aboutsummaryrefslogtreecommitdiff
path: root/src/dbopl.cpp
diff options
context:
space:
mode:
authorWohlstand <admin@wohlnet.ru>2016-12-06 20:13:02 +0300
committerWohlstand <admin@wohlnet.ru>2016-12-06 20:13:02 +0300
commitabee80062051164aa4931527a54c07046dbc1394 (patch)
tree18d59e00318781a166590d4c17b49ca138ddfc2a /src/dbopl.cpp
parent20aff6650e77940237f696e33728a85b1f566fa9 (diff)
downloadlibADLMIDI-abee80062051164aa4931527a54c07046dbc1394.tar.gz
libADLMIDI-abee80062051164aa4931527a54c07046dbc1394.tar.bz2
libADLMIDI-abee80062051164aa4931527a54c07046dbc1394.zip
Added Nuked OPL3 emulator (which is more accurate than DosBox's)
Also: - Fixed warnings in the CLang code model plugin for Qt Creator - Fixed bend coefficient which caused incorrect hi-hats in DMX banks
Diffstat (limited to 'src/dbopl.cpp')
-rw-r--r--src/dbopl.cpp3254
1 files changed, 1809 insertions, 1445 deletions
diff --git a/src/dbopl.cpp b/src/dbopl.cpp
index 809d394..e21fde0 100644
--- a/src/dbopl.cpp
+++ b/src/dbopl.cpp
@@ -1,3 +1,5 @@
+#ifdef ADLMIDI_USE_DOSBOX_OPL
+
#ifdef __MINGW32__
typedef struct vswprintf {} swprintf;
#endif
@@ -20,19 +22,19 @@ typedef struct vswprintf {} swprintf;
*/
/*
- DOSBox implementation of a combined Yamaha YMF262 and Yamaha YM3812 emulator.
- Enabling the opl3 bit will switch the emulator to stereo opl3 output instead of regular mono opl2
- Except for the table generation it's all integer math
- Can choose different types of generators, using muls and bigger tables, try different ones for slower platforms
- The generation was based on the MAME implementation but tried to have it use less memory and be faster in general
- MAME uses much bigger envelope tables and this will be the biggest cause of it sounding different at times
-
- //TODO Don't delay first operator 1 sample in opl3 mode
- //TODO Maybe not use class method pointers but a regular function pointers with operator as first parameter
- //TODO Fix panning for the Percussion channels, would any opl3 player use it and actually really change it though?
- //TODO Check if having the same accuracy in all frequency multipliers sounds better or not
-
- //DUNNO Keyon in 4op, switch to 2op without keyoff.
+ DOSBox implementation of a combined Yamaha YMF262 and Yamaha YM3812 emulator.
+ Enabling the opl3 bit will switch the emulator to stereo opl3 output instead of regular mono opl2
+ Except for the table generation it's all integer math
+ Can choose different types of generators, using muls and bigger tables, try different ones for slower platforms
+ The generation was based on the MAME implementation but tried to have it use less memory and be faster in general
+ MAME uses much bigger envelope tables and this will be the biggest cause of it sounding different at times
+
+ //TODO Don't delay first operator 1 sample in opl3 mode
+ //TODO Maybe not use class method pointers but a regular function pointers with operator as first parameter
+ //TODO Fix panning for the Percussion channels, would any opl3 player use it and actually really change it though?
+ //TODO Check if having the same accuracy in all frequency multipliers sounds better or not
+
+ //DUNNO Keyon in 4op, switch to 2op without keyoff.
