summaryrefslogtreecommitdiff
path: root/sndobj.py
diff options
context:
space:
mode:
Diffstat (limited to 'sndobj.py')
-rw-r--r--sndobj.py231
1 files changed, 231 insertions, 0 deletions
diff --git a/sndobj.py b/sndobj.py
new file mode 100644
index 0000000..9dae868
--- /dev/null
+++ b/sndobj.py
@@ -0,0 +1,231 @@
+# Copyright (c) 2009 John Glover, National University of Ireland, Maynooth
+#
+# This program is free software; you can redistribute it and/or modify
+# it under the terms of the GNU General Public License as published by
+# the Free Software Foundation; either version 2 of the License, or
+# (at your option) any later version.
+#
+# This program is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+# GNU General Public License for more details.
+#
+# You should have received a copy of the GNU General Public License
+# along with this program; if not, write to the Free Software
+# Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
+
+import simpl
+import pysndobj
+import numpy as np
+
+class SndObjPeakDetection(simpl.PeakDetection):
+ "Sinusoidal peak detection using the SndObj library (Instantaneous Frequency)"
+ def __init__(self):
+ simpl.PeakDetection.__init__(self)
+ self._input = pysndobj.SndObj()
+ self._input.SetVectorSize(self.frame_size)
+ self._window = pysndobj.HammingTable(self.frame_size, 0.5)
+ self._ifgram = pysndobj.IFGram(self._window, self._input, 1,
+ self.frame_size, self.hop_size)
+ self._threshold = 0.003
+ self._analysis = pysndobj.SinAnal(self._ifgram, self._threshold,
+ self.max_peaks)
+
+ # properties
+ threshold = property(lambda self: self.get_threshold(),
+ lambda self, x: self.set_threshold(x))
+
+ def set_frame_size(self, frame_size):
+ "Set the analysis frame size"
+ self._input.SetVectorSize(frame_size)
+ if self.window_type == "hamming":
+ self._window = pysndobj.HammingTable(frame_size, 0.5)
+ elif self.window_type >=0 and self.window_type <= 1:
+ self._window = pysndobj.HammingTable(frame_size, self.window_type)
+ self._ifgram.Connect("window", self._window)
+ self._ifgram.Set("fft size", frame_size)
+ self._frame_size = frame_size
+
+ def set_hop_size(self, hop_size):
+ self._ifgram.Set("hop size", hop_size)
+ self._hop_size = hop_size
+
+ def set_max_peaks(self, max_peaks):
+ "Set the maximum number of peaks detected"
+ self._analysis.Set("max tracks", max_peaks)
+ self._max_peaks = max_peaks
+
+ def set_window_type(self, window_type):
+ "Set the analysis window type"
+ if window_type == "hamming":
+ self._window = pysndobj.HammingTable(self.frame_size, 0.5)
+ elif window_type >=0 and window_type <= 1:
+ self._window = pysndobj.HammingTable(self.frame_size, window_type)
+ else:
+ raise Exception("UnknownWindowType")
+ self._ifgram.Connect("window", self._window)
+ self._window_type = window_type
+
+ def get_threshold(self):
+ return self._threshold
+
+ def set_threshold(self, threshold):
+ self._analysis.Set("threshold", threshold)
+ self._threshold = threshold
+
+ def find_peaks_in_frame(self, frame):
+ "Find and return all spectral peaks in a given frame of audio"
+ current_peaks = []
+ self._input.PushIn(frame)
+ self._input.DoProcess()
+ self._ifgram.DoProcess()
+ num_peaks_found = self._analysis.FindPeaks()
+ # loop through analysis output and create peak objects
+ for i in range(num_peaks_found):
+ p = simpl.Peak()
+ p.amplitude = self._analysis.Output(i*3)
+ p.frequency = self._analysis.Output((i*3)+1)
+ p.phase = self._analysis.Output((i*3)+2)
+ current_peaks.append(p)
+ return current_peaks
+
+
+class SndObjPartialTracking(simpl.PartialTracking):
+ "Partial tracking using the algorithm from the Sound Object Library"
+ def __init__(self):
+ simpl.PartialTracking.__init__(self)
+ self._threshold = 0.003 # todo: property
+ self._num_bins = 1025 # todo: property
+ self._analysis = pysndobj.SinAnal(pysndobj.SndObj(), self._num_bins,
+ self._threshold, self.max_partials)
+
+ def set_max_partials(self, num_partials):
+ self._analysis.Set("max tracks", num_partials)
+ self._max_partials = num_partials
+
+ def update_partials(self, frame, frame_number):
+ "Streamable (real-time) partial-tracking."
