aboutsummaryrefslogtreecommitdiff
path: root/utils/gen_adldata/measurer.cpp
blob: 7a81379b1b938017b1107eb3bc935c2eb6559d65 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
#include "measurer.h"
#include <cmath>

#include "../../src/chips/opl_chip_base.h"

// Nuked OPL3 emulator, Most accurate, but requires the powerful CPU
#ifndef ADLMIDI_DISABLE_NUKED_EMULATOR
#   include "../../src/chips/nuked_opl3.h"
#   include "../../src/chips/nuked_opl3_v174.h"
#endif

// DosBox 0.74 OPL3 emulator, Well-accurate and fast
#ifndef ADLMIDI_DISABLE_DOSBOX_EMULATOR
#    include "../../src/chips/dosbox_opl3.h"
#endif

DurationInfo MeasureDurations(const ins &in)
{
    std::vector<int16_t> stereoSampleBuf;
#ifdef ADLMIDI_USE_DOSBOX_OPL
    std::vector<int32_t> stereoSampleBuf_32;
#endif
    insdata id[2];
    bool found[2] = {false, false};
    for(InstrumentDataTab::const_iterator j = insdatatab.begin();
        j != insdatatab.end();
        ++j)
    {
        if(j->second.first == in.insno1)
        {
            id[0] = j->first;
            found[0] = true;
            if(found[1]) break;
        }
        if(j->second.first == in.insno2)
        {
            id[1] = j->first;
            found[1] = true;
            if(found[0]) break;
        }
    }
    const unsigned rate = 22010;
    const unsigned interval             = 150;
    const unsigned samples_per_interval = rate / interval;
    const int notenum =
            in.notenum < 20   ? (44 + in.notenum)
                              : in.notenum >= 128 ? (44 + 128 - in.notenum)
                                                  : in.notenum;

    OPLChipBase *opl;

    //DosBoxOPL3 db; opl = &db;
    //NukedOPL3 nuke; opl = &nuke;
    NukedOPL3v174 nuke74; opl = &nuke74;

#define WRITE_REG(key, value) opl->writeReg((uint16_t)(key), (uint8_t)(value))

    static const short initdata[(2 + 3 + 2 + 2) * 2] =
    {
        0x004, 96, 0x004, 128,      // Pulse timer
        0x105, 0, 0x105, 1, 0x105, 0, // Pulse OPL3 enable, leave disabled
        0x001, 32, 0x0BD, 0         // Enable wave & melodic
    };
    opl->setRate(rate);

    for(unsigned a = 0; a < 18; a += 2) WRITE_REG(initdata[a], initdata[a + 1]);

    const unsigned n_notes = in.insno1 == in.insno2 ? 1 : 2;
    unsigned x[2];

    if(n_notes == 2 && !in.pseudo4op)
    {
        WRITE_REG(0x105, 1);
        WRITE_REG(0x104, 1);
    }

    for(unsigned n = 0; n < n_notes; ++n)
    {
        static const unsigned char patchdata[11] =
        {0x20, 0x23, 0x60, 0x63, 0x80, 0x83, 0xE0, 0xE3, 0x40, 0x43, 0xC0};
        for(unsigned a = 0; a < 10; ++a) WRITE_REG(patchdata[a] + n * 8, id[n].data[a]);
        WRITE_REG(patchdata[10] + n * 8, id[n].data[10] | 0x30);
    }

    for(unsigned n = 0; n < n_notes; ++n)
    {
        double hertz = 172.00093 * std::exp(0.057762265 * (notenum + id[n].finetune));
        if(hertz > 131071)
        {
            std::fprintf(stderr, "MEASURER WARNING: Why does note %d + finetune %d produce hertz %g?          \n",
                    notenum, id[n].finetune, hertz);
            hertz = 131071;
        }
        x[n] = 0x2000;
        while(hertz >= 1023.5)
        {
            hertz /= 2.0;    // Calculate octave
            x[n] += 0x400;
        }
        x[n] += (unsigned int)(hertz + 0.5);

        // Keyon the note
        WRITE_REG(0xA0 + n * 3, x[n] & 0xFF);
        WRITE_REG(0xB0 + n * 3, x[n] >> 8);
    }

    const unsigned max_silent = 6;
    const unsigned max_on  = 40;
    const unsigned max_off = 60;

