aboutsummaryrefslogtreecommitdiff
path: root/src/chips/mame/mame_fmopl.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/chips/mame/mame_fmopl.cpp')
-rw-r--r--src/chips/mame/mame_fmopl.cpp1852
1 files changed, 1852 insertions, 0 deletions
diff --git a/src/chips/mame/mame_fmopl.cpp b/src/chips/mame/mame_fmopl.cpp
new file mode 100644
index 0000000..c1dbada
--- /dev/null
+++ b/src/chips/mame/mame_fmopl.cpp
@@ -0,0 +1,1852 @@
+// license:GPL-2.0+
+// copyright-holders:Jarek Burczynski,Tatsuyuki Satoh
+/*
+
+This file is based on fmopl.c from MAME. The non-YM3816 parts have been
+ripped out in the interest of making this simpler, since Doom music doesn't
+need them. I also made it render the sound a voice at a time instead of a
+sample at a time, so unused voices don't waste time being calculated. If all
+voices are playing, it's not much difference, but it does offer a big
+improvement when only a few voices are playing.
+
+
+
+**
+** File: fmopl.c - software implementation of FM sound generator
+** types OPL and OPL2
+**
+** Copyright Jarek Burczynski (bujar at mame dot net)
+** Copyright Tatsuyuki Satoh , MultiArcadeMachineEmulator development
+**
+** Version 0.72
+**
+
+Revision History:
+
+04-08-2003 Jarek Burczynski:
+ - removed BFRDY hack. BFRDY is busy flag, and it should be 0 only when the chip
+ handles memory read/write or during the adpcm synthesis when the chip
+ requests another byte of ADPCM data.
+
+24-07-2003 Jarek Burczynski:
+ - added a small hack for Y8950 status BFRDY flag (bit 3 should be set after
+ some (unknown) delay). Right now it's always set.
+
+14-06-2003 Jarek Burczynski:
+ - implemented all of the status register flags in Y8950 emulation
+ - renamed y8950_set_delta_t_memory() parameters from _rom_ to _mem_ since
+ they can be either RAM or ROM
+
+08-10-2002 Jarek Burczynski (thanks to Dox for the YM3526 chip)
+ - corrected ym3526_read() to always set bit 2 and bit 1
+ to HIGH state - identical to ym3812_read (verified on real YM3526)
+
+04-28-2002 Jarek Burczynski:
+ - binary exact Envelope Generator (verified on real YM3812);
+ compared to YM2151: the EG clock is equal to internal_clock,
+ rates are 2 times slower and volume resolution is one bit less
+ - modified interface functions (they no longer return pointer -
+ that's internal to the emulator now):
+ - new wrapper functions for OPLCreate: ym3526_init(), ym3812_init() and y8950_init()
+ - corrected 'off by one' error in feedback calculations (when feedback is off)
+ - enabled waveform usage (credit goes to Vlad Romascanu and zazzal22)
+ - speeded up noise generator calculations (Nicola Salmoria)
+
+03-24-2002 Jarek Burczynski (thanks to Dox for the YM3812 chip)
+ Complete rewrite (all verified on real YM3812):
+ - corrected sin_tab and tl_tab data
+ - corrected operator output calculations
+ - corrected waveform_select_enable register;
+ simply: ignore all writes to waveform_select register when
+ waveform_select_enable == 0 and do not change the waveform previously selected.
+ - corrected KSR handling
+ - corrected Envelope Generator: attack shape, Sustain mode and
+ Percussive/Non-percussive modes handling
+ - Envelope Generator rates are two times slower now
+ - LFO amplitude (tremolo) and phase modulation (vibrato)
+ - rhythm sounds phase generation
+ - white noise generator (big thanks to Olivier Galibert for mentioning Berlekamp-Massey algorithm)
+ - corrected key on/off handling (the 'key' signal is ORed from three sources: FM, rhythm and CSM)
+ - funky details (like ignoring output of operator 1 in BD rhythm sound when connect == 1)
+
+12-28-2001 Acho A. Tang
+ - reflected Delta-T EOS status on Y8950 status port.
+ - fixed subscription range of attack/decay tables
+
+
+ To do:
+ add delay before key off in CSM mode (see CSMKeyControll)
+ verify volume of the FM part on the Y8950
+*/
+
+#include <stdio.h>
+#include <stdlib.h>
+#include <string.h>
+#include <math.h>
+#include <stdint.h>
+#include <string>
+//#include "driver.h" /* use M.A.M.E. */
+#include "opl.h"
+
+/* compiler dependence */
+#ifndef OSD_CPU_H
+#define OSD_CPU_H
+#endif
+
+#ifndef PI
+#define PI 3.14159265358979323846
+#endif
+
+#ifdef _MSC_VER
+#pragma warning (disable: 4244)
+#endif
+
+
+#define FREQ_SH 16 /* 16.16 fixed point (frequency calculations) */
+#define EG_SH 16 /* 16.16 fixed point (EG timing) */
+#define LFO_SH 24 /* 8.24 fixed point (LFO calculations) */
+#define TIMER_SH 16 /* 16.16 fixed point (timers calculations) */
+
+#define FREQ_MASK ((1<<FREQ_SH)-1)
+
+/* envelope output entries */
+#define ENV_BITS 10
+#define ENV_LEN (1<<ENV_BITS)
+#define ENV_STEP (128.0/ENV_LEN)
+
+#define MAX_ATT_INDEX ((1<<(ENV_BITS-1))-1) /*511*/
+#define MIN_ATT_INDEX (0)
+
+/* sinwave entries */
+#define SIN_BITS 10
+#define SIN_LEN (1<<SIN_BITS)
+#define SIN_MASK (SIN_LEN-1)
+
+#define TL_RES_LEN (256) /* 8 bits addressing (real chip) */
+
+
+
+/* register number to channel number , slot offset */
+#define SLOT1 0
+#define SLOT2 1
+
+/* Envelope Generator phases */
+
+#define EG_ATT 4
+#define EG_DEC 3
+#define EG_SUS 2
+#define EG_REL 1
+#define EG_OFF 0
+
+
+#define OPL_CLOCK 3579545 // master clock (Hz)
+#define OPL_RATE 49716 // sampling rate (Hz)
+#define OPL_TIMERBASE (OPL_CLOCK / 72.0) // Timer base time (==sampling time)
+#define OPL_FREQBASE (OPL_TIMERBASE / OPL_RATE) // frequency base
+
+
+/* Saving is necessary for member of the 'R' mark for suspend/resume */
+
+struct OPL_SLOT
+{
+ uint32_t ar; /* attack rate: AR<<2 */
+ uint32_t dr; /* decay rate: DR<<2 */
+ uint32_t rr; /* release rate:RR<<2 */
+ uint8_t KSR; /* key scale rate */
+ uint8_t ksl; /* keyscale level */
+ uint8_t ksr; /* key scale rate: kcode>>KSR */
+ uint8_t mul; /* multiple: mul_tab[ML] */
+
+ /* Phase Generator */
+ uint32_t Cnt; /* frequency counter */
+ uint32_t Incr; /* frequency counter step */
+ uint8_t FB; /* feedback shift value */
+ int32_t *connect1; /* slot1 output pointer */
+ int32_t op1_out[2]; /* slot1 output for feedback */
+ uint8_t CON; /* connection (algorithm) type */
+
+ /* Envelope Generator */
+ uint8_t eg_type; /* percussive/non-percussive mode */
+ uint8_t state; /* phase type */
+ uint32_t TL; /* total level: TL << 2 */
+ int32_t TLL; /* adjusted now TL */
