summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorJohn Glover <j@johnglover.net>2012-07-26 19:01:25 +0100
committerJohn Glover <j@johnglover.net>2012-07-26 19:01:25 +0100
commitc4852e9aaf2b4e4dd62c8c7006d5241b890b104f (patch)
treedab7a9c220888668b92a1a7de5013f2c5e9ea3c7
parent8870ab2cd4ab50f61c919af7222015d863c5eba4 (diff)
downloadsimpl-c4852e9aaf2b4e4dd62c8c7006d5241b890b104f.tar.gz
simpl-c4852e9aaf2b4e4dd62c8c7006d5241b890b104f.tar.bz2
simpl-c4852e9aaf2b4e4dd62c8c7006d5241b890b104f.zip
[mq] Update MQPeakDetection to work with Cython-based
Frame and PeakDetection objects.
-rw-r--r--simpl/mq.py58
1 files changed, 39 insertions, 19 deletions
diff --git a/simpl/mq.py b/simpl/mq.py
index db3e82d..fcfa93b 100644
--- a/simpl/mq.py
+++ b/simpl/mq.py
@@ -79,38 +79,39 @@ class MQPeakDetection(simpl.PeakDetection):
"""
def __init__(self):
simpl.PeakDetection.__init__(self)
- self._window = np.zeros(self._window_size, dtype=simpl.dtype)
+ self._frame_size = super(MQPeakDetection, self).frame_size
self._create_analysis_window()
- self._fundamental = float(self._sampling_rate) / self._window_size
- self._static_frame_size = False
+ self._fundamental = float(self.sampling_rate) / self._frame_size
+ self.static_frame_size = False
self._current_peaks = []
self._freq_estimates = []
# no. frames to use to estimate the average pitch (1/4 second window)
- self._avg_freq_frames = int(0.25 * self.sampling_rate / self.frame_size)
+ self._avg_freq_frames = int(
+ 0.25 * self.sampling_rate / self._frame_size
+ )
- def set_frame_size(self, frame_size):
- self._frame_size = frame_size
- self.window_size = frame_size
+ @property
+ def frame_size(self):
+ return self._frame_size
- def set_window_size(self, window_size):
- self._window_size = window_size
- self._fundamental = float(self._sampling_rate) / window_size
+ @frame_size.setter
+ def frame_size(self, new_frame_size):
+ self._frame_size = new_frame_size
+ self._fundamental = float(self.sampling_rate) / self._frame_size
self._create_analysis_window()
def _create_analysis_window(self):
"Creates the analysis window, a normalised hamming window"
- self._window = np.hamming(self._window_size)
- s = 0
- for i in range(self._window_size):
- s += self._window[i]
- self._window /= s
+ self._window = np.hamming(self._frame_size)
+ self._window /= np.sum(self._window)
- def get_next_frame_size(self):
+ def next_frame_size(self):
if not len(self._current_peaks):
return self._frame_size
# frame size must be at least 2.5 times the average pitch period,
# where the average is taken over 1/4 second.
+ #
# TODO: average should not include frames corresponding to unvoiced
# speech, ie noisy frames
self._freq_estimates.append(
@@ -134,9 +135,13 @@ class MQPeakDetection(simpl.PeakDetection):
maximum of self._max_peaks peaks.
"""
self._current_peaks = []
- # fft of frame
+
+ if frame.max_peaks != self.max_peaks:
+ frame.max_peaks = self.max_peaks
+
f = np.fft.rfft(frame.audio * self._window)
spectrum = abs(f)
+
# find all peaks in the spectrum
prev_mag = np.abs(spectrum[0])
current_mag = np.abs(spectrum[1])
@@ -158,12 +163,27 @@ class MQPeakDetection(simpl.PeakDetection):
# of self.num_peaks peaks
self._current_peaks.sort(cmp=simpl.compare_peak_amps)
self._current_peaks.reverse()
- if len(self._current_peaks) > self._max_peaks:
- self._current_peaks = self._current_peaks[0:self._max_peaks]
+ if len(self._current_peaks) > self.max_peaks:
+ self._current_peaks = self._current_peaks[0:self.max_peaks]
+
# put back into ascending frequency order
self._current_peaks.sort(cmp=simpl.compare_peak_freqs)
+ frame.peaks = list(self._current_peaks)
return self._current_peaks
+ # def find_peaks(self, audio):
+ # frames = []
+ # pos = 0
+ # while pos < len(audio) - self.hop_size:
+ # if not self.static_frame_size:
+ # self.frame_size = self.next_frame_size()
+ # frame = simpl.Frame(self.frame_size)
+ # frame.audio = audio[pos:pos + self.frame_size]
+ # self.find_peaks_in_frame(frame)
+ # frames.append(frame)
+ # pos += self.hop_size
+ # return frames
+
class MQPartialTracking(simpl.PartialTracking):
"Partial tracking, based on the McAulay and Quatieri (MQ) algorithm"