    // For up to 40 seconds, measure mean amplitude.
    std::vector<double> amplitudecurve_on;
    double highest_sofar = 0;
    short sound_min = 0, sound_max = 0;
    for(unsigned period = 0; period < max_on * interval; ++period)
    {
        stereoSampleBuf.clear();
        stereoSampleBuf.resize(samples_per_interval * 2);
        opl->generate(stereoSampleBuf.data(), samples_per_interval);

        double mean = 0.0;
        for(unsigned long c = 0; c < samples_per_interval; ++c)
        {
            short s = stereoSampleBuf[c * 2];
            mean += s;
            if(sound_min > s) sound_min = s;
            if(sound_max < s) sound_max = s;
        }
        mean /= samples_per_interval;
        double std_deviation = 0;
        for(unsigned long c = 0; c < samples_per_interval; ++c)
        {
            double diff = (stereoSampleBuf[c * 2] - mean);
            std_deviation += diff * diff;
        }
        std_deviation = std::sqrt(std_deviation / samples_per_interval);
        amplitudecurve_on.push_back(std_deviation);
        if(std_deviation > highest_sofar)
            highest_sofar = std_deviation;

        if((period > max_silent * interval) &&
            ((std_deviation < highest_sofar * 0.2)||
             (sound_min >= -1 && sound_max <= 1))
        )
            break;
    }

    // Keyoff the note
    for(unsigned n = 0; n < n_notes; ++n)
        WRITE_REG(0xB0 + n * 3, (x[n] >> 8) & 0xDF);

    // Now, for up to 60 seconds, measure mean amplitude.
    std::vector<double> amplitudecurve_off;
    for(unsigned period = 0; period < max_off * interval; ++period)
    {
        stereoSampleBuf.clear();
        stereoSampleBuf.resize(samples_per_interval * 2);
        opl->generate(stereoSampleBuf.data(), samples_per_interval);

        double mean = 0.0;
        for(unsigned long c = 0; c < samples_per_interval; ++c)
        {
            short s = stereoSampleBuf[c * 2];
            mean += s;
            if(sound_min > s) sound_min = s;
            if(sound_max < s) sound_max = s;
        }
        mean /= samples_per_interval;
        double std_deviation = 0;
        for(unsigned long c = 0; c < samples_per_interval; ++c)
        {
            double diff = (stereoSampleBuf[c * 2] - mean);
            std_deviation += diff * diff;
        }
        std_deviation = std::sqrt(std_deviation / samples_per_interval);
        amplitudecurve_off.push_back(std_deviation);

        if(std_deviation < highest_sofar * 0.2)
            break;

        if((period > max_silent * interval) && (sound_min >= -1 && sound_max <= 1))
            break;
    }

    /* Analyze the results */
    double begin_amplitude        = amplitudecurve_on[0];
    double peak_amplitude_value   = begin_amplitude;
    size_t peak_amplitude_time    = 0;
    size_t quarter_amplitude_time = amplitudecurve_on.size();
    size_t keyoff_out_time        = 0;

    for(size_t a = 1; a < amplitudecurve_on.size(); ++a)
    {
        if(amplitudecurve_on[a] > peak_amplitude_value)
        {
            peak_amplitude_value = amplitudecurve_on[a];
            peak_amplitude_time  = a;
        }
    }
    for(size_t a = peak_amplitude_time; a < amplitudecurve_on.size(); ++a)
    {
        if(amplitudecurve_on[a] <= peak_amplitude_value * 0.2)
        {
            quarter_amplitude_time = a;
            break;
        }
    }
    for(size_t a = 0; a < amplitudecurve_off.size(); ++a)
    {
        if(amplitudecurve_off[a] <= peak_amplitude_value * 0.2)
        {
            keyoff_out_time = a;
            break;
        }
    }

    if(keyoff_out_time == 0 && amplitudecurve_on.back() < peak_amplitude_value * 0.2)
        keyoff_out_time = quarter_amplitude_time;

    DurationInfo result;
    result.peak_amplitude_time = peak_amplitude_time;
    result.peak_amplitude_value = peak_amplitude_value;
    result.begin_amplitude = begin_amplitude;
    result.quarter_amplitude_time = (double)quarter_amplitude_time;
    result.keyoff_out_time = (double)keyoff_out_time;

    result.ms_sound_kon  = (int64_t)(quarter_amplitude_time * 1000.0 / interval);
    result.ms_sound_koff = (int64_t)(keyoff_out_time        * 1000.0 / interval);
    result.nosound = (peak_amplitude_value < 0.5) || ((sound_min >= -1) && (sound_max <= 1));
    return result;
}

static const char* spinner = "-\\|/";

void MeasureThreaded::LoadCache(const char *fileName)
{
    FILE *in = std::fopen(fileName, "rb");
    if(!in)
    {
        std::printf("Failed to load cache: file is not exists.\n"
               "Complete data will be generated from scratch.\n");
        std::fflush(stdout);
        return;
    }

    char magic[32];
    if(std::fread(magic, 1, 32, in) != 32)
    {
        std::fclose(in);
        std::printf("Failed to load cache: can't read magic.\n"
               "Complete data will be generated from scratch.\n");
        std::fflush(stdout);
        return;
    }