+ int32_t volume; /* envelope counter */
+ uint32_t sl; /* sustain level: sl_tab[SL] */
+ uint8_t eg_sh_ar; /* (attack state) */
+ uint8_t eg_sel_ar; /* (attack state) */
+ uint8_t eg_sh_dr; /* (decay state) */
+ uint8_t eg_sel_dr; /* (decay state) */
+ uint8_t eg_sh_rr; /* (release state) */
+ uint8_t eg_sel_rr; /* (release state) */
+ uint32_t key; /* 0 = KEY OFF, >0 = KEY ON */
+
+ /* LFO */
+ uint32_t AMmask; /* LFO Amplitude Modulation enable mask */
+ uint8_t vib; /* LFO Phase Modulation enable flag (active high)*/
+
+ /* waveform select */
+ uint16_t wavetable;
+};
+
+struct OPL_CH
+{
+ OPL_SLOT SLOT[2];
+ /* phase generator state */
+ uint32_t block_fnum; /* block+fnum */
+ uint32_t fc; /* Freq. Increment base */
+ uint32_t ksl_base; /* KeyScaleLevel Base step */
+ uint8_t kcode; /* key code (for key scaling) */
+ float LeftVol; /* volumes for stereo panning */
+ float RightVol;
+};
+
+/* OPL state */
+struct FM_OPL
+{
+ /* FM channel slots */
+ OPL_CH P_CH[9]; /* OPL/OPL2 chips have 9 channels*/
+
+ uint32_t eg_cnt; /* global envelope generator counter */
+ uint32_t eg_timer; /* global envelope generator counter works at frequency = chipclock/72 */
+ uint32_t eg_timer_add; /* step of eg_timer */
+ uint32_t eg_timer_overflow; /* envelope generator timer overflows every 1 sample (on real chip) */
+
+ uint8_t rhythm; /* Rhythm mode */
+
+ uint32_t fn_tab[1024]; /* fnumber->increment counter */
+
+ /* LFO */
+
+ uint8_t lfo_am_depth;
+ uint8_t lfo_pm_depth_range;
+ uint32_t lfo_am_cnt;
+ uint32_t lfo_am_inc;
+ uint32_t lfo_pm_cnt;
+ uint32_t lfo_pm_inc;
+
+ uint32_t noise_rng; /* 23 bit noise shift register */
+ uint32_t noise_p; /* current noise 'phase' */
+ uint32_t noise_f; /* current noise period */
+
+ uint8_t wavesel; /* waveform select enable flag */
+
+ int T[2]; /* timer counters */
+ uint8_t st[2]; /* timer enable */
+
+
+ uint8_t address; /* address register */
+ uint8_t status; /* status flag */
+ uint8_t statusmask; /* status mask */
+ uint8_t mode; /* Reg.08 : CSM,notesel,etc. */
+
+ bool IsStereo; /* Write stereo output */
+};
+
+
+
+/* mapping of register number (offset) to slot number used by the emulator */
+static const int slot_array[32]=
+{
+ 0, 2, 4, 1, 3, 5,-1,-1,
+ 6, 8,10, 7, 9,11,-1,-1,
+ 12,14,16,13,15,17,-1,-1,
+ -1,-1,-1,-1,-1,-1,-1,-1
+};
+
+/* key scale level */
+/* table is 3dB/octave , DV converts this into 6dB/octave */
+/* 0.1875 is bit 0 weight of the envelope counter (volume) expressed in the 'decibel' scale */
+#define DV (0.1875/2.0)
+static const uint32_t ksl_tab[8*16]=
+{
+ /* OCT 0 */
+ uint32_t(0.000/DV), uint32_t(0.000/DV), uint32_t(0.000/DV), uint32_t(0.000/DV),
+ uint32_t(0.000/DV), uint32_t(0.000/DV), uint32_t(0.000/DV), uint32_t(0.000/DV),
+ uint32_t(0.000/DV), uint32_t(0.000/DV), uint32_t(0.000/DV), uint32_t(0.000/DV),
+ uint32_t(0.000/DV), uint32_t(0.000/DV), uint32_t(0.000/DV), uint32_t(0.000/DV),
+ /* OCT 1 */
+ uint32_t(0.000/DV), uint32_t(0.000/DV), uint32_t(0.000/DV), uint32_t(0.000/DV),
+ uint32_t(0.000/DV), uint32_t(0.000/DV), uint32_t(0.000/DV), uint32_t(0.000/DV),
+ uint32_t(0.000/DV), uint32_t(0.750/DV), uint32_t(1.125/DV), uint32_t(1.500/DV),
+ uint32_t(1.875/DV), uint32_t(2.250/DV), uint32_t(2.625/DV), uint32_t(3.000/DV),
+ /* OCT 2 */
+ uint32_t(0.000/DV), uint32_t(0.000/DV), uint32_t(0.000/DV), uint32_t(0.000/DV),
+ uint32_t(0.000/DV), uint32_t(1.125/DV), uint32_t(1.875/DV), uint32_t(2.625/DV),
+ uint32_t(3.000/DV), uint32_t(3.750/DV), uint32_t(4.125/DV), uint32_t(4.500/DV),
+ uint32_t(4.875/DV), uint32_t(5.250/DV), uint32_t(5.625/DV), uint32_t(6.000/DV),
+ /* OCT 3 */
+ uint32_t(0.000/DV), uint32_t(0.000/DV), uint32_t(0.000/DV), uint32_t(1.875/DV),
+ uint32_t(3.000/DV), uint32_t(4.125/DV), uint32_t(4.875/DV), uint32_t(5.625/DV),
+ uint32_t(6.000/DV), uint32_t(6.750/DV), uint32_t(7.125/DV), uint32_t(7.500/DV),
+ uint32_t(7.875/DV), uint32_t(8.250/DV), uint32_t(8.625/DV), uint32_t(9.000/DV),
+ /* OCT 4 */
+ uint32_t(0.000/DV), uint32_t(0.000/DV), uint32_t(3.000/DV), uint32_t(4.875/DV),
+ uint32_t(6.000/DV), uint32_t(7.125/DV), uint32_t(7.875/DV), uint32_t(8.625/DV),
+ uint32_t(9.000/DV), uint32_t(9.750/DV),uint32_t(10.125/DV),uint32_t(10.500/DV),
+ uint32_t(10.875/DV),uint32_t(11.250/DV),uint32_t(11.625/DV),uint32_t(12.000/DV),
+ /* OCT 5 */
+ uint32_t(0.000/DV), uint32_t(3.000/DV), uint32_t(6.000/DV), uint32_t(7.875/DV),
+ uint32_t(9.000/DV),uint32_t(10.125/DV),uint32_t(10.875/DV),uint32_t(11.625/DV),
+ uint32_t(12.000/DV),uint32_t(12.750/DV),uint32_t(13.125/DV),uint32_t(13.500/DV),
+ uint32_t(13.875/DV),uint32_t(14.250/DV),uint32_t(14.625/DV),uint32_t(15.000/DV),
+ /* OCT 6 */
+ uint32_t(0.000/DV), uint32_t(6.000/DV), uint32_t(9.000/DV),uint32_t(10.875/DV),
+ uint32_t(12.000/DV),uint32_t(13.125/DV),uint32_t(13.875/DV),uint32_t(14.625/DV),
+ uint32_t(15.000/DV),uint32_t(15.750/DV),uint32_t(16.125/DV),uint32_t(16.500/DV),
+ uint32_t(16.875/DV),uint32_t(17.250/DV),uint32_t(17.625/DV),uint32_t(18.000/DV),
+ /* OCT 7 */
+ uint32_t(0.000/DV), uint32_t(9.000/DV),uint32_t(12.000/DV),uint32_t(13.875/DV),
+ uint32_t(15.000/DV),uint32_t(16.125/DV),uint32_t(16.875/DV),uint32_t(17.625/DV),
+ uint32_t(18.000/DV),uint32_t(18.750/DV),uint32_t(19.125/DV),uint32_t(19.500/DV),
+ uint32_t(19.875/DV),uint32_t(20.250/DV),uint32_t(20.625/DV),uint32_t(21.000/DV)
+};
+#undef DV
+
+/* 0 / 3.0 / 1.5 / 6.0 dB/OCT */
+static const uint32_t ksl_shift[4] = { 31, 1, 2, 0 };
+
+
+/* sustain level table (3dB per step) */
+/* 0 - 15: 0, 3, 6, 9,12,15,18,21,24,27,30,33,36,39,42,93 (dB)*/
+#define SC(db) (uint32_t) ( db * (2.0/ENV_STEP) )
+static const uint32_t sl_tab[16]={
+ SC( 0),SC( 1),SC( 2),SC(3 ),SC(4 ),SC(5 ),SC(6 ),SC( 7),
+ SC( 8),SC( 9),SC(10),SC(11),SC(12),SC(13),SC(14),SC(31)
+};
+#undef SC
+
+
+#define RATE_STEPS (8)
+static const unsigned char eg_inc[15*RATE_STEPS]={
+/*cycle:0 1 2 3 4 5 6 7*/
+
+/* 0 */ 0,1, 0,1, 0,1, 0,1, /* rates 00..12 0 (increment by 0 or 1) */
+/* 1 */ 0,1, 0,1, 1,1, 0,1, /* rates 00..12 1 */
+/* 2 */ 0,1, 1,1, 0,1, 1,1, /* rates 00..12 2 */
+/* 3 */ 0,1, 1,1, 1,1, 1,1, /* rates 00..12 3 */
+
+/* 4 */ 1,1, 1,1, 1,1, 1,1, /* rate 13 0 (increment by 1) */
+/* 5 */ 1,1, 1,2, 1,1, 1,2, /* rate 13 1 */
+/* 6 */ 1,2, 1,2, 1,2, 1,2, /* rate 13 2 */
+/* 7 */ 1,2, 2,2, 1,2, 2,2, /* rate 13 3 */
