summaryrefslogtreecommitdiff
path: root/sms/spectralApprox.c
blob: 9e77f7ab3214ba8db483da3053fdb0e0ecade5c0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
/* 
 * Copyright (c) 2008 MUSIC TECHNOLOGY GROUP (MTG)
 *                         UNIVERSITAT POMPEU FABRA 
 * 
 * 
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 * 
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of 
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 * 
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 * 
 */
/*! \file spectralApprox.c
 * \brief line segment approximation of a magnitude spectrum
 */
#include "sms.h"

/*! \brief approximate a magnitude spectrum
 * First downsampling using local maxima and then upsampling using linear 
 * interpolation. The output spectrum doesn't have to be the same size as 
 * the input one.
 *
 * \param pFSpec1     magnitude spectrum to approximate
 * \param sizeSpec1       size of input spectrum
 * \param sizeSpec1Used  size of the spectrum to use
 * \param pFSpec2     output envelope
 * \param sizeSpec2      size of output envelope
 * \param nCoefficients  number of coefficients to use in approximation
 * \return error code \see SMS_ERRORS (or -1 if the algorithm just messes up, 
               it will print an error of its own.
 */
int sms_spectralApprox (sfloat *pFSpec1, int sizeSpec1, int sizeSpec1Used,
                    sfloat *pFSpec2, int sizeSpec2, int nCoefficients)
{
	sfloat fHopSize, fCurrentLoc = 0, fLeft = 0, fRight = 0, fValue = 0, 
		fLastLocation, fSizeX, fSpec2Acum=0, fNextHop, fDeltaY, *pFEnvelope;
	int iFirstGood = 0, iLastSample = 0, i, j;

  	/* when number of coefficients is smaller than 2 do not approximate */
	if (nCoefficients < 2)
	{
		for (i = 0; i < sizeSpec2; i++)
			pFSpec2[i] = 1;
		return(SMS_OK);
	}

	if ((pFEnvelope = (sfloat *) calloc(nCoefficients, sizeof(sfloat))) == NULL)
		return(SMS_MALLOC);
 
	/* calculate the hop size */
	if (sizeSpec1 != sizeSpec1Used)
                fHopSize = (sfloat) sizeSpec1Used / nCoefficients;
	else //why is this here, would be the same as sizeSpec1Used / nCoefficients
		fHopSize = (sfloat) sizeSpec1 / nCoefficients;
        if(nCoefficients > sizeSpec1)
                nCoefficients = sizeSpec1;

        fHopSize = (sfloat) sizeSpec1Used / nCoefficients;
        
	/* approximate by linear interpolation */
	if (fHopSize > 1)
	{
		iFirstGood = 0;
		for (i = 0; i < nCoefficients; i++)
		{
			iLastSample = fLastLocation = fCurrentLoc + fHopSize;
			iLastSample = MIN (sizeSpec1-1, iLastSample);
			if (iLastSample < sizeSpec1-1)
				fRight = pFSpec1[iLastSample] +
					(pFSpec1[iLastSample+1] - pFSpec1[iLastSample]) * 
					(fLastLocation - iLastSample);
			else
				fRight = pFSpec1[iLastSample];
			fValue = 0;
			for (j = iFirstGood; j <= iLastSample; j++)
				fValue = MAX (fValue, pFSpec1[j]);
			fValue = MAX (fValue, MAX (fRight, fLeft));
			pFEnvelope[i] = fValue;
			fLeft = fRight;
			fCurrentLoc = fLastLocation;
			iFirstGood = (int) (1+ fCurrentLoc);
		}
	}
	else if (fHopSize == 1)
	{
		for (i = 0; i < nCoefficients; i++)
			pFEnvelope[i] = pFSpec1[i];
	}
	else
	{
		free (pFEnvelope);
		//printf ("SpectralApprox: sizeSpec1 has too many nCoefficients\n"); /* \todo need to increase the frequency? */
		sms_error ("SpectralApprox: sizeSpec1 has too many nCoefficients\n"); /* \todo need to increase the frequency? */
		return -1;
	}

	/* Creates Spec2 from Envelope */
	if (nCoefficients < sizeSpec2)
	{
		fSizeX = (sfloat) (sizeSpec2-1) / nCoefficients;

		/* the first step */
		fNextHop = fSizeX / 2;
		fDeltaY = pFEnvelope[0] / fNextHop;
		fSpec2Acum=pFSpec2[j=0]=0;
		while (++j < fNextHop)  
			pFSpec2[j] = (fSpec2Acum += fDeltaY);
     
		/* middle values */
		for (i = 0; i <= nCoefficients-2; ++i) 
		{
			fDeltaY = (pFEnvelope[i+1] - pFEnvelope[i]) / fSizeX;
			/* first point of a segment */
			pFSpec2[j] = (fSpec2Acum = (pFEnvelope[i]+(fDeltaY*(j-fNextHop))));
			++j;
			/* remaining points */
			fNextHop += fSizeX;
			while (j < fNextHop)  
				pFSpec2[j++] = (fSpec2Acum += fDeltaY);
    	}

		/* last step */
		fDeltaY = -pFEnvelope[i] * 2 / fSizeX;
		/* first point of the last segment */
		pFSpec2[j] = (fSpec2Acum = (pFEnvelope[i]+(fDeltaY*(j-fNextHop))));
		++j;
		fNextHop += fSizeX / 2;
		while (j < sizeSpec2-1)  
			pFSpec2[j++]=(fSpec2Acum += fDeltaY);
		/* last should be exactly zero */
		pFSpec2[sizeSpec2-1] = .0;	
    }
	else if (nCoefficients == sizeSpec2)
	{
		for (i = 0; i < nCoefficients; i++)
			pFSpec2[i] = pFEnvelope[i];
	}
	else
	{
		free (pFEnvelope);
		//printf ("SpectralApprox: sizeSpec2 has too many nCoefficients\n");
		sms_error ("SpectralApprox: sizeSpec2 has too many nCoefficients\n");
		return -1;
	}
	free (pFEnvelope); /* \todo make this a static array */
	return (SMS_OK);
}