*/
/* $Id: dbopl.cpp,v 1.10 2009-06-10 19:54:51 harekiet Exp $ */
@@ -48,1528 +50,1890 @@ typedef struct vswprintf {} swprintf;
#define PI 3.14159265358979323846
#endif
-namespace DBOPL {
+namespace DBOPL
+{
-#define OPLRATE ((double)(14318180.0 / 288.0))
+#define OPLRATE ((double)(14318180.0 / 288.0))
#define TREMOLO_TABLE 52
-//Try to use most precision for frequencies
-//Else try to keep different waves in synch
-//#define WAVE_PRECISION 1
+ //Try to use most precision for frequencies
+ //Else try to keep different waves in synch
+ //#define WAVE_PRECISION 1
#ifndef WAVE_PRECISION
-//Wave bits available in the top of the 32bit range
-//Original adlib uses 10.10, we use 10.22
-#define WAVE_BITS 10
+ //Wave bits available in the top of the 32bit range
+ //Original adlib uses 10.10, we use 10.22
+#define WAVE_BITS 10
#else
-//Need some extra bits at the top to have room for octaves and frequency multiplier
-//We support to 8 times lower rate
-//128 * 15 * 8 = 15350, 2^13.9, so need 14 bits
-#define WAVE_BITS 14
+ //Need some extra bits at the top to have room for octaves and frequency multiplier
+ //We support to 8 times lower rate
+ //128 * 15 * 8 = 15350, 2^13.9, so need 14 bits
+#define WAVE_BITS 14
#endif
-#define WAVE_SH ( 32 - WAVE_BITS )
-#define WAVE_MASK ( ( 1 << WAVE_SH ) - 1 )
+#define WAVE_SH ( 32 - WAVE_BITS )
+#define WAVE_MASK ( ( 1 << WAVE_SH ) - 1 )
-//Use the same accuracy as the waves
+ //Use the same accuracy as the waves
#define LFO_SH ( WAVE_SH - 10 )
-//LFO is controlled by our tremolo 256 sample limit
+ //LFO is controlled by our tremolo 256 sample limit
#define LFO_MAX ( 256 << ( LFO_SH ) )
-//Maximum amount of attenuation bits
-//Envelope goes to 511, 9 bits
+ //Maximum amount of attenuation bits
+ //Envelope goes to 511, 9 bits
#if (DBOPL_WAVE == WAVE_TABLEMUL )
-//Uses the value directly
-#define ENV_BITS ( 9 )
+ //Uses the value directly
+#define ENV_BITS ( 9 )
#else
-//Add 3 bits here for more accuracy and would have to be shifted up either way
-#define ENV_BITS ( 9 )
+ //Add 3 bits here for more accuracy and would have to be shifted up either way
+#define ENV_BITS ( 9 )
#endif
-//Limits of the envelope with those bits and when the envelope goes silent
-#define ENV_MIN 0
-#define ENV_EXTRA ( ENV_BITS - 9 )
-#define ENV_MAX ( 511 << ENV_EXTRA )
-#define ENV_LIMIT ( ( 12 * 256) >> ( 3 - ENV_EXTRA ) )
+ //Limits of the envelope with those bits and when the envelope goes silent
+#define ENV_MIN 0
+#define ENV_EXTRA ( ENV_BITS - 9 )
+#define ENV_MAX ( 511 << ENV_EXTRA )
+#define ENV_LIMIT ( ( 12 * 256) >> ( 3 - ENV_EXTRA ) )
#define ENV_SILENT( _X_ ) ( (_X_) >= ENV_LIMIT )
-//Attack/decay/release rate counter shift
-#define RATE_SH 24
-#define RATE_MASK ( ( 1 << RATE_SH ) - 1 )
-//Has to fit within 16bit lookuptable
-#define MUL_SH 16
+ //Attack/decay/release rate counter shift