+
+/* 8 */ 2,2, 2,2, 2,2, 2,2, /* rate 14 0 (increment by 2) */
+/* 9 */ 2,2, 2,4, 2,2, 2,4, /* rate 14 1 */
+/*10 */ 2,4, 2,4, 2,4, 2,4, /* rate 14 2 */
+/*11 */ 2,4, 4,4, 2,4, 4,4, /* rate 14 3 */
+
+/*12 */ 4,4, 4,4, 4,4, 4,4, /* rates 15 0, 15 1, 15 2, 15 3 (increment by 4) */
+/*13 */ 8,8, 8,8, 8,8, 8,8, /* rates 15 2, 15 3 for attack */
+/*14 */ 0,0, 0,0, 0,0, 0,0, /* infinity rates for attack and decay(s) */
+};
+
+
+#define O(a) (a*RATE_STEPS)
+
+/*note that there is no O(13) in this table - it's directly in the code */
+static const unsigned char eg_rate_select[16+64+16]={ /* Envelope Generator rates (16 + 64 rates + 16 RKS) */
+/* 16 infinite time rates */
+O(14),O(14),O(14),O(14),O(14),O(14),O(14),O(14),
+O(14),O(14),O(14),O(14),O(14),O(14),O(14),O(14),
+
+/* rates 00-12 */
+O( 0),O( 1),O( 2),O( 3),
+O( 0),O( 1),O( 2),O( 3),
+O( 0),O( 1),O( 2),O( 3),
+O( 0),O( 1),O( 2),O( 3),
+O( 0),O( 1),O( 2),O( 3),
+O( 0),O( 1),O( 2),O( 3),
+O( 0),O( 1),O( 2),O( 3),
+O( 0),O( 1),O( 2),O( 3),
+O( 0),O( 1),O( 2),O( 3),
+O( 0),O( 1),O( 2),O( 3),
+O( 0),O( 1),O( 2),O( 3),
+O( 0),O( 1),O( 2),O( 3),
+O( 0),O( 1),O( 2),O( 3),
+
+/* rate 13 */
+O( 4),O( 5),O( 6),O( 7),
+
+/* rate 14 */
+O( 8),O( 9),O(10),O(11),
+
+/* rate 15 */
+O(12),O(12),O(12),O(12),
+
+/* 16 dummy rates (same as 15 3) */
+O(12),O(12),O(12),O(12),O(12),O(12),O(12),O(12),
+O(12),O(12),O(12),O(12),O(12),O(12),O(12),O(12),
+
+};
+#undef O
+
+/*rate 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 */
+/*shift 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, 0, 0, 0 */
+/*mask 4095, 2047, 1023, 511, 255, 127, 63, 31, 15, 7, 3, 1, 0, 0, 0, 0 */
+
+#define O(a) (a*1)
+static const unsigned char eg_rate_shift[16+64+16]={ /* Envelope Generator counter shifts (16 + 64 rates + 16 RKS) */
+/* 16 infinite time rates */
+O(0),O(0),O(0),O(0),O(0),O(0),O(0),O(0),
+O(0),O(0),O(0),O(0),O(0),O(0),O(0),O(0),
+
+/* rates 00-12 */
+O(12),O(12),O(12),O(12),
+O(11),O(11),O(11),O(11),
+O(10),O(10),O(10),O(10),
+O( 9),O( 9),O( 9),O( 9),
+O( 8),O( 8),O( 8),O( 8),
+O( 7),O( 7),O( 7),O( 7),
+O( 6),O( 6),O( 6),O( 6),
+O( 5),O( 5),O( 5),O( 5),
+O( 4),O( 4),O( 4),O( 4),
+O( 3),O( 3),O( 3),O( 3),
+O( 2),O( 2),O( 2),O( 2),
+O( 1),O( 1),O( 1),O( 1),
+O( 0),O( 0),O( 0),O( 0),
+
+/* rate 13 */
+O( 0),O( 0),O( 0),O( 0),
+
+/* rate 14 */
+O( 0),O( 0),O( 0),O( 0),
+
+/* rate 15 */
+O( 0),O( 0),O( 0),O( 0),
+
+/* 16 dummy rates (same as 15 3) */
+O( 0),O( 0),O( 0),O( 0),O( 0),O( 0),O( 0),O( 0),
+O( 0),O( 0),O( 0),O( 0),O( 0),O( 0),O( 0),O( 0),
+
+};
+#undef O
+
+
+/* multiple table */
+#define ML 2
+static const uint8_t mul_tab[16]= {
+/* 1/2, 1, 2, 3, 4, 5, 6, 7, 8, 9,10,10,12,12,15,15 */
+ uint8_t(0.50*ML), uint8_t(1.00*ML), uint8_t(2.00*ML), uint8_t(3.00*ML), uint8_t(4.00*ML), uint8_t(5.00*ML), uint8_t(6.00*ML), uint8_t(7.00*ML),
+ uint8_t(8.00*ML), uint8_t(9.00*ML),uint8_t(10.00*ML),uint8_t(10.00*ML),uint8_t(12.00*ML),uint8_t(12.00*ML),uint8_t(15.00*ML),uint8_t(15.00*ML)
+};
+#undef ML
+
+/* TL_TAB_LEN is calculated as:
+* 12 - sinus amplitude bits (Y axis)
+* 2 - sinus sign bit (Y axis)
+* TL_RES_LEN - sinus resolution (X axis)
+*/
+#define TL_TAB_LEN (12*2*TL_RES_LEN)
+static signed int tl_tab[TL_TAB_LEN];
+
+#define ENV_QUIET (TL_TAB_LEN>>4)
+
+/* sin waveform table in 'decibel' scale */
+/* four waveforms on OPL2 type chips */
+static unsigned int sin_tab[SIN_LEN * 4];
+
+
+/* LFO Amplitude Modulation table (verified on real YM3812)
+ 27 output levels (triangle waveform); 1 level takes one of: 192, 256 or 448 samples
+
+ Length: 210 elements.
+
+ Each of the elements has to be repeated
+ exactly 64 times (on 64 consecutive samples).
+ The whole table takes: 64 * 210 = 13440 samples.
+
+ When AM = 1 data is used directly
+ When AM = 0 data is divided by 4 before being used (losing precision is important)
+*/
+
+#define LFO_AM_TAB_ELEMENTS 210
+
+static const uint8_t lfo_am_table[LFO_AM_TAB_ELEMENTS] = {
+0,0,0,0,0,0,0,
+1,1,1,1,
+2,2,2,2,
+3,3,3,3,
+4,4,4,4,
+5,5,5,5,
+6,6,6,6,
+7,7,7,7,
+8,8,8,8,
+9,9,9,9,
+10,10,10,10,
+11,11,11,11,
+12,12,12,12,
+13,13,13,13,
+14,14,14,14,
+15,15,15,15,
+16,16,16,16,
+17,17,17,17,
+18,18,18,18,
+19,19,19,19,
+20,20,20,20,
+21,21,21,21,
+22,22,22,22,
+23,23,23,23,
+24,24,24,24,
+25,25,25,25,
+26,26,26,
+25,25,25,25,
+24,24,24,24,
+23,23,23,23,
+22,22,22,22,
+21,21,21,21,
+20,20,20,20,
+19,19,19,19,
+18,18,18,18,
+17,17,17,17,
+16,16,16,16,
+15,15,15,15,
+14,14,14,14,
+13,13,13,13,
+12,12,12,12,
+11,11,11,11,
+10,10,10,10,
+9,9,9,9,
+8,8,8,8,
+7,7,7,7,
+6,6,6,6,
+5,5,5,5,
+4,4,4,4,
+3,3,3,3,
+2,2,2,2,
+1,1,1,1
+};
+
+/* LFO Phase Modulation table (verified on real YM3812) */
+static const int8_t lfo_pm_table[8*8*2] = {
+/* FNUM2/FNUM = 00 0xxxxxxx (0x0000) */
+0, 0, 0, 0, 0, 0, 0, 0, /*LFO PM depth = 0*/
+0, 0, 0, 0, 0, 0, 0, 0, /*LFO PM depth = 1*/
+
+/* FNUM2/FNUM = 00 1xxxxxxx (0x0080) */
+0, 0, 0, 0, 0, 0, 0, 0, /*LFO PM depth = 0*/
+1, 0, 0, 0,-1, 0, 0, 0, /*LFO PM depth = 1*/
+
+/* FNUM2/FNUM = 01 0xxxxxxx (0x0100) */
+1, 0, 0, 0,-1, 0, 0, 0, /*LFO PM depth = 0*/
+2, 1, 0,-1,-2,-1, 0, 1, /*LFO PM depth = 1*/
+
+/* FNUM2/FNUM = 01 1xxxxxxx (0x0180) */
+1, 0, 0, 0,-1, 0, 0, 0, /*LFO PM depth = 0*/
+3, 1, 0,-1,-3,-1, 0, 1, /*LFO PM depth = 1*/
+
+/* FNUM2/FNUM = 10 0xxxxxxx (0x0200) */
+2, 1, 0,-1,-2,-1, 0, 1, /*LFO PM depth = 0*/
+4, 2, 0,-2,-4,-2, 0, 2, /*LFO PM depth = 1*/
+
+/* FNUM2/FNUM = 10 1xxxxxxx (0x0280) */
+2, 1, 0,-1,-2,-1, 0, 1, /*LFO PM depth = 0*/
+5, 2, 0,-2,-5,-2, 0, 2, /*LFO PM depth = 1*/
+
+/* FNUM2/FNUM = 11 0xxxxxxx (0x0300) */
+3, 1, 0,-1,-3,-1, 0, 1, /*LFO PM depth = 0*/
+6, 3, 0,-3,-6,-3, 0, 3, /*LFO PM depth = 1*/
+
+/* FNUM2/FNUM = 11 1xxxxxxx (0x0380) */
+3, 1, 0,-1,-3,-1, 0, 1, /*LFO PM depth = 0*/
+7, 3, 0,-3,-7,-3, 0, 3 /*LFO PM depth = 1*/
+};
+
+
+
+/* work table */
+struct FM_WorkTable
+{
+ signed int phase_modulation; /* phase modulation input (SLOT 2) */
+ signed int output;
+
+ uint32_t LFO_AM;
+ int32_t LFO_PM;
+};
+
+static bool CalcVoice (FM_WorkTable *wt, FM_OPL *OPL, int voice, float *buffer, int length);
+static bool CalcVoice (FM_WorkTable *wt, FM_OPL *OPL, int voice, short *buffer, int length);
+static bool CalcRhythm (FM_WorkTable *wt, FM_OPL *OPL, float *buffer, int length);