+ frame_partials = []
+ # load Peak amplitudes, frequencies and phases into arrays
+ num_peaks = len(frame)
+ amps = np.zeros(num_peaks, dtype=np.float32)
+ freqs = np.zeros(num_peaks, dtype=np.float32)
+ phases = np.zeros(num_peaks, dtype=np.float32)
+ for i in range(num_peaks):
+ peak = frame[i]
+ amps[i] = peak.amplitude
+ freqs[i] = peak.frequency
+ phases[i] = peak.phase
+ # set peaks in SndObj SinAnal object
+ self._analysis.SetPeaks(amps, freqs, phases)
+ # call SndObj partial tracking
+ self._analysis.PartialTracking()
+ # form Partial objects
+ num_partials = self._analysis.GetTracks()
+ for i in range(num_partials):
+ peak = simpl.Peak()
+ peak.amplitude = self._analysis.Output(i*3)
+ peak.frequency = self._analysis.Output((i*3)+1)
+ peak.phase = self._analysis.Output((i*3)+2)
+ id = self._analysis.GetTrackID(i)
+ # if this is a continuing partial, create a peak and append it
+ if id >= 0 and id <= len(self.partials) - 1:
+ self.partials[id].add_peak(peak)
+ # if not, make a new partial
+ else:
+ partial = simpl.Partial()
+ partial.starting_frame = frame_number
+ partial.add_peak(peak)
+ self.partials.append(partial)
+ frame_partials.append(peak)
+ return frame_partials
+
+
+class SimplSndObjAnalysisWrapper(pysndobj.SinAnal):
+ """An object that takes simpl Peaks and presents them as SndObj analysis
+ data to the SndObj synthesis objects."""
+ def __init__(self):
+ pysndobj.SinAnal.__init__(self)
+ self.peaks = None
+
+ def GetTracks(self):
+ return len(self.peaks)
+
+ def GetTrackID(self, partial_number):
+ return self.peaks[partial_number].partial_id
+
+ def Output(self, position):
+ peak = int(position) / 3
+ data_field = int(position) % 3
+ if data_field is 0:
+ return self.peaks[peak].amplitude
+ elif data_field is 1:
+ return self.peaks[peak].frequency
+ elif data_field is 2:
+ return self.peaks[peak].phase
+
+
+class SndObjSynthesis(simpl.Synthesis):
+ "Sinusoidal resynthesis using the SndObj library"
+ def __init__(self, synthesis_type='adsyn'):
+ simpl.Synthesis.__init__(self)
+ self._analysis = SimplSndObjAnalysisWrapper()
+ self._table = pysndobj.HarmTable(10000, 1, 1, 0.25)
+ if synthesis_type == 'adsyn':
+ self._synth = pysndobj.AdSyn(self._analysis, self.max_partials,
+ self._table, 1, 1, self.hop_size)
+ elif synthesis_type == 'sinsyn':
+ self._synth = pysndobj.SinSyn(self._analysis, self.max_partials,
+ self._table, 1, self.hop_size)
+ else:
+ raise Exception("UnknownSynthesisType")
+ self._current_frame = np.zeros(self.hop_size, dtype=np.float32)
+
+ def set_hop_size(self, hop_size):
+ self._synth.SetVectorSize(hop_size)
+ self._hop_size = hop_size
+ self._current_frame = np.zeros(hop_size, dtype=np.float32)
+
+ def set_max_partials(self, num_partials):
+ self._synth.Set('max tracks', num_partials)
+ self._max_partials = num_partials
+
+ def _synth_frame(self, peaks):
+ "Synthesises a frame of audio, given a list of peaks from tracks"
+ self._analysis.peaks = peaks
+ if len(peaks) > self._max_partials:
+ self._synth.Set('max tracks', len(peaks))
+ self._max_partials = len(peaks)
+ self._synth.DoProcess()
+ self._synth.PopOut(self._current_frame)
+ return self._current_frame
+
+ def synth(self, partials, original=None):
+ "Synthesise audio from the given partials"
+ # return an empty frame if there are no partials
+ if not partials:
+ return simpl.array([])
+
+ audio_out = simpl.array([])
+ current_partials = []
+ num_frames = max([partial.get_last_frame() for partial in partials])
+
+ # for each frame of audio
+ for frame_number in range(num_frames):
+ # get all partials that start on this frame, append to list of continuing partials
+ current_partials.extend([partial.list_peaks() for partial in partials if partial.starting_frame == frame_number])
+ # get all peaks to be synthesised for this frame
+ current_peaks = []
+ for partial_number, partial in enumerate(current_partials):
+ try:
+ current_peaks.append(partial.next())
+ except StopIteration:
+ # End of partial. Set this partial to None, remove it from the list later
+ current_partials[partial_number] = None
+
+ # synth frame
+ audio_out = np.hstack((audio_out, self._synth_frame(current_peaks)))
+ # remove any finished partials
+ current_partials = [partial for partial in current_partials if partial]
+
+ return audio_out \ No newline at end of file