1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
|
/*
* guttersynth.c
* Part of libguttersynth
*
* Copyright Tom Mudd 2019, Richard Knight 2021, 2022
*
* Ported to C by Richard Knight
* from https://github.com/tommmmudd/guttersynthesis by Tom Mudd
*
*/
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include <math.h>
#include <sys/param.h>
#include "guttersynth.h"
// TODO: freqs temp and Q temp, remove, not needed..
//
/*
* Returns a random float within a range
*
* min: bottom end of range
* max: top end of range
*
* returns: random float
*/
static FLT rangerandom(FLT min, FLT max)
{
FLT random = ((FLT) rand()) / (FLT) RAND_MAX;
FLT diff = max - min;
FLT r = random * diff;
return min + r;
}
/*
* Calculate filter coefficients
*
* s: gutter_state struct to apply operation to
*/
void gutter_calccoeffs(gutter_state* s)
{
int i, b, f;
for (b = 0; b < s->bankCount; b++) {
for (f = 0; f < s->filterCount; f++) {
i = b * s->bankCount + f;
s->gi.V[i] = (FLT) pow(10.0, 0.05);
s->gi.K[i] = (FLT) tan(((FLT)M_PI * s->filterFreqs[i]) / s->gi.samplerate);
s->gi.norm[i] = (1.0 / (1.0 + s->gi.K[i] / s->Q[i] + s->gi.K[i] * s->gi.K[i]));
s->gi.a0[i] = s->gi.K[i] / s->Q[i] * s->gi.norm[i];
s->gi.a1[i] = 0.0;
s->gi.a2[i] = - s->gi.a0[i];
s->gi.b1[i] = 2.0 * (s->gi.K[i] * s->gi.K[i] - 1.0) * s->gi.norm[i];
s->gi.b2[i] = (1.0 - s->gi.K[i] / s->Q[i] + s->gi.K[i] * s->gi.K[i]) *s->gi.norm[i];
}
}
}
/*
* Apply distortion
*/
static void gutter_distortion(gutter_state* s, FLT* audio_ptr)
{
FLT input = *audio_ptr;
FLT output;
switch (s->distortionMethod) {
case 0:
output = MAX(MIN(input, 1), -1);
break;
case 1:
if (s->gi.finalY <= -1) {
output = -0.666666667;
} else if (input <= 1) {
output = input - input * input * input / 3.0;
} else {
output = 0.666666667;
}
break;
case 2:
output = (FLT) atan(input);
break;
case 3:
output = 0.75 * (((FLT)sqrt(input * 1.3 * (input * 1.3) + 1.0)) * 1.65 - 1.65) / input;
break;
case 4:
output = (0.1076 * input * input * input + 3.029 * input) / (input * input + 3.124);
break;
case 5:
output = 2.0 / (1.0 + ((FLT)exp(-1.0 * input)));
break;
default:
output = input;
}
*audio_ptr = output;
}
/*
* Randomise filter bank frequencies
*
* s: gutter_state struct to apply operation to
*/
void gutter_randomisefilters(gutter_state* s)
{
int i, b, f;
for (b = 0; b < s->bankCount; b++) {
for (f = 0; f < s->filterCount; f++) {
i = b * s->bankCount + f;
s->filterFreqs[i] = rangerandom(100, 4000);
s->gains[i] = rangerandom(0, 1);
s->Q[i] = rangerandom(20, 200);
}
}
gutter_calccoeffs(s);
}
int gutter_setdistortionmethod(gutter_state* s, int method)
{
if (method < 0 || method > 5) {
return -1;
}
s->distortionMethod = method;
return 0;
}
/*
* Set frequency of a filter in a bank
*
* s: gutter_state struct to apply operation to
* bank: bank index
* filter: filter index
* value: frequency to set
*
* returns: 0 on success, -1 if bank or filter is out of range
*/
int gutter_setfreq(gutter_state* s, int bank, int filter, FLT value)
{
if (bank >= s->bankCount || filter >= s->filterCount || bank < 0 || filter < 0) {
return -1;
}
s->filterFreqs[bank*s->bankCount+filter] = value;
return 0;
}
/*
* Set Q of a filter in a bank
*
* s: gutter_state struct to apply operation to
* bank: bank index
* filter: filter index
* value: Q to set
*
* returns: 0 on success, -1 if bank or filter is out of range
*/
int gutter_setq(gutter_state* s, int bank, int filter, FLT value)
{
if (bank >= s->bankCount || filter >= s->filterCount || bank < 0 || filter < 0) {
return -1;
