1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
|
# Copyright (c) 2009 John Glover, National University of Ireland, Maynooth
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
import simpl
import numpy as np
class Peak(object):
"A spectral peak"
def __init__(self):
self.amplitude = 0.0
self.frequency = 0.0
self.phase = 0.0
self.next_peak = None
self.previous_peak = None
self.partial_id = None
self.partial_position = None
self.frame_number = None
def is_start_of_partial(self):
return self.previous_peak is None
def is_free(self, direction='forwards'):
"Returns true iff this peak is unmatched in the given direction, and has positive amplitude"
if self.amplitude <= 0:
return False
if direction == 'forwards':
if self.next_peak:
return False
elif direction == 'backwards':
if self.previous_peak:
return False
else:
return False
return True
def compare_peak_amps(peak_x, peak_y):
"""Compares two peaks, and returns 1, 0 or -1 if the first has a greater
amplitude than the second, they have the same amplitude, or the second has
a greater amplitude than the first respectively.
Can be used to sort lists of peaks."""
if peak_x.amplitude > peak_y.amplitude:
return 1
elif peak_x.amplitude < peak_y.amplitude:
return -1
else:
return 0
def compare_peak_freqs(peak_x, peak_y):
"""Compares two peaks, and returns 1, 0 or -1 if the first has a greater
frequency than the second, they have the same frequency, or the second has
a greater frequency than the first respectively.
Can be used to sort lists of peaks."""
if peak_x.frequency > peak_y.frequency:
return 1
elif peak_x.frequency < peak_y.frequency:
return -1
else:
return 0
class Partial(object):
"Represents a sinuoidal partial or track, an ordered sequence of Peaks"
_num_partials = 0
def __init__(self):
"Initialise peaks list and increment partial_id"
self.peaks = []
self.starting_frame = 0
self.partial_number = -1
self.partial_id = Partial._num_partials
Partial._num_partials += 1
def add_peak(self, peak):
"Add peak to this partial, setting its id and partial_id."
partial_position = len(self.peaks)
last_peak = self.get_last_peak()
self.peaks.append(peak)
if last_peak:
last_peak.next_peak = peak
peak.previous_peak = last_peak
peak.partial_position = partial_position
peak.partial_id = self.partial_id
peak.partial_number = self.partial_number
def get_length(self):
"Return the length of this partial (as a number of frames)"
return len(self.peaks)
def get_last_frame(self):
"Return the frame number of the last frame in this partial"
return self.starting_frame + self.get_length()
def get_last_peak(self):
"Return the last peak of this partial"
if self.peaks:
return self.peaks[-1]
return None
def list_peaks(self):
"A generator that returns the peaks in this partial"
for peak in self.peaks:
yield peak
class Frame(object):
"""Represents a frame of audio information.
This can be: - raw audio samples
- an unordered list of sinusoidal peaks
- an ordered list of partials
- synthesised audio samples
- residual samples
- synthesised residual samples"""
def __init__(self):
self._size = 512
self._max_partials = 100
self.audio = None
self.peaks = None
self.partials = None
self.synth = None
self.residual = None
self.synth_residual = None
class PeakDetection(object):
"Detect spectral peaks"
def __init__(self):
self._sampling_rate = 44100
self._frame_size = 2048
self._static_frame_size = True
self._hop_size = 512
self._max_peaks = 100
self._window_type = "hamming"
self._window_size = 2048
self._min_peak_separation = 1.0 # in Hz
self.frames = []
# properties
sampling_rate = property(lambda self: self.get_sampling_rate(),
lambda self, x: self.set_sampling_rate(x))
frame_size = property(lambda self: self.get_frame_size(),
lambda self, x: self.set_frame_size(x))
hop_size = property(lambda self: self.get_hop_size(),
lambda self, x: self.set_hop_size(x))
max_peaks = property(lambda self: self.get_max_peaks(),
lambda self, x: self.set_max_peaks(x))
window_type = property(lambda self: self.get_window_type(),
lambda self, x: self.set_window_type(x))
window_size = property(lambda self: self.get_window_size(),
lambda self, x: self.set_window_size(x))
def get_sampling_rate(self):
return self._sampling_rate
def set_sampling_rate(self, sampling_rate):
self._sampling_rate = sampling_rate
def get_frame_size(self):
return self._frame_size
def set_frame_size(self, frame_size):
self._frame_size = frame_size
def get_hop_size(self):
return self._hop_size
def set_hop_size(self, hop_size):
self._hop_size = hop_size
def get_max_peaks(self):
return self._max_peaks
def set_max_peaks(self, max_peaks):
self._max_peaks = max_peaks
def get_window_type(self):
return self._window_type
def set_window_type(self, window_type):
self._window_type = window_type
def get_window_size(self):
return self._window_size
def set_window_size(self, window_size):
self._window_size = window_size
def get_next_frame_size(self):
return self._frame_size
def find_peaks_in_frame(self, frame):
"Find and return all spectral peaks in a given frame of audio"
peaks = []
return peaks
def find_peaks(self, audio):
"""Find and return all spectral peaks in a given audio signal.
