1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
|
/*
* libADLMIDI is a free Software MIDI synthesizer library with OPL3 emulation
*
* Original ADLMIDI code: Copyright (c) 2010-2014 Joel Yliluoma <bisqwit@iki.fi>
* ADLMIDI Library API: Copyright (c) 2015-2020 Vitaly Novichkov <admin@wohlnet.ru>
*
* Library is based on the ADLMIDI, a MIDI player for Linux and Windows with OPL3 emulation:
* http://iki.fi/bisqwit/source/adlmidi.html
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "adlmidi_opl3.hpp"
#include "adlmidi_private.hpp"
#include <stdlib.h>
#include <cassert>
#ifndef DISABLE_EMBEDDED_BANKS
#include "wopl/wopl_file.h"
#endif
#ifdef ADLMIDI_HW_OPL
static const unsigned OPLBase = 0x388;
#else
# if defined(ADLMIDI_DISABLE_NUKED_EMULATOR) && \
defined(ADLMIDI_DISABLE_DOSBOX_EMULATOR) && \
defined(ADLMIDI_DISABLE_OPAL_EMULATOR) && \
defined(ADLMIDI_DISABLE_JAVA_EMULATOR)
# error "No emulators enabled. You must enable at least one emulator to use this library!"
# endif
// Nuked OPL3 emulator, Most accurate, but requires the powerful CPU
# ifndef ADLMIDI_DISABLE_NUKED_EMULATOR
# include "chips/nuked_opl3.h"
# include "chips/nuked_opl3_v174.h"
# endif
// DosBox 0.74 OPL3 emulator, Well-accurate and fast
# ifndef ADLMIDI_DISABLE_DOSBOX_EMULATOR
# include "chips/dosbox_opl3.h"
# endif
// Opal emulator
# ifndef ADLMIDI_DISABLE_OPAL_EMULATOR
# include "chips/opal_opl3.h"
# endif
// Java emulator
# ifndef ADLMIDI_DISABLE_JAVA_EMULATOR
# include "chips/java_opl3.h"
# endif
#endif
static const unsigned adl_emulatorSupport = 0
#ifndef ADLMIDI_HW_OPL
# ifndef ADLMIDI_DISABLE_NUKED_EMULATOR
| (1u << ADLMIDI_EMU_NUKED) | (1u << ADLMIDI_EMU_NUKED_174)
# endif
# ifndef ADLMIDI_DISABLE_DOSBOX_EMULATOR
| (1u << ADLMIDI_EMU_DOSBOX)
# endif
# ifndef ADLMIDI_DISABLE_OPAL_EMULATOR
| (1u << ADLMIDI_EMU_OPAL)
# endif
# ifndef ADLMIDI_DISABLE_JAVA_EMULATOR
| (1u << ADLMIDI_EMU_JAVA)
# endif
#endif
;
//! Check emulator availability
bool adl_isEmulatorAvailable(int emulator)
{
return (adl_emulatorSupport & (1u << (unsigned)emulator)) != 0;
}
//! Find highest emulator
int adl_getHighestEmulator()
{
int emu = -1;
for(unsigned m = adl_emulatorSupport; m > 0; m >>= 1)
++emu;
return emu;
}
//! Find lowest emulator
int adl_getLowestEmulator()
{
int emu = -1;
unsigned m = adl_emulatorSupport;
if(m > 0)
{
for(emu = 0; (m & 1) == 0; m >>= 1)
++emu;
}
return emu;
}
//! Per-channel and per-operator registers map
static const uint16_t g_operatorsMap[(NUM_OF_CHANNELS + NUM_OF_RM_CHANNELS) * 2] =
{
// Channels 0-2
0x000, 0x003, 0x001, 0x004, 0x002, 0x005, // operators 0, 3, 1, 4, 2, 5
// Channels 3-5
0x008, 0x00B, 0x009, 0x00C, 0x00A, 0x00D, // operators 6, 9, 7,10, 8,11
// Channels 6-8
0x010, 0x013, 0x011, 0x014, 0x012, 0x015, // operators 12,15, 13,16, 14,17
// Same for second card
0x100, 0x103, 0x101, 0x104, 0x102, 0x105, // operators 18,21, 19,22, 20,23
0x108, 0x10B, 0x109, 0x10C, 0x10A, 0x10D, // operators 24,27, 25,28, 26,29
0x110, 0x113, 0x111, 0x114, 0x112, 0x115, // operators 30,33, 31,34, 32,35
//==For Rhythm-mode percussions
// Channel 18
0x010, 0x013, // operators 12,15
// Channel 19
0xFFF, 0x014, // operator 16
// Channel 19
0x012, 0xFFF, // operator 14
// Channel 19
0xFFF, 0x015, // operator 17
// Channel 19
0x011, 0xFFF, // operator 13
//==For Rhythm-mode percussions in CMF, snare and cymbal operators has inverted!