}
s->Q[bank*s->bankCount+filter] = value;
return 0;
}
/*
* Set gain of a filter in a bank
*
* s: gutter_state struct to apply operation to
* bank: bank index
* filter: filter index
* value: gain to set
*
* returns: 0 on success, -1 if bank or filter is out of range
*/
int gutter_setgain(gutter_state* s, int bank, int filter, FLT value)
{
if (bank >= s->bankCount || filter >= s->filterCount || bank < 0 || filter < 0) {
return -1;
}
s->gains[bank*s->bankCount+filter] = value;
return 0;
}
/*
* Set the Q of all filters in all banks
*
* s: gutter_state struct to apply operation to
* value: Q to set
*/
void gutter_setqall(gutter_state* s, FLT value)
{
int i;
for (i = 0; i < s->bankCount * s->filterCount; i++) {
s->Q[i] = value;
}
}
int gutter_setqbank(gutter_state* s, int bank, FLT value)
{
if (bank < 0 || bank <= s->bankCount) {
return -1;
}
int f;
for (f = 0; f < s->filterCount; f++) {
s->Q[bank * s->bankCount + f] = value;
}
}
/*
* Initialise with custom memory allocator and deallocator
*
* bankCount: number of banks (typically 1 or 2)
* filterCount: number of filters (typically up to 24)
* samplerate: samplerate to calculate audio at
* allocator: memory allocator function taking a size_t and returning void*
* deallocator: memory deallocator function taking a void*
*
* returns: gutter_state struct to be used in the synthesis session
*/
gutter_state* gutter_init_ca(int bankCount, int filterCount, int samplerate,
void* (*allocator)(size_t), void (*deallocator)(void*))
{
int size2d, i, f, b;
srand(time(0));
gutter_state* s = (gutter_state*) allocator(sizeof(gutter_state));
s->gi.samplerate = samplerate;
s->bankCount = bankCount;
s->filterCount = filterCount;
s->gi.dealloc = deallocator;
s->gi.dcblock.xm1 = 0;
s->gi.dcblock.ym1 = 0;
s->gi.dcblock.r = 0.995;
size2d = sizeof(FLT) * bankCount * filterCount;
s->gains = (FLT*) allocator(size2d);
s->Q = (FLT*) allocator(size2d);
s->filterFreqs = (FLT*) allocator(size2d);
s->gi.prevX1 = (FLT*) allocator(size2d);
s->gi.prevX2 = (FLT*) allocator(size2d);
s->gi.prevY1 = (FLT*) allocator(size2d);
s->gi.prevY2 = (FLT*) allocator(size2d);
s->gi.V = (FLT*) allocator(size2d);
s->gi.K = (FLT*) allocator(size2d);
s->gi.norm = (FLT*) allocator(size2d);
s->gi.a0 = (FLT*) allocator(size2d);
s->gi.a1 = (FLT*) allocator(size2d);
s->gi.a2 = (FLT*) allocator(size2d);
s->gi.b1 = (FLT*) allocator(size2d);
s->gi.b2 = (FLT*) allocator(size2d);
s->gi.y = (FLT*) allocator(size2d);
s->filtersOn = 1;
s->smoothing = 1;
s->distortionMethod = 2;
s->enableAudioInput = 0;
for (b = 0; b < bankCount; b++) {
for (f = 0; f < filterCount; f++) {
i = b * bankCount + f;
FLT freq = ((FLT)(f + 1)) / 2.0 * 20.0 * (b + 1) * 1.2 + 80;
s->filterFreqs[i] = freq;
s->gi.y[i] = 0;
s->gi.prevX1[i] = 0;
s->gi.prevX2[i] = 0;
s->gi.prevY1[i] = 0;
s->gi.prevY2[i] = 0;
s->gains[i] = 1;
s->Q[i] = 1;
}
}
gutter_randomisefilters(s);
return s;
}
/*
* Initialise with default memory allocator and deallocator (malloc and free)
*
* bankCount: number of banks (typically 1 or 2)
* filterCount: number of filters (typically up to 24)
* samplerate: samplerate to calculate audio at
*
* returns: gutter_state struct to be used in the synthesis session
*/
gutter_state* gutter_init(int bankCount, int filterCount, int samplerate)
{
return gutter_init_ca(bankCount, filterCount, samplerate, &malloc, &free);
}
/*
* Clean up state: free memory
*
* s: gutter_state struct to apply operation to
*/
void gutter_cleanup(gutter_state* s)
{
void (*da)(void*) = s->gi.dealloc;