    if(memcmp(magic, "ADLMIDI-DURATION-CACHE-FILE-V1.0", 32) != 0)
    {
        std::fclose(in);
        std::printf("Failed to load cache: magic missmatch.\n"
               "Complete data will be generated from scratch.\n");
        std::fflush(stdout);
        return;
    }

    while(!std::feof(in))
    {
        DurationInfo info;
        ins inst;
        //got by instrument
        insdata id[2];
        size_t insNo[2] = {0, 0};
        bool found[2] = {false, false};
        //got from file
        insdata id_f[2];
        bool found_f[2] = {false, false};
        bool isMatches = false;

        memset(id, 0, sizeof(insdata) * 2);
        memset(id_f, 0, sizeof(insdata) * 2);
        memset(&info, 0, sizeof(DurationInfo));
        memset(&inst, 0, sizeof(ins));

        //Instrument
        uint64_t inval;
        if(std::fread(&inval, 1, sizeof(uint64_t), in) != sizeof(uint64_t))
            break;
        inst.insno1 = inval;
        if(std::fread(&inval, 1, sizeof(uint64_t), in) != sizeof(uint64_t))
            break;
        inst.insno2 = inval;
        if(std::fread(&inst.notenum, 1, 1, in) != 1)
            break;
        if(std::fread(&inst.pseudo4op, 1, 1, in) != 1)
            break;
        if(std::fread(&inst.voice2_fine_tune, sizeof(double), 1, in) != 1)
            break;

        //Instrument data
        if(fread(found_f, 1, 2 * sizeof(bool), in) != sizeof(bool) * 2)
            break;
        for(size_t i = 0; i < 2; i++)
        {
            if(fread(id_f[i].data, 1, 11, in) != 11)
                break;
            if(fread(&id_f[i].finetune, 1, 1, in) != 1)
                break;
            if(fread(&id_f[i].diff, 1, sizeof(bool), in) != sizeof(bool))
                break;
        }

        if(found_f[0] || found_f[1])
        {
            for(InstrumentDataTab::const_iterator j = insdatatab.begin(); j != insdatatab.end(); ++j)
            {
                if(j->second.first == inst.insno1)
                {
                    id[0] = j->first;
                    found[0] = (id[0] == id_f[0]);
                    insNo[0] = inst.insno1;
                    if(found[1]) break;
                }
                if(j->second.first == inst.insno2)
                {
                    id[1] = j->first;
                    found[1] = (id[1] == id_f[1]);
                    insNo[1] = inst.insno2;
                    if(found[0]) break;
                }
            }

            //Find instrument entries are matching
            if((found[0] != found_f[0]) || (found[1] != found_f[1]))
            {
                for(InstrumentDataTab::const_iterator j = insdatatab.begin(); j != insdatatab.end(); ++j)
                {
                    if(found_f[0] && (j->first == id_f[0]))
                    {
                        found[0] = true;
                        insNo[0] = j->second.first;
                    }
                    if(found_f[1] && (j->first == id_f[1]))
                    {
                        found[1] = true;
                        insNo[1] = j->second.first;
                    }
                    if(found[0] && !found_f[1])
                    {
                        isMatches = true;
                        break;
                    }
                    if(found[0] && found[1])
                    {
                        isMatches = true;
                        break;
                    }
                }
            }
            else
            {
                isMatches = true;
            }

            //Then find instrument entry that uses found instruments
            if(isMatches)
            {
                inst.insno1 = insNo[0];
                inst.insno2 = insNo[1];
                InstrumentsData::iterator d = instab.find(inst);
                if(d == instab.end())
                    isMatches = false;
            }
        }

        //Duration data
        if(std::fread(&info.peak_amplitude_time, 1, sizeof(uint64_t), in) != sizeof(uint64_t))
            break;
        if(std::fread(&info.peak_amplitude_value, 1, sizeof(double), in) != sizeof(double))
            break;
        if(std::fread(&info.quarter_amplitude_time, 1, sizeof(double), in) != sizeof(double))
            break;
        if(std::fread(&info.begin_amplitude, 1, sizeof(double), in) != sizeof(double))
            break;
        if(std::fread(&info.interval, 1, sizeof(double), in) != sizeof(double))
            break;
        if(std::fread(&info.keyoff_out_time, 1, sizeof(double), in) != sizeof(double))
            break;
        if(std::fread(&info.ms_sound_kon, 1, sizeof(int64_t), in) != sizeof(int64_t))
            break;
        if(std::fread(&info.ms_sound_koff, 1, sizeof(int64_t), in) != sizeof(int64_t))
            break;
        if(std::fread(&info.nosound, 1, sizeof(bool), in) != sizeof(bool))
            break;

        if(isMatches)//Store only if cached entry matches actual raw instrument data
            m_durationInfo.insert({inst, info});
    }