+#define RATE_SH 24
+#define RATE_MASK ( ( 1 << RATE_SH ) - 1 )
+ //Has to fit within 16bit lookuptable
+#define MUL_SH 16
-//Check some ranges
+ //Check some ranges
#if ENV_EXTRA > 3
#error Too many envelope bits
#endif
-//How much to substract from the base value for the final attenuation
-static const Bit8u KslCreateTable[16] = {
- //0 will always be be lower than 7 * 8
- 64, 32, 24, 19,
- 16, 12, 11, 10,
- 8, 6, 5, 4,
- 3, 2, 1, 0,
-};
+ //How much to substract from the base value for the final attenuation
+ static const Bit8u KslCreateTable[16] =
+ {
+ //0 will always be be lower than 7 * 8
+ 64, 32, 24, 19,
+ 16, 12, 11, 10,
+ 8, 6, 5, 4,
+ 3, 2, 1, 0,
+ };
#define M(_X_) ((Bit8u)( (_X_) * 2))
-static const Bit8u FreqCreateTable[16] = {
- M(0.5), M(1 ), M(2 ), M(3 ), M(4 ), M(5 ), M(6 ), M(7 ),
- M(8 ), M(9 ), M(10), M(10), M(12), M(12), M(15), M(15)
-};
+ static const Bit8u FreqCreateTable[16] =
+ {
+ M(0.5), M(1), M(2), M(3), M(4), M(5), M(6), M(7),
+ M(8), M(9), M(10), M(10), M(12), M(12), M(15), M(15)
+ };
#undef M
-//We're not including the highest attack rate, that gets a special value
-static const Bit8u AttackSamplesTable[13] = {
- 69, 55, 46, 40,
- 35, 29, 23, 20,
- 19, 15, 11, 10,
- 9
-};
-//On a real opl these values take 8 samples to reach and are based upon larger tables
-static const Bit8u EnvelopeIncreaseTable[13] = {
- 4, 5, 6, 7,
- 8, 10, 12, 14,
- 16, 20, 24, 28,
- 32,
-};
+ //We're not including the highest attack rate, that gets a special value
+ static const Bit8u AttackSamplesTable[13] =
+ {
+ 69, 55, 46, 40,
+ 35, 29, 23, 20,
+ 19, 15, 11, 10,
+ 9
+ };
+ //On a real opl these values take 8 samples to reach and are based upon larger tables
+ static const Bit8u EnvelopeIncreaseTable[13] =
+ {
+ 4, 5, 6, 7,
+ 8, 10, 12, 14,
+ 16, 20, 24, 28,
+ 32,
+ };
#if ( DBOPL_WAVE == WAVE_HANDLER ) || ( DBOPL_WAVE == WAVE_TABLELOG )
-static Bit16u ExpTable[ 256 ];
+ static Bit16u ExpTable[ 256 ];
#endif
#if ( DBOPL_WAVE == WAVE_HANDLER )
-//PI table used by WAVEHANDLER
-static Bit16u SinTable[ 512 ];
+ //PI table used by WAVEHANDLER
+ static Bit16u SinTable[ 512 ];
#endif
#if ( DBOPL_WAVE > WAVE_HANDLER )
-//Layout of the waveform table in 512 entry intervals
-//With overlapping waves we reduce the table to half it's size
-
-// | |//\\|____|WAV7|//__|/\ |____|/\/\|
-// |\\//| | |WAV7| | \/| | |
-// |06 |0126|17 |7 |3 |4 |4 5 |5 |
-
-//6 is just 0 shifted and masked
-
-static Bit16s WaveTable[ 8 * 512 ];
-//Distance into WaveTable the wave starts
-static const Bit16u WaveBaseTable[8] = {
- 0x000, 0x200, 0x200, 0x800,
- 0xa00, 0xc00, 0x100, 0x400,
-
-};
-//Mask the counter with this
-static const Bit16u WaveMaskTable[8] = {
- 1023, 1023, 511, 511,
- 1023, 1023, 512, 1023,
-};
-
-//Where to start the counter on at keyon
-static const Bit16u WaveStartTable[8] = {
