summaryrefslogtreecommitdiff
path: root/lp.py
diff options
context:
space:
mode:
authorJohn Glover <glover.john@gmail.com>2011-06-24 18:17:23 +0100
committerJohn Glover <glover.john@gmail.com>2011-06-24 18:17:23 +0100
commit416bd737074a287ea47106c73ea6bcfde40a75a8 (patch)
tree74562303d4f4f2f2e010f7e13cba41dc4852b50c /lp.py
parentd26519464dcbf8c3682348167c29454961facefe (diff)
downloadsimpl-416bd737074a287ea47106c73ea6bcfde40a75a8.tar.gz
simpl-416bd737074a287ea47106c73ea6bcfde40a75a8.tar.bz2
simpl-416bd737074a287ea47106c73ea6bcfde40a75a8.zip
Change to using distutils.
Currently only builds the simplsndobj module
Diffstat (limited to 'lp.py')
-rw-r--r--lp.py86
1 files changed, 0 insertions, 86 deletions
diff --git a/lp.py b/lp.py
deleted file mode 100644
index 740ca97..0000000
--- a/lp.py
+++ /dev/null
@@ -1,86 +0,0 @@
-# Copyright (c) 2009 John Glover, National University of Ireland, Maynooth
-#
-# This program is free software; you can redistribute it and/or modify
-# it under the terms of the GNU General Public License as published by
-# the Free Software Foundation; either version 2 of the License, or
-# (at your option) any later version.
-#
-# This program is distributed in the hope that it will be useful,
-# but WITHOUT ANY WARRANTY; without even the implied warranty of
-# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-# GNU General Public License for more details.
-#
-# You should have received a copy of the GNU General Public License
-# along with this program; if not, write to the Free Software
-# Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
-
-import simpl
-import numpy as np
-
-def burg(signal, order):
- """Using the burg method, calculate order coefficients.
- Returns a numpy array."""
- coefs = np.array([1.0])
- # initialise f and b - the forward and backwards predictors
- f = np.zeros(len(signal))
- b = np.zeros(len(signal))
- for i in range(len(signal)):
- f[i] = b[i] = signal[i]
- # burg algorithm
- for k in range(order):
- # fk is f without the first element
- fk = f[1:]
- # bk is b without the last element
- bk = b[0:b.size-1]
- # calculate mu
- if sum((fk*fk)+(bk*bk)):
- # check for division by zero
- mu = -2.0 * sum(fk*bk) / sum((fk*fk)+(bk*bk))
- else:
- mu = 0.0
- # update coefs
- # coefs[::-1] just reverses the coefs array
- coefs = np.hstack((coefs,0)) + (mu * np.hstack((0, coefs[::-1])))
- # update f and b
- f = fk + (mu*bk)
- b = bk + (mu*fk)
- return coefs[1:]
-
-def predict(signal, coefs, num_predictions):
- """Using Linear Prediction, return the estimated next num_predictions
- values of signal, using the given coefficients.
- Returns a numpy array."""
- predictions = np.zeros(num_predictions)
- past_samples = np.zeros(len(coefs))
- for i in range(len(coefs)):
- past_samples[i] = signal[-1-i]
- sample_pos = 0
- for i in range(num_predictions):
- # each sample in past_samples is multiplied by a coefficient
- # results are summed
- for j in range(len(coefs)):
- predictions[i] -= coefs[j] * past_samples[(j+sample_pos) % len(coefs)]
- sample_pos -= 1
- if sample_pos < 0:
- sample_pos = len(coefs) - 1
- past_samples[sample_pos] = predictions[i]
- return predictions
-
-
-class LPPartialTracking(simpl.PartialTracking):
- "Partial tracking, based on the McAulay and Quatieri (MQ) algorithm"
- def __init__(self):
- simpl.PartialTracking.__init__(self)
- self._matching_interval = 100 # peak matching interval, in Hz
-
-
- def update_partials(self, frame, frame_number):
- """Streamable (real-time) LP peak-tracking.
- """
- frame_partials = []
-
- for peak in frame:
- pass
-
- return frame_partials
-