0x010, 0x013, // operators 12,15
// Channel 19
0x014, 0xFFF, // operator 16
// Channel 19
0x012, 0xFFF, // operator 14
// Channel 19
0x015, 0xFFF, // operator 17
// Channel 19
0x011, 0xFFF // operator 13
};
//! Channel map to regoster offsets
static const uint16_t g_channelsMap[NUM_OF_CHANNELS] =
{
0x000, 0x001, 0x002, 0x003, 0x004, 0x005, 0x006, 0x007, 0x008, // 0..8
0x100, 0x101, 0x102, 0x103, 0x104, 0x105, 0x106, 0x107, 0x108, // 9..17 (secondary set)
0x006, 0x007, 0x008, 0x008, 0x008 // <- hw percussions, hihats and cymbals using tom-tom's channel as pitch source
};
//! Channel map to regoster offsets (separated copy for panning)
static const uint16_t g_channelsMapPan[NUM_OF_CHANNELS] =
{
0x000, 0x001, 0x002, 0x003, 0x004, 0x005, 0x006, 0x007, 0x008, // 0..8
0x100, 0x101, 0x102, 0x103, 0x104, 0x105, 0x106, 0x107, 0x108, // 9..17 (secondary set)
0x006, 0x007, 0x008, 0xFFF, 0xFFF // <- hw percussions, 0xFFF = no support for pitch/pan
};
/*
In OPL3 mode:
0 1 2 6 7 8 9 10 11 16 17 18
op0 op1 op2 op12 op13 op14 op18 op19 op20 op30 op31 op32
op3 op4 op5 op15 op16 op17 op21 op22 op23 op33 op34 op35
3 4 5 13 14 15
op6 op7 op8 op24 op25 op26
op9 op10 op11 op27 op28 op29
Ports:
+0 +1 +2 +10 +11 +12 +100 +101 +102 +110 +111 +112
+3 +4 +5 +13 +14 +15 +103 +104 +105 +113 +114 +115
+8 +9 +A +108 +109 +10A
+B +C +D +10B +10C +10D
Percussion:
bassdrum = op(0): 0xBD bit 0x10, operators 12 (0x10) and 15 (0x13) / channels 6, 6b
snare = op(3): 0xBD bit 0x08, operators 16 (0x14) / channels 7b
tomtom = op(4): 0xBD bit 0x04, operators 14 (0x12) / channels 8
cym = op(5): 0xBD bit 0x02, operators 17 (0x17) / channels 8b
hihat = op(2): 0xBD bit 0x01, operators 13 (0x11) / channels 7
In OPTi mode ("extended FM" in 82C924, 82C925, 82C931 chips):
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
op0 op4 op6 op10 op12 op16 op18 op22 op24 op28 op30 op34 op36 op38 op40 op42 op44 op46
op1 op5 op7 op11 op13 op17 op19 op23 op25 op29 op31 op35 op37 op39 op41 op43 op45 op47
op2 op8 op14 op20 op26 op32
op3 op9 op15 op21 op27 op33 for a total of 6 quad + 12 dual
Ports: ???
