summaryrefslogtreecommitdiff
path: root/sndobj.py
diff options
context:
space:
mode:
authorJohn Glover <glover.john@gmail.com>2011-06-24 18:17:23 +0100
committerJohn Glover <glover.john@gmail.com>2011-06-24 18:17:23 +0100
commit416bd737074a287ea47106c73ea6bcfde40a75a8 (patch)
tree74562303d4f4f2f2e010f7e13cba41dc4852b50c /sndobj.py
parentd26519464dcbf8c3682348167c29454961facefe (diff)
downloadsimpl-416bd737074a287ea47106c73ea6bcfde40a75a8.tar.gz
simpl-416bd737074a287ea47106c73ea6bcfde40a75a8.tar.bz2
simpl-416bd737074a287ea47106c73ea6bcfde40a75a8.zip
Change to using distutils.
Currently only builds the simplsndobj module
Diffstat (limited to 'sndobj.py')
-rw-r--r--sndobj.py207
1 files changed, 0 insertions, 207 deletions
diff --git a/sndobj.py b/sndobj.py
deleted file mode 100644
index b04060a..0000000
--- a/sndobj.py
+++ /dev/null
@@ -1,207 +0,0 @@
-# Copyright (c) 2009 John Glover, National University of Ireland, Maynooth
-#
-# This program is free software; you can redistribute it and/or modify
-# it under the terms of the GNU General Public License as published by
-# the Free Software Foundation; either version 2 of the License, or
-# (at your option) any later version.
-#
-# This program is distributed in the hope that it will be useful,
-# but WITHOUT ANY WARRANTY; without even the implied warranty of
-# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-# GNU General Public License for more details.
-#
-# You should have received a copy of the GNU General Public License
-# along with this program; if not, write to the Free Software
-# Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
-
-import simpl
-from simpl import simplsndobj
-import numpy as np
-
-class SndObjPeakDetection(simpl.PeakDetection):
- "Sinusoidal peak detection using the SndObj library (Instantaneous Frequency)"
- def __init__(self):
- simpl.PeakDetection.__init__(self)
- self._input = simplsndobj.SndObj()
- self._input.SetVectorSize(self.frame_size)
- self._window = simplsndobj.HammingTable(self.frame_size, 0.5)
- self._ifgram = simplsndobj.IFGram(self._window, self._input, 1,
- self.frame_size, self.hop_size)
- self._threshold = 0.003
- self._analysis = simplsndobj.SinAnal(self._ifgram, self._threshold,
- self.max_peaks)
-
- # properties
- threshold = property(lambda self: self.get_threshold(),
- lambda self, x: self.set_threshold(x))
-
- def set_frame_size(self, frame_size):
- "Set the analysis frame size"
- self._input.SetVectorSize(frame_size)
- if self.window_type == "hamming":
- self._window = simplsndobj.HammingTable(frame_size, 0.5)
- elif self.window_type >=0 and self.window_type <= 1:
- self._window = simplsndobj.HammingTable(frame_size, self.window_type)
- self._ifgram.Connect("window", self._window)
- self._ifgram.Set("fft size", frame_size)
- self._frame_size = frame_size
-
- def set_hop_size(self, hop_size):
- self._ifgram.Set("hop size", hop_size)
- self._hop_size = hop_size
-
- def set_max_peaks(self, max_peaks):
- "Set the maximum number of peaks detected"
- self._analysis.Set("max tracks", max_peaks)
- self._max_peaks = max_peaks
-
- def set_window_type(self, window_type):
- "Set the analysis window type"
- if window_type == "hamming":
- self._window = simplsndobj.HammingTable(self.frame_size, 0.5)
- elif window_type >=0 and window_type <= 1:
- self._window = simplsndobj.HammingTable(self.frame_size, window_type)
- else:
- raise Exception("UnknownWindowType")
- self._ifgram.Connect("window", self._window)
- self._window_type = window_type
-
- def get_threshold(self):
- return self._threshold
-
- def set_threshold(self, threshold):
- self._analysis.Set("threshold", threshold)
- self._threshold = threshold
-
- def find_peaks_in_frame(self, frame):
- "Find and return all spectral peaks in a given frame of audio"
- peaks = []
- self._input.PushIn(frame.audio)
- self._input.DoProcess()
- self._ifgram.DoProcess()
- num_peaks_found = self._analysis.FindPeaks()
- # loop through analysis output and create peak objects
- for i in range(num_peaks_found):
- p = simpl.Peak()
- p.amplitude = self._analysis.Output(i*3)
- p.frequency = self._analysis.Output((i*3)+1)
- p.phase = self._analysis.Output((i*3)+2)
- if not peaks:
- peaks.append(p)
- else:
- if np.abs(p.frequency - peaks[-1].frequency) > self._min_peak_separation:
- peaks.append(p)
- else:
- if p.amplitude > peaks[-1].amplitude:
- peaks.remove(peaks[-1])
- peaks.append(p)
- return peaks
-
-
-class SndObjPartialTracking(simpl.PartialTracking):
- "Partial tracking using the algorithm from the Sound Object Library"
- def __init__(self):
- simpl.PartialTracking.__init__(self)
- self._threshold = 0.003 # TODO: make this a property
- self._num_bins = 1025 # TODO: make this a property
- self._analysis = simplsndobj.SinAnal(simplsndobj.SndObj(), self._num_bins,
- self._threshold, self.max_partials)
-
- def set_max_partials(self, num_partials):
- self._analysis.Set("max tracks", num_partials)
- self._max_partials = num_partials
-
- def update_partials(self, frame):
- "Streamable (real-time) partial-tracking."