- 512, 0, 0, 0,
- 0, 512, 512, 256,
-};
+ //Layout of the waveform table in 512 entry intervals
+ //With overlapping waves we reduce the table to half it's size
+
+ // | |//\\|____|WAV7|//__|/\ |____|/\/\|
+ // |\\//| | |WAV7| | \/| | |
+ // |06 |0126|17 |7 |3 |4 |4 5 |5 |
+
+ //6 is just 0 shifted and masked
+
+ static Bit16s WaveTable[ 8 * 512 ];
+ //Distance into WaveTable the wave starts
+ static const Bit16u WaveBaseTable[8] =
+ {
+ 0x000, 0x200, 0x200, 0x800,
+ 0xa00, 0xc00, 0x100, 0x400,
+
+ };
+ //Mask the counter with this
+ static const Bit16u WaveMaskTable[8] =
+ {
+ 1023, 1023, 511, 511,
+ 1023, 1023, 512, 1023,
+ };
+
+ //Where to start the counter on at keyon
+ static const Bit16u WaveStartTable[8] =
+ {
+ 512, 0, 0, 0,
+ 0, 512, 512, 256,
+ };
#endif
#if ( DBOPL_WAVE == WAVE_TABLEMUL )
-static Bit16u MulTable[ 384 ];
+ static Bit16u MulTable[ 384 ];
#endif
-static Bit8u KslTable[ 8 * 16 ];
-static Bit8u TremoloTable[ TREMOLO_TABLE ];
-//Start of a channel behind the chip struct start
-static Bit16u ChanOffsetTable[32];
-//Start of an operator behind the chip struct start
-static Bit16u OpOffsetTable[64];
-
-//The lower bits are the shift of the operator vibrato value
-//The highest bit is right shifted to generate -1 or 0 for negation
-//So taking the highest input value of 7 this gives 3, 7, 3, 0, -3, -7, -3, 0
-static const Bit8s VibratoTable[ 8 ] = {
- 1 - 0x00, 0 - 0x00, 1 - 0x00, 30 - 0x00,
- 1 - 0x80, 0 - 0x80, 1 - 0x80, 30 - 0x80
-};
-
-//Shift strength for the ksl value determined by ksl strength
-static const Bit8u KslShiftTable[4] = {
- 31,1,2,0
-};
-
-//Generate a table index and table shift value using input value from a selected rate
-static void EnvelopeSelect( Bit8u val, Bit8u& index, Bit8u& shift ) {
- if ( val < 13 * 4 ) { //Rate 0 - 12
- shift = 12 - ( val >> 2 );
- index = val & 3;
- } else if ( val < 15 * 4 ) { //rate 13 - 14
- shift = 0;
- index = val - 12 * 4;
- } else { //rate 15 and up
- shift = 0;
- index = 12;
- }
-}
+ static Bit8u KslTable[ 8 * 16 ];
+ static Bit8u TremoloTable[ TREMOLO_TABLE ];
+ //Start of a channel behind the chip struct start
+ static Bit16u ChanOffsetTable[32];
+ //Start of an operator behind the chip struct start
+ static Bit16u OpOffsetTable[64];
+
+ //The lower bits are the shift of the operator vibrato value
+ //The highest bit is right shifted to generate -1 or 0 for negation
+ //So taking the highest input value of 7 this gives 3, 7, 3, 0, -3, -7, -3, 0
+ static const Bit8s VibratoTable[ 8 ] =
+ {
+ 1 - 0x00, 0 - 0x00, 1 - 0x00, 30 - 0x00,
+ 1 - 0x80, 0 - 0x80, 1 - 0x80, 30 - 0x80
+ };
+
+ //Shift strength for the ksl value determined by ksl strength
+ static const Bit8u KslShiftTable[4] =
+ {
+ 31, 1, 2, 0
+ };
+
+ //Generate a table index and table shift value using input value from a selected rate
