summaryrefslogtreecommitdiff
path: root/plot/__init__.py
diff options
context:
space:
mode:
authorJohn Glover <glover.john@gmail.com>2010-11-02 16:11:00 +0000
committerJohn Glover <glover.john@gmail.com>2010-11-02 16:11:00 +0000
commitf941ad291e1bf249e27ee1a9514e76ddc0ec32fe (patch)
tree32835700c2d9cc190c65cf340f382b7b9ee5fe9c /plot/__init__.py
parent08f2885c58cc4ae5e4ecf42aecaa043de2c5bd4c (diff)
downloadsimpl-f941ad291e1bf249e27ee1a9514e76ddc0ec32fe.tar.gz
simpl-f941ad291e1bf249e27ee1a9514e76ddc0ec32fe.tar.bz2
simpl-f941ad291e1bf249e27ee1a9514e76ddc0ec32fe.zip
Added colour to default plots (with heatmap) and some minor code tidying
Diffstat (limited to 'plot/__init__.py')
-rw-r--r--plot/__init__.py88
1 files changed, 88 insertions, 0 deletions
diff --git a/plot/__init__.py b/plot/__init__.py
new file mode 100644
index 0000000..4954b07
--- /dev/null
+++ b/plot/__init__.py
@@ -0,0 +1,88 @@
+# Copyright (c) 2009 John Glover, National University of Ireland, Maynooth
+#
+# This program is free software; you can redistribute it and/or modify
+# it under the terms of the GNU General Public License as published by
+# the Free Software Foundation; either version 2 of the License, or
+# (at your option) any later version.
+#
+# This program is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+# GNU General Public License for more details.
+#
+# You should have received a copy of the GNU General Public License
+# along with this program; if not, write to the Free Software
+# Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
+
+import matplotlib.pyplot as plt
+import colours
+
+def plot_frame_peaks(peaks):
+ "Plot peaks in one frame"
+ x_values = []
+ y_values = []
+ for peak in peaks:
+ x_values.append(int(peak.frequency))
+ y_values.append(peak.amplitude)
+ plt.plot(x_values, y_values, 'ro')
+
+#def _plot_frame_peaks(frame, frame_number, max_amp=0):
+# "Plot one frame, which is a list of Peak objects"
+# x_values = [frame_number for x in range(len(frame))]
+# y_values = [int(peak.frequency) for peak in frame]
+# plt.plot(x_values, y_values, 'ro')
+
+def _plot_frame_peaks(frame, frame_number, max_amp=0):
+ "Plot one frame, which is a list of Peak objects"
+ for peak in frame:
+ plt.plot(frame_number, int(peak.frequency), linestyle="None",
+ marker="o", markersize=2, markeredgewidth=None,
+ markerfacecolor=colours.pbj(peak.amplitude/max_amp))
+
+def plot_peaks(peaks):
+ "Plot peaks found by a peak detection algorithm"
+ max_amp = max([max([p.amplitude for p in f if p]) for f in peaks if f])
+ for frame_number, frame in enumerate(peaks):
+ _plot_frame_peaks(frame, frame_number, max_amp)
+
+#def plot_partials(partials, show_peaks=True):
+# "Plot partials created by a partial tracking algorithm"
+# max_amp = max([max([peak.amplitude for peak in p.peaks if p.peaks])
+# for p in partials if p])
+# num_frames = max([partial.get_last_frame() for partial in partials])
+
+# peaks = [[] for f in range(num_frames)]
+# for partial in partials:
+# x_values = []
+# y_values = []
+# for peak_number, peak in enumerate(partial.peaks):
+# x_values.append(partial.starting_frame + peak_number)
+# y_values.append(int(peak.frequency))
+# peaks[partial.starting_frame + peak_number].append(peak)
+# plt.plot(x_values, y_values, "b")
+# if show_peaks:
+# plot_peaks(peaks)
+
+def plot_partials(partials, show_peaks=False):
+ "Plot partials created by a partial tracking algorithm"
+ max_amp = max([max([peak.amplitude for peak in p.peaks if p.peaks])
+ for p in partials if p])
+ num_frames = max([partial.get_last_frame() for partial in partials])
+
+ peaks = [[] for f in range(num_frames)]
+ for partial in partials:
+ x_values = []
+ y_values = []
+ avg_amp = 0.0
+ num_peaks = 0
+ for peak_number, peak in enumerate(partial.peaks):
+ x_values.append(partial.starting_frame + peak_number)
+ y_values.append(int(peak.frequency))
+ avg_amp += peak.amplitude
+ num_peaks += 1
+ peaks[partial.starting_frame + peak_number].append(peak)
+ avg_amp /= num_peaks
+ plt.plot(x_values, y_values, color=colours.pbj(avg_amp/max_amp))
+ if show_peaks:
+ plot_peaks(peaks)
+