da(s->gains);
da(s->filterFreqs);
da(s->gi.prevX1);
da(s->gi.prevX2);
da(s->gi.prevY1);
da(s->gi.prevY2);
da(s->gi.V);
da(s->gi.K);
da(s->gi.norm);
da(s->gi.a0);
da(s->gi.a1);
da(s->gi.a2);
da(s->gi.b1);
da(s->gi.b2);
da(s->gi.y);
da(s->Q);
da(s);
}
/*
* Reset oscillator
*
* s: gutter_state struct to apply operation to
*/
void gutter_reset(gutter_state* s)
{
s->gi.duffX = 0;
s->gi.duffY = 0;
s->gi.dx = 0;
s->gi.dy = 0;
s->gi.t = 0;
}
/*
* Apply DC blocking to audio referencing current state
*
* s: gutter_state struct to apply operation to
* input: audio to apply DC block to
*
* returns: DC blocked audio
*/
static FLT dcblock(gutter_state* s, FLT input) {
FLT y = input - s->gi.dcblock.xm1 + s->gi.dcblock.r * s->gi.dcblock.ym1;
s->gi.dcblock.xm1 = input;
s->gi.dcblock.ym1 = y;
return y;
}
/*
* Synthesise one sample with audio input
*
* s: gutter_state struct to apply operation to
* audioInput: audio sample to feed into synthesis
*
* returns: synthesised audio sample
*/
FLT gutter_process_input(gutter_state* s, FLT audioInput)
{
if (s->filtersOn) {
int i, b, f;
for (b = 0; b < s->bankCount; b++) {
for (f = 0; f < s->filterCount; f++) {
i = b * s->bankCount + f;
s->gi.y[i] = s->gi.a0[i] * s->gi.duffX
+ s->gi.a1[i] * s->gi.prevX1[i]
+ s->gi.a2[i] * s->gi.prevX2[i]
- s->gi.b1[i] * s->gi.prevY1[i]
- s->gi.b2[i] * s->gi.prevY2[i];
s->gi.prevX2[i] = s->gi.prevX1[i];
s->gi.prevX1[i] = s->gi.duffX;
s->gi.prevY2[i] = s->gi.prevY1[i];
s->gi.prevY1[i] = s->gi.y[i];
s->gi.finalY += s->gi.y[i] * s->gains[i] * s->singleGain;
}
}
} else {
s->gi.finalY = s->gi.duffX;
}
if (s->enableAudioInput) {
s->gi.dy = (s->gi.finalY - s->gi.finalY * s->gi.finalY * s->gi.finalY
- s->c * s->gi.duffY + s->gamma * audioInput);
} else {
s->gi.dy = (s->gi.finalY - s->gi.finalY * s->gi.finalY * s->gi.finalY
- s->c * s->gi.duffY + s->gamma * ((FLT)sin(s->omega * s->gi.t)));
}
s->gi.duffY += s->gi.dy;
s->gi.dx = s->gi.duffY;
FLT out;
s->gi.duffX = ((s->gi.finalY + s->gi.dx) - s->gi.duffX) / s->smoothing; // low pass filter
//s->gi.finalY = dcblock(s, s->gi.finalY); // RK: experimental
if (s->filtersOn) {
gutter_distortion(s, &(s->gi.duffX));
out = s->gi.finalY * 0.125;
} else {
s->gi.duffX = MAX(MIN(s->gi.duffX, 100), -100);
if (abs(s->gi.duffX) > 99) {
gutter_reset(s);
}
out = MAX(MIN(s->gi.duffX * s->singleGain, 1.0), -1.0);
}
s->gi.t += s->dt;
if (isnan(s->gi.duffX)) {
gutter_reset(s);
}
//return out;
return dcblock(s, out);
}
/*
* Synthesise specified number of samples with audio input
*
* s: gutter_state struct to apply operation to
* audioInput: audio sample pointer to feed into synthesis, must be at least nsamps size
* audioOutput: audio output pointer, must be at least nsamps size
* nsamps: number of samples to synthesise
*/
void gutter_process_input_samples(gutter_state* s, FLT* audioInput, FLT* audioOutput, int nsamps)
{
int i;
for (i = 0; i < nsamps; i++) {
audioOutput[i] = gutter_process_input(s, audioInput[i]);
}
}
/*
* Synthesise one sample
*
* s: gutter_state struct to apply operation to
*
* returns: synthesised audio sample
*/
FLT gutter_process(gutter_state* s)
{
return gutter_process_input(s, 0);
}
/*
* Synthesise specified number of samples
*
* s: gutter_state struct to apply operation to
* audioOutput: audio output pointer, must be at least nsamps size
* nsamps: number of samples to synthesise
*/
void gutter_process_samples(gutter_state* s, FLT* audioOutput, int nsamps)
{
int i;
for (i = 0; i < nsamps; i++) {
audioOutput[i] = gutter_process_input(s, 0);
}
}
|