+static bool CalcRhythm (FM_WorkTable *wt, FM_OPL *OPL, short *buffer, int length);
+
+
+
+/* status set and IRQ handling */
+static inline void OPL_STATUS_SET(FM_OPL *OPL,int flag)
+{
+ /* set status flag */
+ OPL->status |= flag;
+ if(!(OPL->status & 0x80))
+ {
+ if(OPL->status & OPL->statusmask)
+ { /* IRQ on */
+ OPL->status |= 0x80;
+ }
+ }
+}
+
+/* status reset and IRQ handling */
+static inline void OPL_STATUS_RESET(FM_OPL *OPL,int flag)
+{
+ /* reset status flag */
+ OPL->status &=~flag;
+ if((OPL->status & 0x80))
+ {
+ if (!(OPL->status & OPL->statusmask) )
+ {
+ OPL->status &= 0x7f;
+ }
+ }
+}
+
+/* IRQ mask set */
+static inline void OPL_STATUSMASK_SET(FM_OPL *OPL,int flag)
+{
+ OPL->statusmask = flag;
+ /* IRQ handling check */
+ OPL_STATUS_SET(OPL,0);
+ OPL_STATUS_RESET(OPL,0);
+}
+
+
+/* advance LFO to next sample */
+static inline void advance_lfo(FM_WorkTable *wt, FM_OPL *OPL)
+{
+ uint8_t tmp;
+
+ /* LFO */
+ OPL->lfo_am_cnt += OPL->lfo_am_inc;
+ if (OPL->lfo_am_cnt >= (uint32_t)(LFO_AM_TAB_ELEMENTS<<LFO_SH) ) /* lfo_am_table is 210 elements long */
+ OPL->lfo_am_cnt -= (LFO_AM_TAB_ELEMENTS<<LFO_SH);
+
+ tmp = lfo_am_table[ OPL->lfo_am_cnt >> LFO_SH ];
+
+ if (OPL->lfo_am_depth)
+ wt->LFO_AM = tmp;
+ else
+ wt->LFO_AM = tmp>>2;
+
+ OPL->lfo_pm_cnt += OPL->lfo_pm_inc;
+ wt->LFO_PM = ((OPL->lfo_pm_cnt>>LFO_SH) & 7) | OPL->lfo_pm_depth_range;
+}
+
+/* advance to next sample */
+static inline void advance(FM_WorkTable *wt, FM_OPL *OPL, int loch, int hich)
+{
+ OPL_CH *CH;
+ OPL_SLOT *op;
+ int i;
+
+ OPL->eg_timer += OPL->eg_timer_add;
+ loch *= 2;
+ hich *= 2;
+
+ while (OPL->eg_timer >= OPL->eg_timer_overflow)
+ {
+ OPL->eg_timer -= OPL->eg_timer_overflow;
+
+ OPL->eg_cnt++;
+
+ for (i = loch; i <= hich + 1; i++)
+ {
+ CH = &OPL->P_CH[i/2];
+ op = &CH->SLOT[i&1];
+
+ /* Envelope Generator */
+ switch(op->state)
+ {
+ case EG_ATT: /* attack phase */
+ if ( !(OPL->eg_cnt & ((1<<op->eg_sh_ar)-1) ) )
+ {
+ op->volume += (~op->volume *
+ (eg_inc[op->eg_sel_ar + ((OPL->eg_cnt>>op->eg_sh_ar)&7)])
+ ) >>3;
+
+ if (op->volume <= MIN_ATT_INDEX)
+ {
+ op->volume = MIN_ATT_INDEX;
+ op->state = EG_DEC;
+ }
+
+ }
+ break;
+
+ case EG_DEC: /* decay phase */
+ if ( !(OPL->eg_cnt & ((1<<op->eg_sh_dr)-1) ) )
+ {
+ op->volume += eg_inc[op->eg_sel_dr + ((OPL->eg_cnt>>op->eg_sh_dr)&7)];
+
+ if ( op->volume >= (int32_t)op->sl )
+ op->state = EG_SUS;
+
+ }
+ break;
+
+ case EG_SUS: /* sustain phase */
+
+ /* this is important behaviour:
+ one can change percusive/non-percussive modes on the fly and
+ the chip will remain in sustain phase - verified on real YM3812 */
+
+ if(op->eg_type) /* non-percussive mode */
+ {
+ /* do nothing */
+ }
+ else /* percussive mode */
+ {
+ /* during sustain phase chip adds Release Rate (in percussive mode) */
+ if ( !(OPL->eg_cnt & ((1<<op->eg_sh_rr)-1) ) )
+ {
+ op->volume += eg_inc[op->eg_sel_rr + ((OPL->eg_cnt>>op->eg_sh_rr)&7)];
+
+ if ( op->volume >= MAX_ATT_INDEX )
+ op->volume = MAX_ATT_INDEX;
+ }
+ /* else do nothing in sustain phase */
+ }
+ break;
+
+ case EG_REL: /* release phase */
+ if ( !(OPL->eg_cnt & ((1<<op->eg_sh_rr)-1) ) )
+ {
+ op->volume += eg_inc[op->eg_sel_rr + ((OPL->eg_cnt>>op->eg_sh_rr)&7)];
+
+ if ( op->volume >= MAX_ATT_INDEX )
+ {
+ op->volume = MAX_ATT_INDEX;
+ op->state = EG_OFF;
+ }
+
+ }
+ break;
+
+ default:
+ break;
+ }
+
+ /* Phase Generator */
+ if(op->vib)
+ {
+ uint8_t block;
+ unsigned int block_fnum = CH->block_fnum;
+
+ unsigned int fnum_lfo = (block_fnum&0x0380) >> 7;
+
+ signed int lfo_fn_table_index_offset = lfo_pm_table[wt->LFO_PM + 16*fnum_lfo ];
+
+ if (lfo_fn_table_index_offset) /* LFO phase modulation active */
+ {
+ block_fnum += lfo_fn_table_index_offset;
+ block = (block_fnum&0x1c00) >> 10;
+ op->Cnt += (OPL->fn_tab[block_fnum&0x03ff] >> (7-block)) * op->mul;
+ }
+ else /* LFO phase modulation = zero */
+ {
+ op->Cnt += op->Incr;
+ }
+ }
+ else /* LFO phase modulation disabled for this operator */
+ {
+ op->Cnt += op->Incr;
+ }
+ }
+ }
+}
+
+static inline void advance_noise(FM_OPL *OPL)
+{
+ int i;
+
+ /* The Noise Generator of the YM3812 is 23-bit shift register.
+ * Period is equal to 2^23-2 samples.
+ * Register works at sampling frequency of the chip, so output
+ * can change on every sample.
+ *
+ * Output of the register and input to the bit 22 is:
+ * bit0 XOR bit14 XOR bit15 XOR bit22
+ *
+ * Simply use bit 22 as the noise output.
+ */
+
+ OPL->noise_p += OPL->noise_f;
+ i = OPL->noise_p >> FREQ_SH; /* number of events (shifts of the shift register) */
+ OPL->noise_p &= FREQ_MASK;
+ while (i)
+ {
+ /*
+ uint32_t j;
+ j = ( (OPL->noise_rng) ^ (OPL->noise_rng>>14) ^ (OPL->noise_rng>>15) ^ (OPL->noise_rng>>22) ) & 1;
+ OPL->noise_rng = (j<<22) | (OPL->noise_rng>>1);
+ */
+
+ /*
+ Instead of doing all the logic operations above, we
+ use a trick here (and use bit 0 as the noise output).
+ The difference is only that the noise bit changes one
+ step ahead. This doesn't matter since we don't know
+ what is real state of the noise_rng after the reset.
+ */
+
+ if (OPL->noise_rng & 1) OPL->noise_rng ^= 0x800302;
+ OPL->noise_rng >>= 1;
+
+ i--;
+ }
+}
+
+
+static inline signed int op_calc(uint32_t phase, unsigned int env, signed int pm, unsigned int wave_tab)
+{
+ uint32_t p;
+
+ p = (env<<4) + sin_tab[wave_tab + ((((signed int)((phase & ~FREQ_MASK) + (pm<<16))) >> FREQ_SH ) & SIN_MASK) ];
+
+ if (p >= TL_TAB_LEN)
+ return 0;
+ return tl_tab[p];
+}
+
+static inline signed int op_calc1(uint32_t phase, unsigned int env, signed int pm, unsigned int wave_tab)
+{
+ uint32_t p;
+
+ p = (env<<4) + sin_tab[wave_tab + ((((signed int)((phase & ~FREQ_MASK) + pm )) >> FREQ_SH ) & SIN_MASK) ];
+
+ if (p >= TL_TAB_LEN)
+ return 0;
+ return tl_tab[p];
+}
+
+
+#define volume_calc(OP) ((OP)->TLL + ((uint32_t)(OP)->volume) + (wt->LFO_AM & (OP)->AMmask))
+
+/* calculate output */
+static inline float OPL_CALC_CH( FM_WorkTable *wt, OPL_CH *CH )
+{
+ OPL_SLOT *SLOT;
+ unsigned int env;
+ signed int out;
+
+ wt->phase_modulation = 0;
+
+ /* SLOT 1 */
+ SLOT = &CH->SLOT[SLOT1];
+ env = volume_calc(SLOT);
+ out = SLOT->op1_out[0] + SLOT->op1_out[1];
+ SLOT->op1_out[0] = SLOT->op1_out[1];
+ *SLOT->connect1 += SLOT->op1_out[0];
+ SLOT->op1_out[1] = 0;
+ if( env < ENV_QUIET )
+ {
+ if (!SLOT->FB)
+ out = 0;
