summaryrefslogtreecommitdiff
path: root/sms/cepstrum.c
blob: 26af0680cdaba0d725069dceab59c0bb6c3f7f0f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
/* 
 * Copyright (c) 2008 MUSIC TECHNOLOGY GROUP (MTG)
 *                         UNIVERSITAT POMPEU FABRA 
 * 
 * 
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 * 
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of 
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 * 
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 * 
 */
/*! \file cepstrum.c 
 * \brief routines for different Fast Fourier Transform Algorithms
 *
 */

#include "sms.h"
#include <gsl/gsl_matrix.h>
#include <gsl/gsl_linalg.h>
#include <gsl/gsl_blas.h>

#define COEF ( 8 * powf(PI, 2)) 
#define CHOLESKY 1

typedef struct
{
        int nPoints;
        int nCoeff;
        gsl_matrix *pM;
        gsl_matrix *pMt;
        gsl_matrix *pR;
        gsl_matrix *pMtMR;
        gsl_vector *pXk;
        gsl_vector *pMtXk;
        gsl_vector *pC;
        gsl_permutation *pPerm;
} CepstrumMatrices;

void FreeDCepstrum(CepstrumMatrices *m)
{
        gsl_matrix_free(m->pM);
        gsl_matrix_free(m->pMt);
        gsl_matrix_free(m->pR);
        gsl_matrix_free(m->pMtMR);
        gsl_vector_free(m->pXk);
        gsl_vector_free(m->pMtXk);
        gsl_vector_free(m->pC);
        gsl_permutation_free (m->pPerm);

}

void AllocateDCepstrum(int nPoints, int nCoeff, CepstrumMatrices *m)
{
        if(m->nPoints != 0 || m->nCoeff != 0) 
                FreeDCepstrum(m);
        m->nPoints = nPoints;
        m->nCoeff = nCoeff;
        m->pM = gsl_matrix_alloc(nPoints, nCoeff);
        m->pMt = gsl_matrix_alloc(nCoeff, nPoints);
        m->pR = gsl_matrix_calloc(nCoeff, nCoeff);
        m->pMtMR = gsl_matrix_alloc(nCoeff, nCoeff);
        m->pXk = gsl_vector_alloc(nPoints);
        m->pMtXk = gsl_vector_alloc(nCoeff);
        m->pC = gsl_vector_alloc(nCoeff);
        m->pPerm = gsl_permutation_alloc (nCoeff);
}

/*! \brief Discrete Cepstrum Transform
 *
 * method for computing cepstrum aenalysis from a discrete
 * set of partial peaks (frequency and amplitude)
 *
 * This implementation is owed to the help of Jordi Janer (thanks!) from the MTG,
 * along with the following paper:
 * "Regularization Techniques for Discrete Cepstrum Estimation"
 * Olivier Cappe and Eric Moulines, IEEE Signal Processing Letters, Vol. 3
 * No.4, April 1996
 *
 * \todo add anchor point add at frequency = 0 with the same magnitude as the first
 * peak in pMag.  This does not change the size of the cepstrum, only helps to smoothen it
 * at the very beginning.
 *
 * \param sizeCepstrum order+1 of the discrete cepstrum
 * \param pCepstrum pointer to output array of cepstrum coefficients
 * \param sizeFreq number of partials peaks (the size of pFreq should be the same as pMag
 * \param pFreq pointer to partial peak frequencies (hertz)
 * \param pMag pointer to partial peak magnitudes (linear)
 * \param fLambda regularization factor
 * \param iMaxFreq maximum frequency of cepstrum
 */
void sms_dCepstrum( int sizeCepstrum, sfloat *pCepstrum, int sizeFreq, sfloat *pFreq, sfloat *pMag, 
                    sfloat fLambda, int iMaxFreq)
{
        int i, k;
        sfloat factor;
        sfloat fNorm = PI  / (sfloat)iMaxFreq; /* value to normalize frequencies to 0:0.5 */
        //static sizeCepstrumStatic
        static CepstrumMatrices m;
        //printf("nPoints: %d, nCoeff: %d \n", m.nPoints, m.nCoeff);
        if(m.nPoints != sizeCepstrum || m.nCoeff != sizeFreq)
                AllocateDCepstrum(sizeFreq, sizeCepstrum, &m);
        int s; /* signum: "(-1)^n, where n is the number of interchanges in the permutation." */
        /* compute matrix M (eq. 4)*/
	for (i=0; i<sizeFreq; i++)
	{
                gsl_matrix_set (m.pM, i, 0, 1.); // first colum is all 1
		for (k=1; k <sizeCepstrum; k++)
                        gsl_matrix_set (m.pM, i, k , 2.*sms_sine(PI_2 + fNorm * k * pFreq[i]) );
	}

        /* compute transpose of M */
        gsl_matrix_transpose_memcpy (m.pMt, m.pM);
                               
        /* compute R diagonal matrix (for eq. 7)*/
        factor = COEF * (fLambda / (1.-fLambda)); /* \todo why is this divided like this again? */
	for (k=0; k<sizeCepstrum; k++)
                gsl_matrix_set(m.pR, k, k, factor * powf((sfloat) k,2.));

        /* MtM = Mt * M, later will add R */
        gsl_blas_dgemm  (CblasNoTrans, CblasNoTrans, 1., m.pMt, m.pM, 0.0, m.pMtMR);
        /* add R to make MtMR */
        gsl_matrix_add (m.pMtMR, m.pR);

