aboutsummaryrefslogtreecommitdiff
path: root/examples/example1.c
blob: 8a9ee5a72a1fd882edca1b89029e3f337fdfaf86 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
#include <stdio.h>
#include <stdlib.h>
#include <float.h>
#include <time.h>
#include <limits.h>
#include <string.h>
#include <math.h>
#include "guttersynth.h"

int samples_per_second = 44100;
int bits_per_sample = 16;
char* output_name = "guttersynth-example1.wav";

int written_samples = 0;

struct wavfile_header {
    char riff_tag[4];
    int riff_length;
    char wave_tag[4];
    char fmt_tag[4];
    int fmt_length;
    short audio_format;
    short num_channels;
    int sample_rate;
    int byte_rate;
    short block_align;
    short bits_per_sample;
    char data_tag[4];
    int data_length;
};


FILE* target;

/*
 * open wavfile and set the riff header
 */
FILE* wavfile_open() 
{
    // populate the header
    struct wavfile_header header;
    strncpy(header.riff_tag, "RIFF",4);
    strncpy(header.wave_tag, "WAVE",4);
    strncpy(header.fmt_tag, "fmt ",4);
    strncpy(header.data_tag, "data",4);
    header.riff_length = 0;
    header.fmt_length = 16;
    header.audio_format = 1;
    header.num_channels = 1;
    header.sample_rate = samples_per_second;
    header.byte_rate = samples_per_second * (bits_per_sample / 8);
    header.block_align = bits_per_sample / 8;
    header.bits_per_sample = bits_per_sample;
    header.data_length = 0;

    FILE *file = fopen(output_name, "w+");
    if(!file) return 0;
    fwrite(&header, sizeof(header), 1, file);
    fflush(file);

    return file;
}


/* 
 * write to wavfile
 */
void wavfile_write(double* data, int length)
{
    short* shortdata = (short*) malloc(sizeof(short) * length);
    int i;
    double sample;
    for (i = 0; i < length; i++) {
        sample = data[i] * 0.5; /// (DBL_MAX*0.01);
        shortdata[i] = (short) (sample * SHRT_MAX * 0.5);
    }
    fwrite(shortdata, sizeof(short), length, target);
    fflush(target);
    written_samples += length;
    free(shortdata);
}


/*
 * close the open wavfile
 */
void wavfile_close()
{
    int file_length = ftell(target);
    int data_length = file_length - sizeof(struct wavfile_header);
    fseek(target, sizeof(struct wavfile_header) - sizeof(int), SEEK_SET);
    fwrite(&data_length, sizeof(data_length), 1, target);
    int riff_length = file_length - 8;
    fseek(target, 4, SEEK_SET);
    fwrite(&riff_length, sizeof(riff_length), 1, target);
    fclose(target);
}

/*
 * Returns a random float within a range
 *
 * min: bottom end of range
 * max: top end of range
 * 
 * returns: random float
 */
double rangerandom(double min, double max) 
{
    double random = ((double) rand()) / (double) RAND_MAX;
    double diff = max - min;
    double r = random * diff;
    return min + r;
}

int boolrandom()
{
    return (rand() > (RAND_MAX / 2));
}

double interpolate(double items[], int points, int point)
{
    return (((items[1] - items[0]) / points) * point) + items[0];
}

void create() 
{
    target = wavfile_open();
    int seconds = 20;
    int total_samples = samples_per_second * seconds;
    int sample = 0;
    int buffer_pos = 0;
    int buffer_size = 4410;
    double *buffer = (double*) malloc(sizeof(double) * buffer_size);
    
    gutter_state *gs = gutter_init(4, 24, samples_per_second);
    //gutter_randomisefilters(gs);
    
    double* filterAutomation = malloc(sizeof(double) * gs->bankCount * gs->filterCount * 3 * 2);
    
    int b, f, i, ai;
    double val;
    for (b = 0, ai=0; b < gs->bankCount; b++) {
        for (f = 0; f < gs->filterCount; f++) {
            i = b * gs->bankCount + f;
            val = rangerandom(100, 2000);
            filterAutomation[ai++] = val;
            filterAutomation[ai++] = (boolrandom()) ? val : rangerandom(100, 2000);
            
            val = rangerandom(0.3, 1);
            filterAutomation[ai++] = val;
            filterAutomation[ai++] = (boolrandom()) ? val : rangerandom(0.3, 1);
            
            val = rangerandom(20, 200);
            filterAutomation[ai++] = val;
            filterAutomation[ai++] = (boolrandom()) ? val : rangerandom(20, 200);
        }
    }
    
    
    
    double gamma[2] = { rangerandom(2, 10), rangerandom(2, 10) };
    double omega[2] = { rangerandom(0.2, 1), rangerandom(0.2, 1) };
    double c[2] = { rangerandom(0.2, 2), rangerandom(0.2, 2) };
    double dt[2] = { rangerandom(100, 10000), rangerandom(100, 10000) };
    double singleGain[2] = { rangerandom(0.2, 0.7), rangerandom(0.2, 0.7) };
    
    
    gs->filtersOn = 1;
    gs->smoothing = 1;
    gs->distortionMethod = 2;
    
    gs->omega = rangerandom(0.3, 0.9);
    gs->c = rangerandom(0.5, 0.9);
    gs->dt = rangerandom(100, 500);
    
    gutter_randomisefilters(gs);
    
    for (sample = 0; sample <= total_samples; sample ++) {
        gs->gamma = interpolate(gamma, total_samples, sample);
        //gs->omega = 0.8; //interpolate(omega, total_samples, sample);
        //gs->c = 0.8; //interpolate(c, total_samples, sample);
        //gs->dt = 300; //interpolate(dt, total_samples, sample);
        gs->singleGain = 0.8; //interpolate(singleGain, total_samples, sample);
        
        
        for (b = 0, ai = 0; b < gs->bankCount; b++) {
            for (f = 0; f < gs->filterCount; f++, ai=ai+6) {
                i = b * gs->bankCount + f;
                gs->filterFreqs[i] = interpolate(filterAutomation + ai, total_samples, sample);
                gs->gains[i] = interpolate(filterAutomation + ai + 2, total_samples, sample);
                gs->Q[i] = interpolate(filterAutomation + ai + 4, total_samples, sample);
            }
        }
        gutter_calccoeffs(gs);
        
        buffer[buffer_pos] = gutter_process(gs);
        if (buffer_pos == buffer_size - 1) {
            buffer_pos = 0;
            wavfile_write(buffer, buffer_size);
        } else {
            buffer_pos ++;
        }
        
        // randomise filters every second
        if (sample % samples_per_second == 0) {
            //gutter_randomisefilters(gs);
        }
    }
    
    free(buffer);
    free(filterAutomation);
    gutter_cleanup(gs);
    wavfile_close();
}


int main() 
{
    // random seed from time
    srand((unsigned int) time(NULL));

    // generate the file
    create();

    return 0;
}