+ SLOT->op1_out[1] = op_calc1(SLOT->Cnt, env, (out<<SLOT->FB), SLOT->wavetable );
+ }
+
+ /* SLOT 2 */
+ SLOT++;
+ env = volume_calc(SLOT);
+ if( env < ENV_QUIET )
+ {
+ wt->output += op_calc(SLOT->Cnt, env, wt->phase_modulation, SLOT->wavetable);
+ /* [RH] Convert to floating point. */
+ return float(wt->output) / 10240;
+ }
+ return 0;
+}
+
+static inline short OPL_CALC_CH_S( FM_WorkTable *wt, OPL_CH *CH )
+{
+ OPL_SLOT *SLOT;
+ unsigned int env;
+ signed int out;
+
+ wt->phase_modulation = 0;
+
+ /* SLOT 1 */
+ SLOT = &CH->SLOT[SLOT1];
+ env = volume_calc(SLOT);
+ out = SLOT->op1_out[0] + SLOT->op1_out[1];
+ SLOT->op1_out[0] = SLOT->op1_out[1];
+ *SLOT->connect1 += SLOT->op1_out[0];
+ SLOT->op1_out[1] = 0;
+ if( env < ENV_QUIET )
+ {
+ if (!SLOT->FB)
+ out = 0;
+ SLOT->op1_out[1] = op_calc1(SLOT->Cnt, env, (out<<SLOT->FB), SLOT->wavetable );
+ }
+
+ /* SLOT 2 */
+ SLOT++;
+ env = volume_calc(SLOT);
+ if( env < ENV_QUIET )
+ {
+ wt->output += op_calc(SLOT->Cnt, env, wt->phase_modulation, SLOT->wavetable);
+ return wt->output;
+ }
+ return 0;
+}
+
+/*
+ operators used in the rhythm sounds generation process:
+
+ Envelope Generator:
+
+channel operator register number Bass High Snare Tom Top
+/ slot number TL ARDR SLRR Wave Drum Hat Drum Tom Cymbal
+ 6 / 0 12 50 70 90 f0 +
+ 6 / 1 15 53 73 93 f3 +
+ 7 / 0 13 51 71 91 f1 +
+ 7 / 1 16 54 74 94 f4 +
+ 8 / 0 14 52 72 92 f2 +
+ 8 / 1 17 55 75 95 f5 +
+
+ Phase Generator:
+
+channel operator register number Bass High Snare Tom Top
+/ slot number MULTIPLE Drum Hat Drum Tom Cymbal
+ 6 / 0 12 30 +
+ 6 / 1 15 33 +
+ 7 / 0 13 31 + + +
+ 7 / 1 16 34 ----- n o t u s e d -----
+ 8 / 0 14 32 +
+ 8 / 1 17 35 + +
+
+channel operator register number Bass High Snare Tom Top
+number number BLK/FNUM2 FNUM Drum Hat Drum Tom Cymbal
+ 6 12,15 B6 A6 +
+
+ 7 13,16 B7 A7 + + +
+
+ 8 14,17 B8 A8 + + +
+
+*/
+
+/* calculate rhythm */
+
+static inline void OPL_CALC_RH( FM_WorkTable *wt, OPL_CH *CH, unsigned int noise )
+{
+ OPL_SLOT *SLOT;
+ signed int out;
+ unsigned int env;
+
+
+ /* Bass Drum (verified on real YM3812):
+ - depends on the channel 6 'connect' register:
+ when connect = 0 it works the same as in normal (non-rhythm) mode (op1->op2->out)
+ when connect = 1 _only_ operator 2 is present on output (op2->out), operator 1 is ignored
+ - output sample always is multiplied by 2
+ */
+
+ wt->phase_modulation = 0;
+ /* SLOT 1 */
+ SLOT = &CH[6].SLOT[SLOT1];
+ env = volume_calc(SLOT);
+
+ out = SLOT->op1_out[0] + SLOT->op1_out[1];
+ SLOT->op1_out[0] = SLOT->op1_out[1];
+
+ if (!SLOT->CON)
+ wt->phase_modulation = SLOT->op1_out[0];
+ /* else ignore output of operator 1 */
+
+ SLOT->op1_out[1] = 0;
+ if( env < ENV_QUIET )
+ {
+ if (!SLOT->FB)
+ out = 0;
+ SLOT->op1_out[1] = op_calc1(SLOT->Cnt, env, (out<<SLOT->FB), SLOT->wavetable );
+ }
+
+ /* SLOT 2 */
+ SLOT++;
+ env = volume_calc(SLOT);
+ if( env < ENV_QUIET )
+ wt->output += op_calc(SLOT->Cnt, env, wt->phase_modulation, SLOT->wavetable) * 2;
+
+
+ /* Phase generation is based on: */
+ /* HH (13) channel 7->slot 1 combined with channel 8->slot 2 (same combination as TOP CYMBAL but different output phases) */
+ /* SD (16) channel 7->slot 1 */
+ /* TOM (14) channel 8->slot 1 */
+ /* TOP (17) channel 7->slot 1 combined with channel 8->slot 2 (same combination as HIGH HAT but different output phases) */
+
+ /* Envelope generation based on: */
+ /* HH channel 7->slot1 */
+ /* SD channel 7->slot2 */
+ /* TOM channel 8->slot1 */
+ /* TOP channel 8->slot2 */
+
+
+ /* The following formulas can be well optimized.
+ I leave them in direct form for now (in case I've missed something).
+ */
+
+ /* High Hat (verified on real YM3812) */
+ env = volume_calc(&CH[7].SLOT[SLOT1]);
+ if( env < ENV_QUIET )
+ {
+
+ /* high hat phase generation:
+ phase = d0 or 234 (based on frequency only)
+ phase = 34 or 2d0 (based on noise)
+ */
+
+ /* base frequency derived from operator 1 in channel 7 */
+ unsigned char bit7 = ((CH[7].SLOT[SLOT1].Cnt>>FREQ_SH)>>7)&1;
+ unsigned char bit3 = ((CH[7].SLOT[SLOT1].Cnt>>FREQ_SH)>>3)&1;
+ unsigned char bit2 = ((CH[7].SLOT[SLOT1].Cnt>>FREQ_SH)>>2)&1;
+
+ unsigned char res1 = (bit2 ^ bit7) | bit3;
+
+ /* when res1 = 0 phase = 0x000 | 0xd0; */
+ /* when res1 = 1 phase = 0x200 | (0xd0>>2); */
+ uint32_t phase = res1 ? (0x200|(0xd0>>2)) : 0xd0;
+
+ /* enable gate based on frequency of operator 2 in channel 8 */
+ unsigned char bit5e= ((CH[8].SLOT[SLOT2].Cnt>>FREQ_SH)>>5)&1;
+ unsigned char bit3e= ((CH[8].SLOT[SLOT2].Cnt>>FREQ_SH)>>3)&1;
+
+ unsigned char res2 = (bit3e ^ bit5e);
+
+ /* when res2 = 0 pass the phase from calculation above (res1); */
+ /* when res2 = 1 phase = 0x200 | (0xd0>>2); */
+ if (res2)
+ phase = (0x200|(0xd0>>2));
+
+
+ /* when phase & 0x200 is set and noise=1 then phase = 0x200|0xd0 */
+ /* when phase & 0x200 is set and noise=0 then phase = 0x200|(0xd0>>2), ie no change */
+ if (phase&0x200)
+ {
+ if (noise)
+ phase = 0x200|0xd0;
+ }
+ else
+ /* when phase & 0x200 is clear and noise=1 then phase = 0xd0>>2 */
+ /* when phase & 0x200 is clear and noise=0 then phase = 0xd0, ie no change */
+ {
+ if (noise)
+ phase = 0xd0>>2;
+ }
+
+ wt->output += op_calc(phase<<FREQ_SH, env, 0, CH[7].SLOT[SLOT1].wavetable) * 2;
+ }
+
+ /* Snare Drum (verified on real YM3812) */
+ env = volume_calc(&CH[7].SLOT[SLOT2]);
+ if( env < ENV_QUIET )
+ {
+ /* base frequency derived from operator 1 in channel 7 */
+ unsigned char bit8 = ((CH[7].SLOT[SLOT1].Cnt>>FREQ_SH)>>8)&1;
+
+ /* when bit8 = 0 phase = 0x100; */
+ /* when bit8 = 1 phase = 0x200; */
+ uint32_t phase = bit8 ? 0x200 : 0x100;
+
+ /* Noise bit XOR'es phase by 0x100 */
+ /* when noisebit = 0 pass the phase from calculation above */
+ /* when noisebit = 1 phase ^= 0x100; */
+ /* in other words: phase ^= (noisebit<<8); */
+ if (noise)
+ phase ^= 0x100;
+
+ wt->output += op_calc(phase<<FREQ_SH, env, 0, CH[7].SLOT[SLOT2].wavetable) * 2;
+ }
+
+ /* Tom Tom (verified on real YM3812) */
+ env = volume_calc(&CH[8].SLOT[SLOT1]);
+ if( env < ENV_QUIET )
+ wt->output += op_calc(CH[8].SLOT[SLOT1].Cnt, env, 0, CH[8].SLOT[SLOT2].wavetable) * 2;
+
+ /* Top Cymbal (verified on real YM3812) */
+ env = volume_calc(&CH[8].SLOT[SLOT2]);
+ if( env < ENV_QUIET )
+ {
+ /* base frequency derived from operator 1 in channel 7 */