+ static void EnvelopeSelect(Bit8u val, Bit8u &index, Bit8u &shift)
+ {
+ if(val < 13 * 4) //Rate 0 - 12
+ {
+ shift = 12 - (val >> 2);
+ index = val & 3;
+ }
+ else if(val < 15 * 4) //rate 13 - 14
+ {
+ shift = 0;
+ index = val - 12 * 4;
+ }
+ else //rate 15 and up
+ {
+ shift = 0;
+ index = 12;
+ }
+ }
#if ( DBOPL_WAVE == WAVE_HANDLER )
-/*
- Generate the different waveforms out of the sine/exponetial table using handlers
-*/
-static inline Bits MakeVolume( Bitu wave, Bitu volume ) {
- Bitu total = wave + volume;
- Bitu index = total & 0xff;
- Bitu sig = ExpTable[ index ];
- Bitu exp = total >> 8;
+ /*
+ Generate the different waveforms out of the sine/exponetial table using handlers
+ */
+ static inline Bits MakeVolume(Bitu wave, Bitu volume)
+ {
+ Bitu total = wave + volume;
+ Bitu index = total & 0xff;
+ Bitu sig = ExpTable[ index ];
+ Bitu exp = total >> 8;
#if 0
- //Check if we overflow the 31 shift limit
- if ( exp >= 32 ) {
- LOG_MSG( "WTF %d %d", total, exp );
- }
+
+ //Check if we overflow the 31 shift limit
+ if(exp >= 32)
+ LOG_MSG("WTF %d %d", total, exp);
+
#endif
- return (sig >> exp);
-};
-
-static Bits DB_FASTCALL WaveForm0( Bitu i, Bitu volume ) {
- Bits neg = 0 - (( i >> 9) & 1);//Create ~0 or 0
- Bitu wave = SinTable[i & 511];
- return (MakeVolume( wave, volume ) ^ neg) - neg;
-}
-static Bits DB_FASTCALL WaveForm1( Bitu i, Bitu volume ) {
- Bit32u wave = SinTable[i & 511];
- wave |= ( ( (i ^ 512 ) & 512) - 1) >> ( 32 - 12 );
- return MakeVolume( wave, volume );
-}
-static Bits DB_FASTCALL WaveForm2( Bitu i, Bitu volume ) {
- Bitu wave = SinTable[i & 511];
- return MakeVolume( wave, volume );
-}
-static Bits DB_FASTCALL WaveForm3( Bitu i, Bitu volume ) {
- Bitu wave = SinTable[i & 255];
- wave |= ( ( (i ^ 256 ) & 256) - 1) >> ( 32 - 12 );
- return MakeVolume( wave, volume );
-}
-static Bits DB_FASTCALL WaveForm4( Bitu i, Bitu volume ) {
- //Twice as fast
- i <<= 1;
- Bits neg = 0 - (( i >> 9) & 1);//Create ~0 or 0
- Bitu wave = SinTable[i & 511];
- wave |= ( ( (i ^ 512 ) & 512) - 1) >> ( 32 - 12 );
- return (MakeVolume( wave, volume ) ^ neg) - neg;
-}
-static Bits DB_FASTCALL WaveForm5( Bitu i, Bitu volume ) {
- //Twice as fast
- i <<= 1;
- Bitu wave = SinTable[i & 511];
- wave |= ( ( (i ^ 512 ) & 512) - 1) >> ( 32 - 12 );
- return MakeVolume( wave, volume );
-}
-static Bits DB_FASTCALL WaveForm6( Bitu i, Bitu volume ) {
- Bits neg = 0 - (( i >> 9) & 1);//Create ~0 or 0
- return (MakeVolume( 0, volume ) ^ neg) - neg;
-}
-static Bits DB_FASTCALL WaveForm7( Bitu i, Bitu volume ) {
- //Negative is reversed here
- Bits neg = (( i >> 9) & 1) - 1;
- Bitu wave = (i << 3);
- //When negative the volume also runs backwards
- wave = ((wave ^ neg) - neg) & 4095;
- return (MakeVolume( wave, volume ) ^ neg) - neg;
-}
-
-static const WaveHandler WaveHandlerTable[8] = {
- WaveForm0, WaveForm1, WaveForm2, WaveForm3,