If the signal contains more than 1 frame worth of audio, it will be broken
up into separate frames, with a list of peaks returned for each frame."""
self.frames = []
pos = 0
while pos < len(audio):
# get the next frame size
if not self._static_frame_size:
self.frame_size = self.get_next_frame_size()
# get the next frame
frame = Frame()
frame.size = self.frame_size
frame.audio = audio[pos:pos+self.frame_size]
# pad if necessary
if len(frame.audio) < self.frame_size:
frame.audio = np.hstack((frame.audio,
simpl.zeros(self.frame_size - len(frame.audio))))
# find peaks
frame.peaks = self.find_peaks_in_frame(frame)
self.frames.append(frame)
pos += self.hop_size
return self.frames
class PartialTracking(object):
"Link spectral peaks from consecutive frames to form partials"
def __init__(self):
self._sampling_rate = 44100
self._max_partials = 100
self._min_partial_length = 0
self._max_gap = 2
self.frames = []
# properties
sampling_rate = property(lambda self: self.get_sampling_rate(),
lambda self, x: self.set_sampling_rate(x))
max_partials = property(lambda self: self.get_max_partials(),
lambda self, x: self.set_max_partials(x))
min_partial_length = property(lambda self: self.get_min_partial_length(),
lambda self, x: self.set_min_partial_length(x))
max_gap = property(lambda self: self.get_max_gap(),
lambda self, x: self.set_max_gap(x))
def get_sampling_rate(self):
return self._sampling_rate
def set_sampling_rate(self, sampling_rate):
self._sampling_rate = sampling_rate
def get_max_partials(self):
return self._max_partials
def set_max_partials(self, num_partials):
self._max_partials = num_partials
def get_min_partial_length(self):
return self._min_partial_length
def set_min_partial_length(self, length):
self._min_partial_length = length
def get_max_gap(self):
return self._max_gap
def set_max_gap(self, gap):
self._max_gap = gap
def update_partials(self, frame):
"Streamable (real-time) partial-tracking."
peaks = [None for i in range(self.max_partials)]
return peaks
def find_partials(self, frames):
"""Find partials from the sinusoidal peaks in a list of Frames"""
self.frames = []
for frame in frames:
frame.partials = self.update_partials(frame)
self.frames.append(frame)
return self.frames
class Synthesis(object):
"Synthesise audio from spectral analysis data"
def __init__(self):
self._frame_size = 512
self._hop_size = 512
self._max_partials = 100
self._sampling_rate = 44100
# properties
frame_size = property(lambda self: self.get_frame_size(),
lambda self, x: self.set_frame_size(x))
hop_size = property(lambda self: self.get_hop_size(),
lambda self, x: self.set_hop_size(x))
max_partials = property(lambda self: self.get_max_partials(),
lambda self, x: self.set_max_partials(x))
max_partials = property(lambda self: self.get_max_partials(),
lambda self, x: self.set_max_partials(x))
sampling_rate = property(lambda self: self.get_sampling_rate(),
lambda self, x: self.set_sampling_rate(x))
def get_frame_size(self):
return self._frame_size
def set_frame_size(self, frame_size):
self._frame_size = frame_size
def get_hop_size(self):
return self._hop_size
def set_hop_size(self, hop_size):
self._hop_size = hop_size
def get_max_partials(self):
return self._max_partials
def set_max_partials(self, num_partials):
self._max_partials = num_partials
def get_sampling_rate(self):
return self._sampling_rate
def set_sampling_rate(self, sampling_rate):
self._sampling_rate = sampling_rate
def synth_frame(self, frame):
"Synthesises a frame of audio, given a list of peaks from tracks"
raise Exception("NotYetImplemented")
def synth(self, frames):
"Synthesise audio from the given partials"
audio_out = simpl.array([])
for frame in frames:
audio_out = np.hstack((audio_out, self.synth_frame(frame)))
return audio_out
class Residual(object):
"Calculate a residual signal"
def __init__(self):
self._hop_size = 512
self._frame_size = 512
frame_size = property(lambda self: self.get_frame_size(),
lambda self, x: self.set_frame_size(x))
hop_size = property(lambda self: self.get_hop_size(),
lambda self, x: self.set_hop_size(x))
def get_frame_size(self):
return self._frame_size
def set_frame_size(self, frame_size):
self._frame_size = frame_size
def get_hop_size(self):
return self._hop_size
def set_hop_size(self, hop_size):
self._hop_size = hop_size
def residual_frame(self, synth, original):
"Computes the residual signal for a frame of audio"
raise Exception("NotYetImplemented")
def find_residual(self, synth, original):
"Calculate and return the residual signal"
# pad the signals if necessary
if len(synth) % self.hop_size != 0:
synth = np.hstack((synth, np.zeros(self.hop_size - (len(synth) % self.hop_size))))
if len(original) % self.hop_size != 0:
original = np.hstack((original, np.zeros(self.hop_size - (len(original) % self.hop_size))))
num_frames = len(original) / self.hop_size
residual = simpl.array([])
sample_offset = 0
for i in range(num_frames):
synth_frame = synth[sample_offset:sample_offset+self.hop_size]
original_frame = original[sample_offset:sample_offset+self.hop_size]
residual = np.hstack((residual,
self.residual_frame(synth_frame, original_frame)))
sample_offset += self.hop_size
return residual
def synth_frame(self, synth, original):
"Calculate and return one frame of the synthesised residual signal"
raise Exception("NotYetImplemented")
def synth(self, synth, original):
"Calculate and return a synthesised residual signal"
# pad the signals if necessary
if len(synth) % self.hop_size != 0:
synth = np.hstack((synth, np.zeros(self.hop_size - (len(synth) % self.hop_size))))
if len(original) % self.hop_size != 0:
original = np.hstack((original, np.zeros(self.hop_size - (len(original) % self.hop_size))))
num_frames = len(original) / self.hop_size
residual = simpl.array([])
sample_offset = 0
for i in range(num_frames):
synth_frame = synth[sample_offset:sample_offset+self.hop_size]
original_frame = original[sample_offset:sample_offset+self.hop_size]
residual = np.hstack((residual,
self.synth_frame(synth_frame, original_frame)))
sample_offset += self.hop_size
return residual
|