*/
enum
{
OPL_PANNING_LEFT = 0x10,
OPL_PANNING_RIGHT = 0x20,
OPL_PANNING_BOTH = 0x30
};
static adlinsdata2 makeEmptyInstrument()
{
adlinsdata2 ins;
memset(&ins, 0, sizeof(adlinsdata2));
ins.flags = adlinsdata::Flag_NoSound;
return ins;
}
const adlinsdata2 OPL3::m_emptyInstrument = makeEmptyInstrument();
OPL3::OPL3() :
m_numChips(1),
m_numFourOps(0),
m_deepTremoloMode(false),
m_deepVibratoMode(false),
m_rhythmMode(false),
m_softPanning(false),
m_musicMode(MODE_MIDI),
m_volumeScale(VOLUME_Generic)
{
m_insBankSetup.volumeModel = OPL3::VOLUME_Generic;
m_insBankSetup.deepTremolo = false;
m_insBankSetup.deepVibrato = false;
m_insBankSetup.scaleModulators = false;
#ifdef DISABLE_EMBEDDED_BANKS
m_embeddedBank = CustomBankTag;
#else
setEmbeddedBank(0);
#endif
}
OPL3::~OPL3()
{
#ifdef ADLMIDI_HW_OPL
silenceAll();
writeRegI(0, 0x0BD, 0);
writeRegI(0, 0x104, 0);
writeRegI(0, 0x105, 0);
silenceAll();
#endif
}
bool OPL3::setupLocked()
{
return (m_musicMode == MODE_CMF ||
m_musicMode == MODE_IMF ||
m_musicMode == MODE_RSXX);
}
void OPL3::setEmbeddedBank(uint32_t bank)
{
#ifndef DISABLE_EMBEDDED_BANKS
m_embeddedBank = bank;
//Embedded banks are supports 128:128 GM set only
m_insBanks.clear();
if(bank >= static_cast<uint32_t>(g_embeddedBanksCount))
return;
const BanksDump::BankEntry &bankEntry = g_embeddedBanks[m_embeddedBank];
m_insBankSetup.deepTremolo = ((bankEntry.bankSetup >> 8) & 0x01) != 0;
m_insBankSetup.deepVibrato = ((bankEntry.bankSetup >> 8) & 0x02) != 0;
m_insBankSetup.volumeModel = (bankEntry.bankSetup & 0xFF);
m_insBankSetup.scaleModulators = false;
for(int ss = 0; ss < 2; ss++)
{
bank_count_t maxBanks = ss ? bankEntry.banksPercussionCount : bankEntry.banksMelodicCount;
bank_count_t banksOffset = ss ? bankEntry.banksOffsetPercussive : bankEntry.banksOffsetMelodic;
for(bank_count_t bankID = 0; bankID < maxBanks; bankID++)
{
size_t bankIndex = g_embeddedBanksMidiIndex[banksOffset + bankID];
const BanksDump::MidiBank &bankData = g_embeddedBanksMidi[bankIndex];
size_t bankMidiIndex = static_cast<size_t>((bankData.msb * 256) + bankData.lsb) + (ss ? PercussionTag : 0);
Bank &bankTarget = m_insBanks[bankMidiIndex];
for(size_t instId = 0; instId < 128; instId++)
{
BanksDump::InstrumentEntry instIn = g_embeddedBanksInstruments[bankData.insts[instId]];
adlinsdata2 &instOut = bankTarget.ins[instId];
instOut.voice2_fine_tune = 0.0;
if(instIn.secondVoiceDetune != 0)
{
if(instIn.secondVoiceDetune == 1)
instOut.voice2_fine_tune = 0.000025;
else if(instIn.secondVoiceDetune == -1)
instOut.voice2_fine_tune = -0.000025;
else
instOut.voice2_fine_tune = instIn.secondVoiceDetune * (15.625 / 1000.0);
}
instOut.midi_velocity_offset = instIn.midiVelocityOffset;
instOut.tone = instIn.percussionKeyNumber;
instOut.flags = (instIn.instFlags & WOPL_Ins_4op) && (instIn.instFlags & WOPL_Ins_Pseudo4op) ? adlinsdata::Flag_Pseudo4op : 0;
instOut.flags|= (instIn.instFlags & WOPL_Ins_4op) && ((instIn.instFlags & WOPL_Ins_Pseudo4op) == 0) ? adlinsdata::Flag_Real4op : 0;
