram.Connect("window", self._window)     
        self._window_type = window_type       
        
    def get_threshold(self):
        return self._threshold
    
    def set_threshold(self, threshold):
        self._analysis.Set("threshold", threshold)
        self._threshold = threshold
        
    def find_peaks_in_frame(self, frame):
        "Find and return all spectral peaks in a given frame of audio"
        current_peaks = []
        self._input.PushIn(frame)
        self._input.DoProcess()
        self._ifgram.DoProcess()
        num_peaks_found = self._analysis.FindPeaks()
        # loop through analysis output and create peak objects
        for i in range(num_peaks_found):
            p = simpl.Peak()
            p.amplitude = self._analysis.Output(i*3)
            p.frequency = self._analysis.Output((i*3)+1)
            p.phase = self._analysis.Output((i*3)+2)
            if not current_peaks:
                current_peaks.append(p)
            else:
                if np.abs(p.frequency - current_peaks[-1].frequency) > self._min_peak_separation:
                    current_peaks.append(p)
                else:
                    if p.amplitude > current_peaks[-1].amplitude:
                        current_peaks.remove(current_peaks[-1])
                        current_peaks.append(p)
        return current_peaks
    

class SndObjPartialTracking(simpl.PartialTracking):
    "Partial tracking using the algorithm from the Sound Object Library"
    def __init__(self):
        simpl.PartialTracking.__init__(self)
        self._threshold = 0.003 # todo: property
        self._num_bins = 1025 # todo: property
        self._analysis = pysndobj.SinAnal(pysndobj.SndObj(), self._num_bins,
                                             self._threshold, self.max_partials)
        
    def set_max_partials(self, num_partials):
        self._analysis.Set("max tracks", num_partials)
        self._max_partials = num_partials
             
    def update_partials(self, frame, frame_number):
        "Streamable (real-time) partial-tracking."
        frame_partials = []
        # load Peak amplitudes, frequencies and phases into arrays
        num_peaks = len(frame)
        amps = simpl.zeros(num_peaks)
        freqs = simpl.zeros(num_peaks)
        phases = simpl.zeros(num_peaks)
        for i in range(num_peaks):
            peak = frame[i]
            amps[i] = peak.amplitude
            freqs[i] = peak.frequency
            phases[i] = peak.phase
        # set peaks in SndObj SinAnal object
        self._analysis.SetPeaks(amps, freqs, phases)
        # call SndObj partial tracking
        self._analysis.PartialTracking()
        # form Partial objects
        num_partials = self._analysis.GetTracks()
        for i in range(num_partials):
            peak = simpl.Peak()
            peak.amplitude = self._analysis.Output(i*3)
            peak.frequency = self._analysis.Output((i*3)+1)
            peak.phase = self._analysis.Output((i*3)+2)
            id = self._analysis.GetTrackID(i)
            # if this is a continuing partial, create a peak and append it
            if id >= 0 and id <= len(self.partials) - 1:
                self.partials[id].add_peak(peak)
            # if not, make a new partial
            else:
                partial = simpl.Partial()
                partial.starting_frame = frame_number
                partial.add_peak(peak)
                self.partials.append(partial)
            frame_partials.append(peak)
        return frame_partials
    
                
class SimplSndObjAnalysisWrapper(pysndobj.SinAnal):
    """An object that takes simpl Peaks and presents them as SndObj analysis 
    data to the SndObj synthesis objects."""
    def __init__(self):
        pysndobj.SinAnal.__init__(self)
        self.peaks = []
        
    def GetTracks(self):
        return len(self.peaks)

    def GetTrackID(self, partial_number):
        if partial_number < len(self.peaks):
            return self.peaks[partial_number].partial_id
        else:
            # TODO: what should this return if no matching partial found?
            return 0
        
    def Output(self, position):
        peak = int(position) / 3
        if peak > len(self.peaks):
            # TODO: what should this return if no matching partial found?
            return 0.0

        data_field = int(position) % 3
        if data_field is 0:
            return self.peaks[peak].amplitude
        elif data_field is 1:
            return self.peaks[peak].frequency
        elif data_field is 2:
            return self.peaks[peak].phase
        
        
class SndObjSynthesis(simpl.Synthesis):
    "Sinusoidal resynthesis using the SndObj library"
    def __init__(self, synthesis_type='adsyn'):
        simpl.Synthesis.__init__(self)
        self._analysis = SimplSndObjAnalysisWrapper()
        self._table = pysndobj.HarmTable(10000, 1, 1, 0.25)
        if synthesis_type == 'adsyn':
            self._synth = pysndobj.AdSyn(self._analysis, self.max_partials,
                                            self._table, 1, 1, self.hop_size)
        elif synthesis_type == 'sinsyn':
            self._synth = pysndobj.SinSyn(self._analysis, self.max_partials,
                                          self._table, 1, self.hop_size)
        else:
            raise Exception("UnknownSynthesisType")
        self._current_frame = simpl.zeros(self.hop_size)
        
    def set_hop_size(self, hop_size):
        self._synth.SetVectorSize(hop_size)
        self._hop_size = hop_size
        self._current_frame = simpl.zeros(hop_size)
        
    def set_max_partials(self, num_partials):
        self._synth.Set('max tracks', num_partials)
        self._max_partials = num_partials
        
    def synth_frame(self, peaks):
        "Synthesises a frame of audio, given a list of peaks from tracks"
        self._analysis.peaks = peaks
        if len(peaks) > self._max_partials:
            self.max_partials = len(peaks)
        self._synth.DoProcess()
        self._synth.PopOut(self._current_frame)
        return self._current_frame