    std::printf("Cache loaded!\n");
    std::fflush(stdout);

    std::fclose(in);
}

void MeasureThreaded::SaveCache(const char *fileName)
{
    FILE *out = std::fopen(fileName, "wb");
    fprintf(out, "ADLMIDI-DURATION-CACHE-FILE-V1.0");
    for(DurationInfoCache::iterator it = m_durationInfo.begin(); it != m_durationInfo.end(); it++)
    {
        const ins &in = it->first;
        insdata id[2];
        bool found[2] = {false, false};
        memset(id, 0, sizeof(insdata) * 2);

        uint64_t outval;
        outval = in.insno1;
        fwrite(&outval, 1, sizeof(uint64_t), out);
        outval = in.insno2;
        fwrite(&outval, 1, sizeof(uint64_t), out);
        fwrite(&in.notenum, 1, 1, out);
        fwrite(&in.pseudo4op, 1, 1, out);
        fwrite(&in.voice2_fine_tune, sizeof(double), 1, out);

        for(InstrumentDataTab::const_iterator j = insdatatab.begin(); j != insdatatab.end(); ++j)
        {
            if(j->second.first == in.insno1)
            {
                id[0] = j->first;
                found[0] = true;
                if(found[1]) break;
            }
            if(j->second.first == in.insno2)
            {
                id[1] = j->first;
                found[1] = true;
                if(found[0]) break;
            }
        }

        fwrite(found, 1, 2 * sizeof(bool), out);
        for(size_t i = 0; i < 2; i++)
        {
            fwrite(id[i].data, 1, 11, out);
            fwrite(&id[i].finetune, 1, 1, out);
            fwrite(&id[i].diff, 1, sizeof(bool), out);
        }

        fwrite(&it->second.peak_amplitude_time, 1, sizeof(uint64_t), out);
        fwrite(&it->second.peak_amplitude_value, 1, sizeof(double), out);
        fwrite(&it->second.quarter_amplitude_time, 1, sizeof(double), out);
        fwrite(&it->second.begin_amplitude, 1, sizeof(double), out);
        fwrite(&it->second.interval, 1, sizeof(double), out);
        fwrite(&it->second.keyoff_out_time, 1, sizeof(double), out);
        fwrite(&it->second.ms_sound_kon, 1, sizeof(int64_t), out);
        fwrite(&it->second.ms_sound_koff, 1, sizeof(int64_t), out);
        fwrite(&it->second.nosound, 1, sizeof(bool), out);
    }
    std::fclose(out);
}

void MeasureThreaded::printProgress()
{
    std::printf("Calculating measures... [%c %3u%% (%4u/%4u) Threads %3u, Matches %u]       \r",
            spinner[m_done.load() % 4],
            (unsigned int)(((double)m_done.load() / (double)(m_total)) * 100),
            (unsigned int)m_done.load(),
            (unsigned int)m_total,
            (unsigned int)m_threads.size(),
            (unsigned int)m_cache_matches
            );
    std::fflush(stdout);
}

void MeasureThreaded::printFinal()
{
    std::printf("Calculating measures completed! [Total entries %4u with %u cache matches]\n",
            (unsigned int)m_total,
            (unsigned int)m_cache_matches);
    std::fflush(stdout);
}

void MeasureThreaded::run(InstrumentsData::const_iterator i)
{
    m_semaphore.wait();
    if(m_threads.size() > 0)
    {
        for(std::vector<destData *>::iterator it = m_threads.begin(); it != m_threads.end();)
        {
            if(!(*it)->m_works)
            {
                delete(*it);
                it = m_threads.erase(it);
            }
            else
                it++;
        }
    }

    destData *dd = new destData;
    dd->i = i;
    dd->myself = this;
    dd->start();
    m_threads.push_back(dd);
    printProgress();
}

void MeasureThreaded::waitAll()
{
    for(auto &th : m_threads)
    {
        printProgress();
        delete th;
    }
    m_threads.clear();
    printFinal();
}

void MeasureThreaded::destData::start()
{
    m_work = std::thread(&destData::callback, this);
}

void MeasureThreaded::destData::callback(void *myself)
{
    destData *s = reinterpret_cast<destData *>(myself);
    DurationInfo info;
    DurationInfoCache::iterator cachedEntry = s->myself->m_durationInfo.find(s->i->first);

    if(cachedEntry != s->myself->m_durationInfo.end())
    {
        s->myself->m_cache_matches++;
        goto endWork;
    }

    info = MeasureDurations(s->i->first);
    s->myself->m_durationInfo_mx.lock();
    s->myself->m_durationInfo.insert({s->i->first, info});
    s->myself->m_durationInfo_mx.unlock();

endWork:
    s->myself->m_semaphore.notify();
    s->myself->m_done++;
    s->m_works = false;
}