instOut.flags|= (instIn.instFlags & WOPL_Ins_IsBlank) ? adlinsdata::Flag_NoSound : 0;
instOut.flags|= instIn.instFlags & WOPL_RhythmModeMask;
for(size_t op = 0; op < 2; op++)
{
if((instIn.ops[(op * 2) + 0] < 0) || (instIn.ops[(op * 2) + 1] < 0))
break;
const BanksDump::Operator &op1 = g_embeddedBanksOperators[instIn.ops[(op * 2) + 0]];
const BanksDump::Operator &op2 = g_embeddedBanksOperators[instIn.ops[(op * 2) + 1]];
instOut.adl[op].modulator_E862 = op1.d_E862;
instOut.adl[op].modulator_40 = op1.d_40;
instOut.adl[op].carrier_E862 = op2.d_E862;
instOut.adl[op].carrier_40 = op2.d_40;
instOut.adl[op].feedconn = (instIn.fbConn >> (op * 8)) & 0xFF;
instOut.adl[op].finetune = static_cast<int8_t>(op == 0 ? instIn.noteOffset1 : instIn.noteOffset2);
}
instOut.ms_sound_kon = instIn.delay_on_ms;
instOut.ms_sound_koff = instIn.delay_off_ms;
}
}
}
// Bank *bank_pair[2] =
// {
// &m_insBanks[0],
// &m_insBanks[PercussionTag]
// };
// for(unsigned i = 0; i < 256; ++i)
// {
// size_t meta = banks[bank][i];
// adlinsdata2 &ins = bank_pair[i / 128]->ins[i % 128];
// ins = adlinsdata2::from_adldata(::adlins[meta]);
// }
#else
ADL_UNUSED(bank);
#endif
}
void OPL3::writeReg(size_t chip, uint16_t address, uint8_t value)
{
#ifdef ADLMIDI_HW_OPL
ADL_UNUSED(chip);
unsigned o = address >> 8;
unsigned port = OPLBase + o * 2;
# ifdef __DJGPP__
outportb(port, address);
for(unsigned c = 0; c < 6; ++c) inportb(port);
outportb(port + 1, value);
for(unsigned c = 0; c < 35; ++c) inportb(port);
# endif
# ifdef __WATCOMC__
outp(port, address);
for(uint16_t c = 0; c < 6; ++c) inp(port);
outp(port + 1, value);
for(uint16_t c = 0; c < 35; ++c) inp(port);
# endif//__WATCOMC__
#else//ADLMIDI_HW_OPL
m_chips[chip]->writeReg(address, value);
#endif
}
void OPL3::writeRegI(size_t chip, uint32_t address, uint32_t value)
{
#ifdef ADLMIDI_HW_OPL
writeReg(chip, static_cast<uint16_t>(address), static_cast<uint8_t>(value));
#else//ADLMIDI_HW_OPL
m_chips[chip]->writeReg(static_cast<uint16_t>(address), static_cast<uint8_t>(value));
#endif
}
void OPL3::writePan(size_t chip, uint32_t address, uint32_t value)
{
#ifndef ADLMIDI_HW_OPL
m_chips[chip]->writePan(static_cast<uint16_t>(address), static_cast<uint8_t>(value));
#else
ADL_UNUSED(chip);
ADL_UNUSED(address);
ADL_UNUSED(value);
#endif
}
void OPL3::noteOff(size_t c)
{
size_t chip = c / NUM_OF_CHANNELS, cc = c % NUM_OF_CHANNELS;
if(cc >= OPL3_CHANNELS_RHYTHM_BASE)
{
m_regBD[chip] &= ~(0x10 >> (cc - OPL3_CHANNELS_RHYTHM_BASE));
writeRegI(chip, 0xBD, m_regBD[chip]);
return;
}
writeRegI(chip, 0xB0 + g_channelsMap[cc], m_keyBlockFNumCache[c] & 0xDF);
}
void OPL3::noteOn(size_t c1, size_t c2, double hertz) // Hertz range: 0..131071
{
size_t chip = c1 / NUM_OF_CHANNELS, cc1 = c1 % NUM_OF_CHANNELS, cc2 = c2 % NUM_OF_CHANNELS;
uint32_t octave = 0, ftone = 0, mul_offset = 0;
if(hertz < 0)
return;
//Basic range until max of octaves reaching
while((hertz >= 1023.5) && (octave < 0x1C00))