- WaveForm4, WaveForm5, WaveForm6, WaveForm7
-};
+ return (sig >> exp);
+ };
+
+ static Bits DB_FASTCALL WaveForm0(Bitu i, Bitu volume)
+ {
+ Bits neg = 0 - ((i >> 9) & 1); //Create ~0 or 0
+ Bitu wave = SinTable[i & 511];
+ return (MakeVolume(wave, volume) ^ neg) - neg;
+ }
+ static Bits DB_FASTCALL WaveForm1(Bitu i, Bitu volume)
+ {
+ Bit32u wave = SinTable[i & 511];
+ wave |= (((i ^ 512) & 512) - 1) >> (32 - 12);
+ return MakeVolume(wave, volume);
+ }
+ static Bits DB_FASTCALL WaveForm2(Bitu i, Bitu volume)
+ {
+ Bitu wave = SinTable[i & 511];
+ return MakeVolume(wave, volume);
+ }
+ static Bits DB_FASTCALL WaveForm3(Bitu i, Bitu volume)
+ {
+ Bitu wave = SinTable[i & 255];
+ wave |= (((i ^ 256) & 256) - 1) >> (32 - 12);
+ return MakeVolume(wave, volume);
+ }
+ static Bits DB_FASTCALL WaveForm4(Bitu i, Bitu volume)
+ {
+ //Twice as fast
+ i <<= 1;
+ Bits neg = 0 - ((i >> 9) & 1); //Create ~0 or 0
+ Bitu wave = SinTable[i & 511];
+ wave |= (((i ^ 512) & 512) - 1) >> (32 - 12);
+ return (MakeVolume(wave, volume) ^ neg) - neg;
+ }
+ static Bits DB_FASTCALL WaveForm5(Bitu i, Bitu volume)
+ {
+ //Twice as fast
+ i <<= 1;
+ Bitu wave = SinTable[i & 511];
+ wave |= (((i ^ 512) & 512) - 1) >> (32 - 12);
+ return MakeVolume(wave, volume);
+ }
+ static Bits DB_FASTCALL WaveForm6(Bitu i, Bitu volume)
+ {
+ Bits neg = 0 - ((i >> 9) & 1); //Create ~0 or 0
+ return (MakeVolume(0, volume) ^ neg) - neg;
+ }
+ static Bits DB_FASTCALL WaveForm7(Bitu i, Bitu volume)
+ {
+ //Negative is reversed here
+ Bits neg = ((i >> 9) & 1) - 1;
+ Bitu wave = (i << 3);
+ //When negative the volume also runs backwards
+ wave = ((wave ^ neg) - neg) & 4095;
+ return (MakeVolume(wave, volume) ^ neg) - neg;
+ }
+
+ static const WaveHandler WaveHandlerTable[8] =
+ {
+ WaveForm0, WaveForm1, WaveForm2, WaveForm3,
+ WaveForm4, WaveForm5, WaveForm6, WaveForm7
+ };
#endif
-/*
- Operator
-*/
+ /*
+ Operator
+ */
+
+ //We zero out when rate == 0
+ inline void Operator::UpdateAttack(const Chip *chip)
+ {
+ Bit8u rate = reg60 >> 4;
+
+ if(rate)
+ {
+ Bit8u val = (rate << 2) + ksr;
+ attackAdd = chip->attackRates[ val ];
+ rateZero &= ~(1 << ATTACK);
+ }
+ else
+ {
+ attackAdd = 0;
+ rateZero |= (1 << ATTACK);
+ }
+ }
+ inline void Operator::UpdateDecay(const Chip *chip)
+ {
+ Bit8u rate = reg60 & 0xf;
+
+ if(rate)
+ {
+ Bit8u val = (rate << 2) + ksr;
+ decayAdd = chip->linearRates[ val ];
+ rateZero &= ~(1 << DECAY);
+ }
+ else
+ {
+ decayAdd = 0;
+ rateZero |= (1 << DECAY);
+ }
+ }
+ inline void Operator::UpdateRelease(const Chip *chip)
+ {
+ Bit8u rate = reg80 & 0xf;
+
+ if(rate)
+ {
+ Bit8u val = (rate << 2) + ksr;
+ releaseAdd = chip->linearRates[ val ];
+ rateZero &= ~(1 << RELEASE);
+
+ if(!(reg20 & MASK_SUSTAIN))
+ rateZero &= ~(1 << SUSTAIN);
+ }
+ else
+ {
+ rateZero |= (1 << RELEASE);
+ releaseAdd = 0;
+