+ unsigned char bit7 = ((CH[7].SLOT[SLOT1].Cnt>>FREQ_SH)>>7)&1;
+ unsigned char bit3 = ((CH[7].SLOT[SLOT1].Cnt>>FREQ_SH)>>3)&1;
+ unsigned char bit2 = ((CH[7].SLOT[SLOT1].Cnt>>FREQ_SH)>>2)&1;
+
+ unsigned char res1 = (bit2 ^ bit7) | bit3;
+
+ /* when res1 = 0 phase = 0x000 | 0x100; */
+ /* when res1 = 1 phase = 0x200 | 0x100; */
+ uint32_t phase = res1 ? 0x300 : 0x100;
+
+ /* enable gate based on frequency of operator 2 in channel 8 */
+ unsigned char bit5e= ((CH[8].SLOT[SLOT2].Cnt>>FREQ_SH)>>5)&1;
+ unsigned char bit3e= ((CH[8].SLOT[SLOT2].Cnt>>FREQ_SH)>>3)&1;
+
+ unsigned char res2 = (bit3e ^ bit5e);
+ /* when res2 = 0 pass the phase from calculation above (res1); */
+ /* when res2 = 1 phase = 0x200 | 0x100; */
+ if (res2)
+ phase = 0x300;
+
+ wt->output += op_calc(phase<<FREQ_SH, env, 0, CH[8].SLOT[SLOT2].wavetable) * 2;
+ }
+}
+
+
+/* generic table initialize */
+static void init_tables(void)
+{
+ signed int i,x;
+ signed int n;
+ double o,m;
+
+ /* We only need to do this once. */
+ static bool did_init = false;
+
+ if (did_init)
+ {
+ return;
+ }
+
+ for (x=0; x<TL_RES_LEN; x++)
+ {
+ m = (1<<16) / pow(2.0, (x+1) * (ENV_STEP/4.0) / 8.0);
+ m = floor(m);
+
+ /* we never reach (1<<16) here due to the (x+1) */
+ /* result fits within 16 bits at maximum */
+
+ n = (int)m; /* 16 bits here */
+ n >>= 4; /* 12 bits here */
+ n = (n+1)>>1; /* round to nearest */
+ /* 11 bits here (rounded) */
+ n <<= 1; /* 12 bits here (as in real chip) */
+ tl_tab[ x*2 + 0 ] = n;
+ tl_tab[ x*2 + 1 ] = -tl_tab[ x*2 + 0 ];
+
+ for (i=1; i<12; i++)
+ {
+ tl_tab[ x*2+0 + i*2*TL_RES_LEN ] = tl_tab[ x*2+0 ]>>i;
+ tl_tab[ x*2+1 + i*2*TL_RES_LEN ] = -tl_tab[ x*2+0 ]>>i;
+ }
+ }
+
+ for (i=0; i<SIN_LEN; i++)
+ {
+ /* non-standard sinus */
+ m = sin( ((i*2)+1) * PI / SIN_LEN ); /* checked against the real chip */
+
+ /* we never reach zero here due to ((i*2)+1) */
+
+ if (m>0.0)
+ o = 8*log(1.0/m)/log(2.0); /* convert to 'decibels' */
+ else
+ o = 8*log(-1.0/m)/log(2.0); /* convert to 'decibels' */
+
+ o = o / (ENV_STEP/4);
+
+ n = (int)(2.0*o);
+ if (n&1) /* round to nearest */
+ n = (n>>1)+1;
+ else
+ n = n>>1;
+
+ sin_tab[ i ] = n*2 + (m>=0.0? 0: 1 );
+ }
+
+ for (i=0; i<SIN_LEN; i++)
+ {
+ /* waveform 1: __ __ */
+ /* / \____/ \____*/
+ /* output only first half of the sinus waveform (positive one) */
+
+ if (i & (1<<(SIN_BITS-1)) )
+ sin_tab[1*SIN_LEN+i] = TL_TAB_LEN;
+ else
+ sin_tab[1*SIN_LEN+i] = sin_tab[i];
+
+ /* waveform 2: __ __ __ __ */
+ /* / \/ \/ \/ \*/
+ /* abs(sin) */
+
+ sin_tab[2*SIN_LEN+i] = sin_tab[i & (SIN_MASK>>1) ];
+
+ /* waveform 3: _ _ _ _ */
+ /* / |_/ |_/ |_/ |_*/
+ /* abs(output only first quarter of the sinus waveform) */
+
+ if (i & (1<<(SIN_BITS-2)) )
+ sin_tab[3*SIN_LEN+i] = TL_TAB_LEN;
+ else
+ sin_tab[3*SIN_LEN+i] = sin_tab[i & (SIN_MASK>>2)];
+ }
+
+ did_init = true;
+}
+
+static void OPL_initalize(FM_OPL *OPL)
+{
+ int i;
+
+ /* make fnumber -> increment counter table */
+ for( i=0 ; i < 1024 ; i++ )
+ {
+ /* opn phase increment counter = 20bit */
+ OPL->fn_tab[i] = (uint32_t)( (double)i * 64 * OPL_FREQBASE * (1<<(FREQ_SH-10)) ); /* -10 because chip works with 10.10 fixed point, while we use 16.16 */
+ }
+
+ /* Amplitude modulation: 27 output levels (triangle waveform); 1 level takes one of: 192, 256 or 448 samples */
+ /* One entry from LFO_AM_TABLE lasts for 64 samples */
+ OPL->lfo_am_inc = uint32_t((1.0 / 64.0 ) * (1<<LFO_SH) * OPL_FREQBASE);
+
+ /* Vibrato: 8 output levels (triangle waveform); 1 level takes 1024 samples */
+ OPL->lfo_pm_inc = uint32_t((1.0 / 1024.0) * (1<<LFO_SH) * OPL_FREQBASE);
+
+ OPL->eg_timer_add = uint32_t((1<<EG_SH) * OPL_FREQBASE);
+ OPL->eg_timer_overflow = uint32_t(( 1 ) * (1<<EG_SH));
+
+ // [RH] Support full MIDI panning. (But default to mono and center panning.)
+ OPL->IsStereo = false;
+ for (int i = 0; i < 9; ++i)
+ {
+ OPL->P_CH[i].LeftVol = (float)CENTER_PANNING_POWER;
+ OPL->P_CH[i].RightVol = (float)CENTER_PANNING_POWER;
+ }
+}
+
+static inline void FM_KEYON(OPL_SLOT *SLOT, uint32_t key_set)
+{
+ if( !SLOT->key )
+ {
+ /* restart Phase Generator */
+ SLOT->Cnt = 0;
+ /* phase -> Attack */
+ SLOT->state = EG_ATT;
+ }
+ SLOT->key |= key_set;
+}
+
+static inline void FM_KEYOFF(OPL_SLOT *SLOT, uint32_t key_clr)
+{
+ if( SLOT->key )
+ {
+ SLOT->key &= key_clr;
+
+ if( !SLOT->key )
+ {
+ /* phase -> Release */
+ if (SLOT->state>EG_REL)
+ SLOT->state = EG_REL;
+ }
+ }
+}
+
+/* update phase increment counter of operator (also update the EG rates if necessary) */
+static inline void CALC_FCSLOT(OPL_CH *CH,OPL_SLOT *SLOT)
+{
+ int ksr;
+
+ /* (frequency) phase increment counter */
+ SLOT->Incr = CH->fc * SLOT->mul;
+ ksr = CH->kcode >> SLOT->KSR;
+
+ if( SLOT->ksr != ksr )
+ {
+ SLOT->ksr = ksr;
+
+ /* calculate envelope generator rates */
+ if ((SLOT->ar + SLOT->ksr) < 16+62)
+ {
+ SLOT->eg_sh_ar = eg_rate_shift [SLOT->ar + SLOT->ksr ];
+ SLOT->eg_sel_ar = eg_rate_select[SLOT->ar + SLOT->ksr ];
+ }
+ else
+ {
+ SLOT->eg_sh_ar = 0;
+ SLOT->eg_sel_ar = 13*RATE_STEPS;
+ }
+ SLOT->eg_sh_dr = eg_rate_shift [SLOT->dr + SLOT->ksr ];
+ SLOT->eg_sel_dr = eg_rate_select[SLOT->dr + SLOT->ksr ];
+ SLOT->eg_sh_rr = eg_rate_shift [SLOT->rr + SLOT->ksr ];
+ SLOT->eg_sel_rr = eg_rate_select[SLOT->rr + SLOT->ksr ];
+ }
+}
+
+/* set multi,am,vib,EG-TYP,KSR,mul */
+static inline void set_mul(FM_OPL *OPL,int slot,int v)
+{
+ OPL_CH *CH = &OPL->P_CH[slot/2];
+ OPL_SLOT *SLOT = &CH->SLOT[slot&1];
+
+ SLOT->mul = mul_tab[v&0x0f];
+ SLOT->KSR = (v&0x10) ? 0 : 2;
+ SLOT->eg_type = (v&0x20);
+ SLOT->vib = (v&0x40);
+ SLOT->AMmask = (v&0x80) ? ~0 : 0;
+ CALC_FCSLOT(CH,SLOT);
+}
+
+/* set ksl & tl */
+static inline void set_ksl_tl(FM_OPL *OPL,int slot,int v)
+{
+ OPL_CH *CH = &OPL->P_CH[slot/2];
+ OPL_SLOT *SLOT = &CH->SLOT[slot&1];
+
+ SLOT->ksl = ksl_shift[v >> 6];
+ SLOT->TL = (v&0x3f)<<(ENV_BITS-1-7); /* 7 bits TL (bit 6 = always 0) */
+
+ SLOT->TLL = SLOT->TL + (CH->ksl_base>>SLOT->ksl);
+}
+
+/* set attack rate & decay rate */
+static inline void set_ar_dr(FM_OPL *OPL,int slot,int v)
+{
+ OPL_CH *CH = &OPL->P_CH[slot/2];
+ OPL_SLOT *SLOT = &CH->SLOT[slot&1];
+
+ SLOT->ar = (v>>4) ? 16 + ((v>>4) <<2) : 0;
+
+ if ((SLOT->ar + SLOT->ksr) < 16+62)
+ {
+ SLOT->eg_sh_ar = eg_rate_shift [SLOT->ar + SLOT->ksr ];