{
hertz /= 2.0; // Calculate octave
octave += 0x400;
}
//Extended range, rely on frequency multiplication increment
while(hertz >= 1022.75)
{
hertz /= 2.0; // Calculate octave
mul_offset++;
}
ftone = octave + static_cast<uint32_t>(hertz + 0.5);
uint32_t chn = g_channelsMap[cc1];
const adldata &patch1 = m_insCache[c1];
const adldata &patch2 = m_insCache[c2 < m_insCache.size() ? c2 : 0];
if(cc1 < OPL3_CHANNELS_RHYTHM_BASE)
{
ftone += 0x2000u; /* Key-ON [KON] */
const bool natural_4op = (m_channelCategory[c1] == ChanCat_4op_Master);
const size_t opsCount = natural_4op ? 4 : 2;
const uint16_t op_addr[4] =
{
g_operatorsMap[cc1 * 2 + 0], g_operatorsMap[cc1 * 2 + 1],
g_operatorsMap[cc2 * 2 + 0], g_operatorsMap[cc2 * 2 + 1]
};
const uint32_t ops[4] =
{
patch1.modulator_E862 & 0xFF,
patch1.carrier_E862 & 0xFF,
patch2.modulator_E862 & 0xFF,
patch2.carrier_E862 & 0xFF
};
for(size_t op = 0; op < opsCount; op++)
{
if(op_addr[op] == 0xFFF)
continue;
if(mul_offset > 0)
{
uint32_t dt = ops[op] & 0xF0;
uint32_t mul = ops[op] & 0x0F;
if((mul + mul_offset) > 0x0F)
{
mul_offset = 0;
mul = 0x0F;
}
writeRegI(chip, 0x20 + op_addr[op], (dt | (mul + mul_offset)) & 0xFF);
}
else
{
writeRegI(chip, 0x20 + op_addr[op], ops[op] & 0xFF);
}
}
}
if(chn != 0xFFF)
{
writeRegI(chip , 0xA0 + chn, (ftone & 0xFF));
writeRegI(chip , 0xB0 + chn, (ftone >> 8));
m_keyBlockFNumCache[c1] = (ftone >> 8);
}
if(cc1 >= OPL3_CHANNELS_RHYTHM_BASE)
{
m_regBD[chip ] |= (0x10 >> (cc1 - OPL3_CHANNELS_RHYTHM_BASE));
writeRegI(chip , 0x0BD, m_regBD[chip ]);
//x |= 0x800; // for test
}
}
void OPL3::touchNote(size_t c, uint8_t volume, uint8_t brightness)
{
if(volume > 63)
volume = 63;
size_t chip = c / NUM_OF_CHANNELS, cc = c % NUM_OF_CHANNELS;
const adldata &adli = m_insCache[c];
size_t cmf_offset = ((m_musicMode == MODE_CMF) && cc >= OPL3_CHANNELS_RHYTHM_BASE) ? 10 : 0;
uint16_t o1 = g_operatorsMap[cc * 2 + 0 + cmf_offset];
uint16_t o2 = g_operatorsMap[cc * 2 + 1 + cmf_offset];
uint8_t x = adli.modulator_40, y = adli.carrier_40;
uint32_t mode = 1; // 2-op AM
if(m_channelCategory[c] == ChanCat_Regular ||
m_channelCategory[c] == ChanCat_Rhythm_Bass)
{
mode = adli.feedconn & 1; // 2-op FM or 2-op AM
}
else if(m_channelCategory[c] == ChanCat_4op_Master ||
m_channelCategory[c] == ChanCat_4op_Slave)
{
const adldata *i0, *i1;
if(m_channelCategory[c] == ChanCat_4op_Master)
{
i0 = &adli;
i1 = &m_insCache[c + 3];
mode = 2; // 4-op xx-xx ops 1&2
}
else
{
i0 = &m_insCache[c - 3];
i1 = &adli;
mode = 6; // 4-op xx-xx ops 3&4
}
mode += (i0->feedconn & 1) + (i1->feedconn & 1) * 2;
}
static const bool do_ops[10][2] =
{
{ false, true }, /* 2 op FM */
{ true, true }, /* 2 op AM */
{ false, false }, /* 4 op FM-FM ops 1&2 */
{ true, false }, /* 4 op AM-FM ops 1&2 */
{ false, true }, /* 4 op FM-AM ops 1&2 */
{ true, false }, /* 4 op AM-AM ops 1&2 */
{ false, true }, /* 4 op FM-FM ops 3&4 */
{ false, true }, /* 4 op AM-FM ops 3&4 */
{ false, true }, /* 4 op FM-AM ops 3&4 */