        /* set pMag in X and multiply with Mt to get pMtXk */
        for(k = 0; k <sizeFreq; k++)
                gsl_vector_set(m.pXk, k, log(pMag[k]));
        gsl_blas_dgemv (CblasNoTrans, 1., m.pMt, m.pXk, 0., m.pMtXk);

        /* solve x (the cepstrum) in Ax = b, where A=MtMR and b=pMtXk */ 

        /* ==== the Cholesky Decomposition way ==== */
        /* MtM is 'symmetric and positive definite?' */
        //gsl_linalg_cholesky_decomp (m.pMtMR);
        //gsl_linalg_cholesky_solve (m.pMtMR, m.pMtXk, m.pC);

        /* ==== the LU decomposition way ==== */
        gsl_linalg_LU_decomp (m.pMtMR, m.pPerm, &s);
        gsl_linalg_LU_solve (m.pMtMR, m.pPerm, m.pMtXk, m.pC);

        
        /* copy pC to pCepstrum */
        for(i = 0; i  < sizeCepstrum; i++)
                pCepstrum[i] = gsl_vector_get (m.pC, i);
}

/*! \brief Spectrum Envelope from Cepstrum
 *
 *  from a set of cepstrum coefficients, compute the spectrum envelope
 *  
 * \param sizeCepstrum order + 1 of the cepstrum 
 * \param pCepstrum pointer to array of cepstrum coefficients
 * \param sizeEnv  size of spectrum envelope (max frequency in bins) \todo does this have to be a pow2
 * \param pEnv pointer to output spectrum envelope (real part only)
 */
void sms_dCepstrumEnvelope(int sizeCepstrum, sfloat *pCepstrum, int sizeEnv, sfloat *pEnv)
{
        
        static sfloat *pFftBuffer;
        static int sizeFftArray = 0;
        int sizeFft = sizeEnv << 1;
        int i;
        if(sizeFftArray != sizeFft)
        {
                if(sizeFftArray != 0) free(pFftBuffer);
                sizeFftArray = sms_power2(sizeFft);
                if(sizeFftArray != sizeFft)
                {
                        sms_error("bad fft size, incremented to power of 2");
                }
                if ((pFftBuffer = (sfloat *) malloc(sizeFftArray * sizeof(sfloat))) == NULL)
                {
                        sms_error("could not allocate memory for fft array");
                        return;
                }
        }
        memset(pFftBuffer, 0, sizeFftArray * sizeof(sfloat));

        pFftBuffer[0] = pCepstrum[0] * 0.5;
        for (i = 1; i < sizeCepstrum-1; i++)
                pFftBuffer[i] = pCepstrum[i];


        sms_fft(sizeFftArray, pFftBuffer);

        for (i = 0; i < sizeEnv; i++)
                pEnv[i] = powf(EXP, 2. * pFftBuffer[i*2]);
}

/*! \brief main function for computing spectral envelope from sinusoidal peaks
 *
 * Magnitudes should already be in linear for this function.
 * If pSmsData->iEnvelope == SMS_ENV_CEP, will return cepstrum coefficeints
 * If pSmsData->iEnvelope == SMS_ENV_FBINS, will return linear magnitude spectrum
 * 
 * \param pSmsData pointer to SMS_Data structure with all the arrays necessary
 * \param pSpecEnvParams pointer to a structure of parameters for spectral enveloping
 */
void sms_spectralEnvelope( SMS_Data *pSmsData, SMS_SEnvParams *pSpecEnvParams)
{
        int i, k;
        int sizeCepstrum = pSpecEnvParams->iOrder+1;
        //int nPeaks = 0;
        static sfloat pFreqBuff[1000], pMagBuff[1000];
       
        /* \todo see if this memset is even necessary, once working */
        //memset(pSmsData->pSpecEnv, 0, pSpecEnvParams->nCoeff * sizeof(sfloat));

        /* try to store cepstrum coefficients in pSmsData->nEnvCoeff always.
           if cepstrum is what is wanted, memset the rest. otherwise, hand this array 2x to dCepstrumEnvelope */
        if(pSpecEnvParams->iOrder + 1> pSmsData->nEnvCoeff)
        {
                sms_error("cepstrum order is larger than the size of the spectral envelope");
                return;
        }

        /* find out how many tracks were actually found... many are zero
           \todo is this necessary? */
        for(i = 0, k=0; i < pSmsData->nTracks; i++)
        {
                if(pSmsData->pFSinFreq[i] > 0.00001)
                {
                        if(pSpecEnvParams->iAnchor != 0)
                        {
                                if(k == 0) /* add anchor at beginning */

                                {
                                        pFreqBuff[k] = 0.0;
                                        pMagBuff[k] = pSmsData->pFSinAmp[i];
                                        k++;
                                }
                        }
                        pFreqBuff[k] = pSmsData->pFSinFreq[i];
                        pMagBuff[k] = pSmsData->pFSinAmp[i];
                        k++;
                }
        }
        /* \todo see if adding an anchor at the max freq helps */
        

        if(k < 1) // how few can this be?  try out a few in python
                return;
        sms_dCepstrum(sizeCepstrum, pSmsData->pSpecEnv, k, pFreqBuff, pMagBuff, 
                      pSpecEnvParams->fLambda, pSpecEnvParams->iMaxFreq);

        if(pSpecEnvParams->iType == SMS_ENV_FBINS)
        {
                sms_dCepstrumEnvelope(sizeCepstrum, pSmsData->pSpecEnv, 
                                      pSpecEnvParams->nCoeff, pSmsData->pSpecEnv);
        }
}