+ SLOT->eg_sel_ar = eg_rate_select[SLOT->ar + SLOT->ksr ];
+ }
+ else
+ {
+ SLOT->eg_sh_ar = 0;
+ SLOT->eg_sel_ar = 13*RATE_STEPS;
+ }
+
+ SLOT->dr = (v&0x0f)? 16 + ((v&0x0f)<<2) : 0;
+ SLOT->eg_sh_dr = eg_rate_shift [SLOT->dr + SLOT->ksr ];
+ SLOT->eg_sel_dr = eg_rate_select[SLOT->dr + SLOT->ksr ];
+}
+
+/* set sustain level & release rate */
+static inline void set_sl_rr(FM_OPL *OPL,int slot,int v)
+{
+ OPL_CH *CH = &OPL->P_CH[slot/2];
+ OPL_SLOT *SLOT = &CH->SLOT[slot&1];
+
+ SLOT->sl = sl_tab[ v>>4 ];
+
+ SLOT->rr = (v&0x0f)? 16 + ((v&0x0f)<<2) : 0;
+ SLOT->eg_sh_rr = eg_rate_shift [SLOT->rr + SLOT->ksr ];
+ SLOT->eg_sel_rr = eg_rate_select[SLOT->rr + SLOT->ksr ];
+}
+
+
+/* write a value v to register r on OPL chip */
+static void WriteRegister(FM_WorkTable *wt, FM_OPL *OPL, int r, int v)
+{
+ OPL_CH *CH;
+ int slot;
+ int block_fnum;
+
+ /* adjust bus to 8 bits */
+ r &= 0xff;
+ v &= 0xff;
+
+ switch(r&0xe0)
+ {
+ case 0x00: /* 00-1f:control */
+ switch(r&0x1f)
+ {
+ case 0x01: /* waveform select enable */
+ OPL->wavesel = v&0x20;
+ break;
+ case 0x02: /* Timer 1 */
+ OPL->T[0] = (256-v)*4;
+ break;
+ case 0x03: /* Timer 2 */
+ OPL->T[1] = (256-v)*16;
+ break;
+ case 0x04: /* IRQ clear / mask and Timer enable */
+ if(v&0x80)
+ { /* IRQ flag clear */
+ OPL_STATUS_RESET(OPL,0x7f-0x08); /* don't reset BFRDY flag or we will have to call deltat module to set the flag */
+ }
+ else
+ { /* set IRQ mask ,timer enable*/
+ uint8_t st1 = v&1;
+ uint8_t st2 = (v>>1)&1;
+
+ /* IRQRST,T1MSK,t2MSK,EOSMSK,BRMSK,x,ST2,ST1 */
+ OPL_STATUS_RESET(OPL, v & (0x78-0x08) );
+ OPL_STATUSMASK_SET(OPL, (~v) & 0x78 );
+
+ /* timer 2 */
+ if(OPL->st[1] != st2)
+ {
+ OPL->st[1] = st2;
+ }
+ /* timer 1 */
+ if(OPL->st[0] != st1)
+ {
+ OPL->st[0] = st1;
+ }
+ }
+ break;
+ case 0x08: /* MODE,DELTA-T control 2 : CSM,NOTESEL,x,x,smpl,da/ad,64k,rom */
+ OPL->mode = v;
+ break;
+ }
+ break;
+ case 0x20: /* am ON, vib ON, ksr, eg_type, mul */
+ slot = slot_array[r&0x1f];
+ if(slot < 0) return;
+ set_mul(OPL,slot,v);
+ break;
+ case 0x40:
+ slot = slot_array[r&0x1f];
+ if(slot < 0) return;
+ set_ksl_tl(OPL,slot,v);
+ break;
+ case 0x60:
+ slot = slot_array[r&0x1f];
+ if(slot < 0) return;
+ set_ar_dr(OPL,slot,v);
+ break;
+ case 0x80:
+ slot = slot_array[r&0x1f];
+ if(slot < 0) return;
+ set_sl_rr(OPL,slot,v);
+ break;
+ case 0xa0:
+ if (r == 0xbd) /* am depth, vibrato depth, r,bd,sd,tom,tc,hh */
+ {
+ OPL->lfo_am_depth = v & 0x80;
+ OPL->lfo_pm_depth_range = (v&0x40) ? 8 : 0;
+
+ OPL->rhythm = v&0x3f;
+
+ if(OPL->rhythm&0x20)
+ {
+ /* BD key on/off */
+ if(v&0x10)
+ {
+ FM_KEYON (&OPL->P_CH[6].SLOT[SLOT1], 2);
+ FM_KEYON (&OPL->P_CH[6].SLOT[SLOT2], 2);
+ }
+ else
+ {
+ FM_KEYOFF(&OPL->P_CH[6].SLOT[SLOT1],~2);
+ FM_KEYOFF(&OPL->P_CH[6].SLOT[SLOT2],~2);
+ }
+ /* HH key on/off */
+ if(v&0x01) FM_KEYON (&OPL->P_CH[7].SLOT[SLOT1], 2);
+ else FM_KEYOFF(&OPL->P_CH[7].SLOT[SLOT1],~2);
+ /* SD key on/off */
+ if(v&0x08) FM_KEYON (&OPL->P_CH[7].SLOT[SLOT2], 2);
+ else FM_KEYOFF(&OPL->P_CH[7].SLOT[SLOT2],~2);
+ /* TOM key on/off */
+ if(v&0x04) FM_KEYON (&OPL->P_CH[8].SLOT[SLOT1], 2);
+ else FM_KEYOFF(&OPL->P_CH[8].SLOT[SLOT1],~2);
+ /* TOP-CY key on/off */
+ if(v&0x02) FM_KEYON (&OPL->P_CH[8].SLOT[SLOT2], 2);
+ else FM_KEYOFF(&OPL->P_CH[8].SLOT[SLOT2],~2);
+ }
+ else
+ {
+ /* BD key off */
+ FM_KEYOFF(&OPL->P_CH[6].SLOT[SLOT1],~2);
+ FM_KEYOFF(&OPL->P_CH[6].SLOT[SLOT2],~2);
+ /* HH key off */
+ FM_KEYOFF(&OPL->P_CH[7].SLOT[SLOT1],~2);
+ /* SD key off */
+ FM_KEYOFF(&OPL->P_CH[7].SLOT[SLOT2],~2);
+ /* TOM key off */
+ FM_KEYOFF(&OPL->P_CH[8].SLOT[SLOT1],~2);
+ /* TOP-CY off */
+ FM_KEYOFF(&OPL->P_CH[8].SLOT[SLOT2],~2);
+ }
+ return;
+ }
+ /* keyon,block,fnum */
+ if( (r&0x0f) > 8) return;
+ CH = &OPL->P_CH[r&0x0f];
+ if(!(r&0x10))
+ { /* a0-a8 */
+ block_fnum = (CH->block_fnum&0x1f00) | v;
+ }
+ else
+ { /* b0-b8 */
+ block_fnum = ((v&0x1f)<<8) | (CH->block_fnum&0xff);
+
+ if(v&0x20)
+ {
+ FM_KEYON (&CH->SLOT[SLOT1], 1);
+ FM_KEYON (&CH->SLOT[SLOT2], 1);
+ }
+ else
+ {
+ FM_KEYOFF(&CH->SLOT[SLOT1],~1);
+ FM_KEYOFF(&CH->SLOT[SLOT2],~1);
+ }
+ }
+ /* update */
+ if(CH->block_fnum != (uint32_t)block_fnum)
+ {
+ uint8_t block = block_fnum >> 10;
+
+ CH->block_fnum = block_fnum;
+
+ CH->ksl_base = ksl_tab[block_fnum>>6];
+ CH->fc = OPL->fn_tab[block_fnum&0x03ff] >> (7-block);
+
+ /* BLK 2,1,0 bits -> bits 3,2,1 of kcode */
+ CH->kcode = (CH->block_fnum&0x1c00)>>9;
+
+ /* the info below is actually opposite to what is stated in the Manuals (verifed on real YM3812) */
+ /* if notesel == 0 -> lsb of kcode is bit 10 (MSB) of fnum */
+ /* if notesel == 1 -> lsb of kcode is bit 9 (MSB-1) of fnum */
+ if (OPL->mode&0x40)
+ CH->kcode |= (CH->block_fnum&0x100)>>8; /* notesel == 1 */
+ else
+ CH->kcode |= (CH->block_fnum&0x200)>>9; /* notesel == 0 */
+
+ /* refresh Total Level in both SLOTs of this channel */
+ CH->SLOT[SLOT1].TLL = CH->SLOT[SLOT1].TL + (CH->ksl_base>>CH->SLOT[SLOT1].ksl);
+ CH->SLOT[SLOT2].TLL = CH->SLOT[SLOT2].TL + (CH->ksl_base>>CH->SLOT[SLOT2].ksl);
+
+ /* refresh frequency counter in both SLOTs of this channel */
+ CALC_FCSLOT(CH,&CH->SLOT[SLOT1]);
+ CALC_FCSLOT(CH,&CH->SLOT[SLOT2]);
+ }
+ break;
+ case 0xc0:
+ /* FB,C */
+ if( (r&0x0f) > 8) return;
+ CH = &OPL->P_CH[r&0x0f];
+ CH->SLOT[SLOT1].FB = (v>>1)&7 ? ((v>>1)&7) + 7 : 0;
+ CH->SLOT[SLOT1].CON = v&1;
+ CH->SLOT[SLOT1].connect1 = CH->SLOT[SLOT1].CON ? &wt->output : &wt->phase_modulation;
+ break;
+ case 0xe0: /* waveform select */
+ /* simply ignore write to the waveform select register if selecting not enabled in test register */
+ if(OPL->wavesel)
+ {
+ slot = slot_array[r&0x1f];
+ if(slot < 0) return;
+ CH = &OPL->P_CH[slot/2];
+
+ CH->SLOT[slot&1].wavetable = (v&0x03)*SIN_LEN;
+ }
+ break;
+ }
+}
+
+static void OPLResetChip(FM_WorkTable *wt, FM_OPL *OPL)
+{
+ int c,s;
+ int i;
+
+ OPL->eg_timer = 0;
+ OPL->eg_cnt = 0;
+
+ OPL->noise_rng = 1; /* noise shift register */
+ OPL->mode = 0; /* normal mode */
+ OPL_STATUS_RESET(OPL,0x7f);
+
+ /* reset with register write */
+ WriteRegister(wt,OPL,0x01,0); /* wavesel disable */
+ WriteRegister(wt,OPL,0x02,0); /* Timer1 */
+ WriteRegister(wt,OPL,0x03,0); /* Timer2 */
+ WriteRegister(wt,OPL,0x04,0); /* IRQ mask clear */
+ for(i = 0xff ; i >= 0x20 ; i-- ) WriteRegister(wt,OPL,i,0);