{ true, true } /* 4 op AM-AM ops 3&4 */
};
if(m_musicMode == MODE_RSXX)
{
if(o1 != 0xFFF)
writeRegI(chip, 0x40 + o1, x);
if(o2 != 0xFFF)
writeRegI(chip, 0x40 + o2, y - volume / 2);
}
else
{
bool do_modulator = do_ops[ mode ][ 0 ] || m_scaleModulators;
bool do_carrier = do_ops[ mode ][ 1 ] || m_scaleModulators;
uint32_t modulator = do_modulator ? (x | 63) - volume + volume * (x & 63) / 63 : x;
uint32_t carrier = do_carrier ? (y | 63) - volume + volume * (y & 63) / 63 : y;
if(brightness != 127)
{
brightness = static_cast<uint8_t>(::round(127.0 * ::sqrt((static_cast<double>(brightness)) * (1.0 / 127.0))) / 2.0);
if(!do_modulator)
modulator = (modulator | 63) - brightness + brightness * (modulator & 63) / 63;
if(!do_carrier)
carrier = (carrier | 63) - brightness + brightness * (carrier & 63) / 63;
}
if(o1 != 0xFFF)
writeRegI(chip, 0x40 + o1, modulator);
if(o2 != 0xFFF)
writeRegI(chip, 0x40 + o2, carrier);
}
// Correct formula (ST3, AdPlug):
// 63-((63-(instrvol))/63)*chanvol
// Reduces to (tested identical):
// 63 - chanvol + chanvol*instrvol/63
// Also (slower, floats):
// 63 + chanvol * (instrvol / 63.0 - 1)
}
/*
void OPL3::Touch(unsigned c, unsigned volume) // Volume maxes at 127*127*127
{
if(LogarithmicVolumes)
Touch_Real(c, volume * 127 / (127 * 127 * 127) / 2);
else
{
// The formula below: SOLVE(V=127^3 * 2^( (A-63.49999) / 8), A)
Touch_Real(c, volume > 8725 ? static_cast<unsigned int>(std::log(volume) * 11.541561 + (0.5 - 104.22845)) : 0);
// The incorrect formula below: SOLVE(V=127^3 * (2^(A/63)-1), A)
//Touch_Real(c, volume>11210 ? 91.61112 * std::log(4.8819E-7*volume + 1.0)+0.5 : 0);
}
}*/
void OPL3::setPatch(size_t c, const adldata &instrument)
{
size_t chip = c / NUM_OF_CHANNELS, cc = c % NUM_OF_CHANNELS;
static const uint8_t data[4] = {0x20, 0x60, 0x80, 0xE0};
m_insCache[c] = instrument;
size_t cmf_offset = ((m_musicMode == MODE_CMF) && (cc >= OPL3_CHANNELS_RHYTHM_BASE)) ? 10 : 0;
uint16_t o1 = g_operatorsMap[cc * 2 + 0 + cmf_offset];
uint16_t o2 = g_operatorsMap[cc * 2 + 1 + cmf_offset];
unsigned x = instrument.modulator_E862, y = instrument.carrier_E862;
for(size_t a = 0; a < 4; ++a, x >>= 8, y >>= 8)
{
if(o1 != 0xFFF)
writeRegI(chip, data[a] + o1, x & 0xFF);
if(o2 != 0xFFF)
writeRegI(chip, data[a] + o2, y & 0xFF);
}
}
void OPL3::setPan(size_t c, uint8_t value)
{
size_t chip = c / NUM_OF_CHANNELS, cc = c % NUM_OF_CHANNELS;
if(g_channelsMapPan[cc] != 0xFFF)
{
#ifndef ADLMIDI_HW_OPL
if (m_softPanning)
{
writePan(chip, g_channelsMapPan[cc], value);
writeRegI(chip, 0xC0 + g_channelsMapPan[cc], m_insCache[c].feedconn | OPL_PANNING_BOTH);
}
else
{
#endif
int panning = 0;
if(value < 64 + 32) panning |= OPL_PANNING_LEFT;
if(value >= 64 - 32) panning |= OPL_PANNING_RIGHT;
writePan(chip, g_channelsMapPan[cc], 64);
writeRegI(chip, 0xC0 + g_channelsMapPan[cc], m_insCache[c].feedconn | panning);
#ifndef ADLMIDI_HW_OPL
}
#endif
}
}
void OPL3::silenceAll() // Silence all OPL channels.