+ if(!(reg20 & MASK_SUSTAIN))
+ rateZero |= (1 << SUSTAIN);
+ }
+ }
-//We zero out when rate == 0
-inline void Operator::UpdateAttack( const Chip* chip ) {
- Bit8u rate = reg60 >> 4;
- if ( rate ) {
- Bit8u val = (rate << 2) + ksr;
- attackAdd = chip->attackRates[ val ];
- rateZero &= ~(1 << ATTACK);
- } else {
- attackAdd = 0;
- rateZero |= (1 << ATTACK);
- }
-}
-inline void Operator::UpdateDecay( const Chip* chip ) {
- Bit8u rate = reg60 & 0xf;
- if ( rate ) {
- Bit8u val = (rate << 2) + ksr;
- decayAdd = chip->linearRates[ val ];
- rateZero &= ~(1 << DECAY);
- } else {
- decayAdd = 0;
- rateZero |= (1 << DECAY);
- }
-}
-inline void Operator::UpdateRelease( const Chip* chip ) {
- Bit8u rate = reg80 & 0xf;
- if ( rate ) {
- Bit8u val = (rate << 2) + ksr;
- releaseAdd = chip->linearRates[ val ];
- rateZero &= ~(1 << RELEASE);
- if ( !(reg20 & MASK_SUSTAIN ) ) {
- rateZero &= ~( 1 << SUSTAIN );
- }
- } else {
- rateZero |= (1 << RELEASE);
- releaseAdd = 0;
- if ( !(reg20 & MASK_SUSTAIN ) ) {
- rateZero |= ( 1 << SUSTAIN );
- }
- }
-}
-
-inline void Operator::UpdateAttenuation( ) {
- Bit8u kslBase = (Bit8u)((chanData >> SHIFT_KSLBASE) & 0xff);
- Bit32u tl = reg40 & 0x3f;
- Bit8u kslShift = KslShiftTable[ reg40 >> 6 ];
- //Make sure the attenuation goes to the right bits
- totalLevel = tl << ( ENV_BITS - 7 ); //Total level goes 2 bits below max
- totalLevel += ( kslBase << ENV_EXTRA ) >> kslShift;
-}
-
-void Operator::UpdateFrequency( ) {
- Bit32u freq = chanData & (( 1 << 10 ) - 1);
- Bit32u block = (chanData >> 10) & 0xff;
+ inline void Operator::UpdateAttenuation()
+ {
+ Bit8u kslBase = (Bit8u)((chanData >> SHIFT_KSLBASE) & 0xff);
+ Bit32u tl = reg40 & 0x3f;
+ Bit8u kslShift = KslShiftTable[ reg40 >> 6 ];
+ //Make sure the attenuation goes to the right bits
+ totalLevel = tl << (ENV_BITS - 7); //Total level goes 2 bits below max
+ totalLevel += (kslBase << ENV_EXTRA) >> kslShift;
+ }
+
+ void Operator::UpdateFrequency()
+ {
+ Bit32u freq = chanData & ((1 << 10) - 1);
+ Bit32u block = (chanData >> 10) & 0xff;
#ifdef WAVE_PRECISION
- block = 7 - block;
- waveAdd = ( freq * freqMul ) >> block;
+ block = 7 - block;
+ waveAdd = (freq * freqMul) >> block;
#else
- waveAdd = ( freq << block ) * freqMul;
+ waveAdd = (freq << block) * freqMul;
#endif
- if ( reg20 & MASK_VIBRATO ) {
- vibStrength = (Bit8u)(freq >> 7);
+ if(reg20 & MASK_VIBRATO)
+ {
+ vibStrength = (Bit8u)(freq >> 7);
#ifdef WAVE_PRECISION
- vibrato = ( vibStrength * freqMul ) >> block;
+ vibrato = (vibStrength * freqMul) >> block;
#else
- vibrato = ( vibStrength << block ) * freqMul;
+ vibrato = (vibStrength << block) * freqMul;
#endif
- } else {
- vibStrength = 0;
- vibrato = 0;
- }
-}
-
-void Operator::UpdateRates( const Chip* chip ) {
- //Mame seems to reverse this where enabling ksr actually lowers
- //the rate, but pdf manuals says otherwise?