+
+ /* reset operator parameters */
+ for( c = 0 ; c < 9 ; c++ )
+ {
+ OPL_CH *CH = &OPL->P_CH[c];
+ for(s = 0 ; s < 2 ; s++ )
+ {
+ /* wave table */
+ CH->SLOT[s].wavetable = 0;
+ CH->SLOT[s].state = EG_OFF;
+ CH->SLOT[s].volume = MAX_ATT_INDEX;
+ }
+ }
+}
+
+
+class YM3812 : public OPLEmul
+{
+private:
+ FM_OPL Chip;
+ FM_WorkTable WorkTable;
+
+public:
+ /* Create one of virtual YM3812 */
+ YM3812(bool stereo)
+ {
+ memset(&WorkTable, 0, sizeof(WorkTable));
+ init_tables();
+
+ /* clear */
+ memset(&Chip, 0, sizeof(Chip));
+
+ /* init global tables */
+ OPL_initalize(&Chip);
+
+ Chip.IsStereo = stereo;
+
+ Reset();
+ }
+
+ /* YM3812 I/O interface */
+ void WriteReg(int reg, int v)
+ {
+ WriteRegister(&WorkTable, &Chip, reg & 0xff, v);
+ }
+
+ void Reset()
+ {
+ OPLResetChip(&WorkTable, &Chip);
+ }
+
+ /* [RH] Full support for MIDI panning */
+ void SetPanning(int c, float left, float right)
+ {
+ Chip.P_CH[c].LeftVol = left;
+ Chip.P_CH[c].RightVol = right;
+ }
+
+
+ /*
+ ** Generate samples for one of the YM3812's
+ **
+ ** '*buffer' is the output buffer pointer
+ ** 'length' is the number of samples that should be generated
+ */
+ void Update(float *buffer, int length)
+ {
+ int i;
+
+ uint8_t rhythm = Chip.rhythm&0x20;
+
+ uint32_t lfo_am_cnt_bak = Chip.lfo_am_cnt;
+ uint32_t eg_timer_bak = Chip.eg_timer;
+ uint32_t eg_cnt_bak = Chip.eg_cnt;
+
+ uint32_t lfo_am_cnt_out = lfo_am_cnt_bak;
+ uint32_t eg_timer_out = eg_timer_bak;
+ uint32_t eg_cnt_out = eg_cnt_bak;
+
+ for (i = 0; i <= (rhythm ? 5 : 8); ++i)
+ {
+ Chip.lfo_am_cnt = lfo_am_cnt_bak;
+ Chip.eg_timer = eg_timer_bak;
+ Chip.eg_cnt = eg_cnt_bak;
+ if (CalcVoice (&WorkTable, &Chip, i, buffer, length))
+ {
+ lfo_am_cnt_out = Chip.lfo_am_cnt;
+ eg_timer_out = Chip.eg_timer;
+ eg_cnt_out = Chip.eg_cnt;
+ }
+ }
+
+ Chip.lfo_am_cnt = lfo_am_cnt_out;
+ Chip.eg_timer = eg_timer_out;
+ Chip.eg_cnt = eg_cnt_out;
+
+ if (rhythm) /* Rhythm part */
+ {
+ Chip.lfo_am_cnt = lfo_am_cnt_bak;
+ Chip.eg_timer = eg_timer_bak;
+ Chip.eg_cnt = eg_cnt_bak;
+ CalcRhythm (&WorkTable, &Chip, buffer, length);
+ }
+ }
+
+ void UpdateS(short *buffer, int length)
+ {
+ int i;
+
+ uint8_t rhythm = Chip.rhythm&0x20;
+
+ uint32_t lfo_am_cnt_bak = Chip.lfo_am_cnt;
+ uint32_t eg_timer_bak = Chip.eg_timer;
+ uint32_t eg_cnt_bak = Chip.eg_cnt;
+
+ uint32_t lfo_am_cnt_out = lfo_am_cnt_bak;
+ uint32_t eg_timer_out = eg_timer_bak;
+ uint32_t eg_cnt_out = eg_cnt_bak;
+
+ for (i = 0; i <= (rhythm ? 5 : 8); ++i)
+ {
+ Chip.lfo_am_cnt = lfo_am_cnt_bak;
+ Chip.eg_timer = eg_timer_bak;
+ Chip.eg_cnt = eg_cnt_bak;
+ if (CalcVoice (&WorkTable, &Chip, i, buffer, length))
+ {
+ lfo_am_cnt_out = Chip.lfo_am_cnt;
+ eg_timer_out = Chip.eg_timer;
+ eg_cnt_out = Chip.eg_cnt;
+ }
+ }
+
+ Chip.lfo_am_cnt = lfo_am_cnt_out;
+ Chip.eg_timer = eg_timer_out;
+ Chip.eg_cnt = eg_cnt_out;
+
+ if (rhythm) /* Rhythm part */
+ {
+ Chip.lfo_am_cnt = lfo_am_cnt_bak;
+ Chip.eg_timer = eg_timer_bak;
+ Chip.eg_cnt = eg_cnt_bak;
+ CalcRhythm (&WorkTable, &Chip, buffer, length);
+ }
+ }
+
+ std::string GetVoiceString(void *chip)
+ {
+ FM_OPL *OPL = (FM_OPL *)chip;
+ char out[9*3];
+
+ for (int i = 0; i <= 8; ++i)
+ {
+ int color;
+
+ if (OPL != NULL && (OPL->P_CH[i].SLOT[0].state != EG_OFF || OPL->P_CH[i].SLOT[1].state != EG_OFF))
+ {
+ color = 'D'; // Green means in use
+ }
+ else
+ {
+ color = 'A'; // Brick means free
+ }
+ out[i*3+0] = '\x1c';
+ out[i*3+1] = color;
+ out[i*3+2] = '*';
+ }
+ return std::string (out, 9*3);
+ }
+};
+
+OPLEmul *YM3812Create(bool stereo)
+{
+ /* emulator create */
+ return new YM3812(stereo);
+}
+
+// [RH] Render a whole voice at once. If nothing else, it lets us avoid
+// wasting a lot of time on voices that aren't playing anything.
+
+static bool CalcVoice (FM_WorkTable *wt, FM_OPL *OPL, int voice, float *buffer, int length)
+{
+ OPL_CH *const CH = &OPL->P_CH[voice];
+ int i;
+
+ if (CH->SLOT[0].state == EG_OFF && CH->SLOT[1].state == EG_OFF)
+ { // Voice is not playing, so don't do anything for it
+ return false;
+ }
+
+ for (i = 0; i < length; ++i)
+ {
+ advance_lfo(wt, OPL);
+
+ wt->output = 0;
+ float sample = OPL_CALC_CH(wt, CH);
+ if (!OPL->IsStereo)
+ {
+ buffer[i] += sample;
+ }
+ else
+ {
+ buffer[i*2] += sample * CH->LeftVol;
+ buffer[i*2+1] += sample * CH->RightVol;
+ }
+
+ advance(wt, OPL, voice, voice);
+ }
+ return true;
+}
+
+static bool CalcVoice (FM_WorkTable *wt, FM_OPL *OPL, int voice, short *buffer, int length)
+{
+ OPL_CH *const CH = &OPL->P_CH[voice];
+ int i;
+
+ if (CH->SLOT[0].state == EG_OFF && CH->SLOT[1].state == EG_OFF)
+ { // Voice is not playing, so don't do anything for it
+ return false;
+ }
+
+ for (i = 0; i < length; ++i)
+ {
+ advance_lfo(wt, OPL);
+
+ wt->output = 0;
+ short sample = OPL_CALC_CH_S(wt, CH) / 2;
+
+ if (!OPL->IsStereo)
+ {
+ buffer[i] += sample;
+ }
+ else
+ {
+ buffer[i*2] += sample * CH->LeftVol;
+ buffer[i*2+1] += sample * CH->RightVol;
+ }
+
+ advance(wt, OPL, voice, voice);
+ }
+ return true;
+}
+
+static bool CalcRhythm (FM_WorkTable *wt, FM_OPL *OPL, float *buffer, int length)
+{
+ int i;
+
+ for (i = 0; i < length; ++i)
+ {
+ advance_lfo(wt, OPL);
+
+ wt->output = 0;
+ OPL_CALC_RH(wt, &OPL->P_CH[0], OPL->noise_rng & 1);
+ /* [RH] Convert to floating point. */
+ float sample = float(wt->output) / 10240;
+ if (!OPL->IsStereo)
+ {
+ buffer[i] += sample;
+ }
+ else
+ {
+ // [RH] Always use center panning for rhythm.
+ // The MIDI player doesn't use the rhythm section anyway.
+ buffer[i*2] += sample * CENTER_PANNING_POWER;
+ buffer[i*2+1] += sample * CENTER_PANNING_POWER;
+ }
+
+ advance(wt, OPL, 6, 8);
+ advance_noise(OPL);
+ }
+ return true;
+}
+
+static bool CalcRhythm (FM_WorkTable *wt, FM_OPL *OPL, short *buffer, int length)
+{
+ int i;
+
+ for (i = 0; i < length; ++i)
+ {
+ advance_lfo(wt, OPL);
+
+ wt->output = 0;
+ OPL_CALC_RH(wt, &OPL->P_CH[0], OPL->noise_rng & 1);
+
+ if (!OPL->IsStereo)
+ {
+ buffer[i] += wt->output / 2;
+ }
+ else
+ {
+ // [RH] Always use center panning for rhythm.
+ // The MIDI player doesn't use the rhythm section anyway.
+ buffer[i*2] += (wt->output / 2) * CENTER_PANNING_POWER;
+ buffer[i*2+1] += (wt->output / 2) * CENTER_PANNING_POWER;
+ }
+
+ advance(wt, OPL, 6, 8);
+ advance_noise(OPL);
+ }
+ return true;
+}