{
for(size_t c = 0; c < m_numChannels; ++c)
{
noteOff(c);
touchNote(c, 0);
}
}
void OPL3::updateChannelCategories()
{
const uint32_t fours = m_numFourOps;
for(uint32_t chip = 0, fours_left = fours; chip < m_numChips; ++chip)
{
m_regBD[chip] = (m_deepTremoloMode * 0x80 + m_deepVibratoMode * 0x40 + m_rhythmMode * 0x20);
writeRegI(chip, 0x0BD, m_regBD[chip]);
uint32_t fours_this_chip = std::min(fours_left, static_cast<uint32_t>(6u));
writeRegI(chip, 0x104, (1 << fours_this_chip) - 1);
fours_left -= fours_this_chip;
}
if(!m_rhythmMode)
{
for(size_t a = 0, n = m_numChips; a < n; ++a)
{
for(size_t b = 0; b < NUM_OF_CHANNELS; ++b)
{
m_channelCategory[a * NUM_OF_CHANNELS + b] =
(b >= OPL3_CHANNELS_RHYTHM_BASE) ? ChanCat_Rhythm_Slave : ChanCat_Regular;
}
}
}
else
{
for(size_t a = 0, n = m_numChips; a < n; ++a)
{
for(size_t b = 0; b < NUM_OF_CHANNELS; ++b)
{
m_channelCategory[a * NUM_OF_CHANNELS + b] =
(b >= OPL3_CHANNELS_RHYTHM_BASE) ? static_cast<ChanCat>(ChanCat_Rhythm_Bass + (b - OPL3_CHANNELS_RHYTHM_BASE)) :
(b >= 6 && b < 9) ? ChanCat_Rhythm_Slave : ChanCat_Regular;
}
}
}
uint32_t nextfour = 0;
for(uint32_t a = 0; a < fours; ++a)
{
m_channelCategory[nextfour] = ChanCat_4op_Master;
m_channelCategory[nextfour + 3] = ChanCat_4op_Slave;
switch(a % 6)
{
case 0:
case 1:
nextfour += 1;
break;
case 2:
nextfour += 9 - 2;
break;
case 3:
case 4:
nextfour += 1;
break;
case 5:
nextfour += NUM_OF_CHANNELS - 9 - 2;
break;
}
}
/**/
/*
In two-op mode, channels 0..8 go as follows:
Op1[port] Op2[port]
Channel 0: 00 00 03 03
Channel 1: 01 01 04 04
Channel 2: 02 02 05 05
Channel 3: 06 08 09 0B
Channel 4: 07 09 10 0C
Channel 5: 08 0A 11 0D
Channel 6: 12 10 15 13
Channel 7: 13 11 16 14
Channel 8: 14 12 17 15
In four-op mode, channels 0..8 go as follows:
Op1[port] Op2[port] Op3[port] Op4[port]
Channel 0: 00 00 03 03 06 08 09 0B
Channel 1: 01 01 04 04 07 09 10 0C
Channel 2: 02 02 05 05 08 0A 11 0D
Channel 3: CHANNEL 0 SLAVE
Channel 4: CHANNEL 1 SLAVE
Channel 5: CHANNEL 2 SLAVE
Channel 6: 12 10 15 13
Channel 7: 13 11 16 14
Channel 8: 14 12 17 15
Same goes principally for channels 9-17 respectively.
*/
}
void OPL3::commitDeepFlags()
{
for(size_t chip = 0; chip < m_numChips; ++chip)
{
m_regBD[chip] = (m_deepTremoloMode * 0x80 + m_deepVibratoMode * 0x40 + m_rhythmMode * 0x20);
writeRegI(chip, 0x0BD, m_regBD[chip]);
}
}
void OPL3::setVolumeScaleModel(ADLMIDI_VolumeModels volumeModel)
{
switch(volumeModel)
{
case ADLMIDI_VolumeModel_AUTO://Do nothing until restart playing
break;
case ADLMIDI_VolumeModel_Generic:
m_volumeScale = OPL3::VOLUME_Generic;
break;
case ADLMIDI_VolumeModel_NativeOPL3:
m_volumeScale = OPL3::VOLUME_NATIVE;
break;
case ADLMIDI_VolumeModel_DMX:
m_volumeScale = OPL3::VOLUME_DMX;
break;
case ADLMIDI_VolumeModel_APOGEE:
m_volumeScale = OPL3::VOLUME_APOGEE;
break;
case ADLMIDI_VolumeModel_9X:
m_volumeScale = OPL3::VOLUME_9X;
break;
}
}