- partials = []
- # load Peak amplitudes, frequencies and phases into arrays
- num_peaks = len(frame.peaks)
- amps = simpl.zeros(num_peaks)
- freqs = simpl.zeros(num_peaks)
- phases = simpl.zeros(num_peaks)
- for i in range(num_peaks):
- peak = frame.peaks[i]
- amps[i] = peak.amplitude
- freqs[i] = peak.frequency
- phases[i] = peak.phase
- # set peaks in SndObj SinAnal object
- self._analysis.SetPeaks(amps, freqs, phases)
- # call SndObj partial tracking
- self._analysis.PartialTracking()
- # form Partial objects
- num_partials = self._analysis.GetTracks()
- for i in range(num_partials):
- peak = simpl.Peak()
- peak.amplitude = self._analysis.Output(i*3)
- peak.frequency = self._analysis.Output((i*3)+1)
- peak.phase = self._analysis.Output((i*3)+2)
- partials.append(peak)
- return partials
-
-
-class SimplSndObjAnalysisWrapper(simplsndobj.SinAnal):
- """An object that takes simpl Peaks and presents them as SndObj analysis
- data to the SndObj synthesis objects."""
- def __init__(self):
- simplsndobj.SinAnal.__init__(self)
- self.partials = []
-
- def GetTracks(self):
- return len(self.partials)
-
- def GetTrackID(self, partial_number):
- if partial_number < len(self.partials):
- return partial_number
- else:
- # TODO: what should this return if no matching partial found?
- return 0
-
- def Output(self, position):
- peak = int(position) / 3
- if peak > len(self.partials):
- # TODO: what should this return if no matching partial found?
- return 0.0
-
- data_field = int(position) % 3
- if data_field is 0:
- return self.partials[peak].amplitude
- elif data_field is 1:
- return self.partials[peak].frequency
- elif data_field is 2:
- return self.partials[peak].phase
-
-
-class SndObjSynthesis(simpl.Synthesis):
- "Sinusoidal resynthesis using the SndObj library"
- def __init__(self, synthesis_type='adsyn'):
- simpl.Synthesis.__init__(self)
- self._analysis = SimplSndObjAnalysisWrapper()
- self._table = simplsndobj.HarmTable(10000, 1, 1, 0.25)
- if synthesis_type == 'adsyn':
- self._synth = simplsndobj.AdSyn(self._analysis, self.max_partials,
- self._table, 1, 1, self.hop_size)
- elif synthesis_type == 'sinsyn':
- self._synth = simplsndobj.SinSyn(self._analysis, self.max_partials,
- self._table, 1, self.hop_size)
- else:
- raise Exception("UnknownSynthesisType")
- self._current_frame = simpl.zeros(self.hop_size)
-
- def set_hop_size(self, hop_size):
- self._synth.SetVectorSize(hop_size)
- self._hop_size = hop_size
- self._current_frame = simpl.zeros(hop_size)
-
- def set_max_partials(self, num_partials):
- self._synth.Set('max tracks', num_partials)
- self._max_partials = num_partials
-
- def synth_frame(self, frame):
- "Synthesises a frame of audio, given a list of peaks from tracks"
- self._analysis.partials = frame.partials
- if len(frame.partials) > self._max_partials:
- self.max_partials = len(frame.partials)
- self._synth.DoProcess()
- self._synth.PopOut(self._current_frame)
- return self._current_frame
-