ADLMIDI_VolumeModels OPL3::getVolumeScaleModel()
{
switch(m_volumeScale)
{
default:
case OPL3::VOLUME_Generic:
return ADLMIDI_VolumeModel_Generic;
case OPL3::VOLUME_NATIVE:
return ADLMIDI_VolumeModel_NativeOPL3;
case OPL3::VOLUME_DMX:
return ADLMIDI_VolumeModel_DMX;
case OPL3::VOLUME_APOGEE:
return ADLMIDI_VolumeModel_APOGEE;
case OPL3::VOLUME_9X:
return ADLMIDI_VolumeModel_9X;
}
}
#ifndef ADLMIDI_HW_OPL
void OPL3::clearChips()
{
for(size_t i = 0; i < m_chips.size(); i++)
m_chips[i].reset(NULL);
m_chips.clear();
}
#endif
void OPL3::reset(int emulator, unsigned long PCM_RATE, void *audioTickHandler)
{
#ifndef ADLMIDI_HW_OPL
clearChips();
#else
(void)emulator;
(void)PCM_RATE;
#endif
#if !defined(ADLMIDI_AUDIO_TICK_HANDLER)
(void)audioTickHandler;
#endif
m_insCache.clear();
m_keyBlockFNumCache.clear();
m_regBD.clear();
#ifndef ADLMIDI_HW_OPL
m_chips.resize(m_numChips, AdlMIDI_SPtr<OPLChipBase>());
#endif
const struct adldata defaultInsCache = { 0x1557403,0x005B381, 0x49,0x80, 0x4, +0 };
m_numChannels = m_numChips * NUM_OF_CHANNELS;
m_insCache.resize(m_numChannels, defaultInsCache);
m_keyBlockFNumCache.resize(m_numChannels, 0);
m_regBD.resize(m_numChips, 0);
m_channelCategory.resize(m_numChannels, 0);
for(size_t p = 0, a = 0; a < m_numChips; ++a)
{
for(size_t b = 0; b < OPL3_CHANNELS_RHYTHM_BASE; ++b)
m_channelCategory[p++] = ChanCat_Regular;
for(size_t b = 0; b < NUM_OF_RM_CHANNELS; ++b)
m_channelCategory[p++] = ChanCat_Rhythm_Slave;
}
static const uint16_t data[] =
{
0x004, 96, 0x004, 128, // Pulse timer
0x105, 0, 0x105, 1, 0x105, 0, // Pulse OPL3 enable
0x001, 32, 0x105, 1 // Enable wave, OPL3 extensions
};
// size_t fours = m_numFourOps;
for(size_t i = 0; i < m_numChips; ++i)
{
#ifndef ADLMIDI_HW_OPL
OPLChipBase *chip;
switch(emulator)
{
default:
assert(false);
abort();
#ifndef ADLMIDI_DISABLE_NUKED_EMULATOR
case ADLMIDI_EMU_NUKED: /* Latest Nuked OPL3 */
chip = new NukedOPL3;
break;
case ADLMIDI_EMU_NUKED_174: /* Old Nuked OPL3 1.4.7 modified and optimized */
chip = new NukedOPL3v174;
break;
#endif
#ifndef ADLMIDI_DISABLE_DOSBOX_EMULATOR
case ADLMIDI_EMU_DOSBOX:
chip = new DosBoxOPL3;
break;
#endif
#ifndef ADLMIDI_DISABLE_OPAL_EMULATOR
case ADLMIDI_EMU_OPAL:
chip = new OpalOPL3;
break;
#endif
#ifndef ADLMIDI_DISABLE_JAVA_EMULATOR
case ADLMIDI_EMU_JAVA:
chip = new JavaOPL3;
break;
#endif
}
m_chips[i].reset(chip);
chip->setChipId((uint32_t)i);
chip->setRate((uint32_t)PCM_RATE);
if(m_runAtPcmRate)
chip->setRunningAtPcmRate(true);
# if defined(ADLMIDI_AUDIO_TICK_HANDLER)
chip->setAudioTickHandlerInstance(audioTickHandler);
# endif
#endif // ADLMIDI_HW_OPL
/* Clean-up channels from any playing junk sounds */
for(size_t a = 0; a < OPL3_CHANNELS_RHYTHM_BASE; ++a)
writeRegI(i, 0xB0 + g_channelsMap[a], 0x00);
for(size_t a = 0; a < sizeof(data) / sizeof(*data); a += 2)
writeRegI(i, data[a], (data[a + 1]));
}
updateChannelCategories();
silenceAll();
}
|