- Bit8u newKsr = (Bit8u)((chanData >> SHIFT_KEYCODE) & 0xff);
- if ( !( reg20 & MASK_KSR ) ) {
- newKsr >>= 2;
- }
- if ( ksr == newKsr )
- return;
- ksr = newKsr;
- UpdateAttack( chip );
- UpdateDecay( chip );
- UpdateRelease( chip );
-}
-
-INLINE Bit32s Operator::RateForward( Bit32u add ) {
- rateIndex += add;
- Bit32s ret = rateIndex >> RATE_SH;
- rateIndex = rateIndex & RATE_MASK;
- return ret;
-}
-
-template< Operator::State yes>
-Bits Operator::TemplateVolume( ) {
- Bit32s vol = volume;
- Bit32s change;
- switch ( yes ) {
- case OFF:
- return ENV_MAX;
- case ATTACK:
- change = RateForward( attackAdd );
- if ( !change )
- return vol;
- vol += ( (~vol) * change ) >> 3;
- if ( vol < ENV_MIN ) {
- volume = ENV_MIN;
- rateIndex = 0;
- SetState( DECAY );
- return ENV_MIN;
- }
- break;
- case DECAY:
- vol += RateForward( decayAdd );
- if ( GCC_UNLIKELY(vol >= sustainLevel) ) {
- //Check if we didn't overshoot max attenuation, then just go off
- if ( GCC_UNLIKELY(vol >= ENV_MAX) ) {
- volume = ENV_MAX;
- SetState( OFF );
- return ENV_MAX;
- }
- //Continue as sustain
- rateIndex = 0;
- SetState( SUSTAIN );
- }
- break;
- case SUSTAIN:
- if ( reg20 & MASK_SUSTAIN ) {
- return vol;
- }
- //In sustain phase, but not sustaining, do regular release
- case RELEASE:
- vol += RateForward( releaseAdd );;
- if ( GCC_UNLIKELY(vol >= ENV_MAX) ) {
- volume = ENV_MAX;
- SetState( OFF );
- return ENV_MAX;
- }
- break;
- }
- volume = vol;
- return vol;
-}
-
-static const VolumeHandler VolumeHandlerTable[5] = {
- &Operator::TemplateVolume< Operator::OFF >,
- &Operator::TemplateVolume< Operator::RELEASE >,
- &Operator::TemplateVolume< Operator::SUSTAIN >,
- &Operator::TemplateVolume< Operator::DECAY >,
- &Operator::TemplateVolume< Operator::ATTACK >
-};
-
-INLINE Bitu Operator::ForwardVolume() {
- return currentLevel + (this->*volHandler)();
-}
-
-
-INLINE Bitu Operator::ForwardWave() {
- waveIndex += waveCurrent;
- return waveIndex >> WAVE_SH;
-}
-
-void Operator::Write20( const Chip* chip, Bit8u val ) {
- Bit8u change = (reg20 ^ val );
- if ( !change )
- return;
- reg20 = val;
- //Shift the tremolo bit over the entire register, saved a branch, YES!
- tremoloMask = (Bit8s)(val) >> 7;
- tremoloMask &= ~(( 1 << ENV_EXTRA ) -1);
- //Update specific features based on changes
- if ( change & MASK_KSR ) {
- UpdateRates( chip );
- }
- //With sustain enable the volume doesn't change
- if ( reg20 & MASK_SUSTAIN || ( !releaseAdd ) ) {
- rateZero |= ( 1 << SUSTAIN );
- } else {
- rateZero &= ~( 1 << SUSTAIN );
- }
- //Frequency multiplier or vibrato changed
- if ( change & (0xf | MASK_VIBRATO) ) {
- freqMul = chip->freqMul[ val & 0xf ];
- UpdateFrequency();
- }
-}
-
-void Operator::Write40( const Chip* /*chip*/, Bit8u val ) {
- if (!(reg40 ^ val ))
- return;
- reg40 = val;
- UpdateAttenuation( );
-}
-
-void Operator::Write60( const Chip* chip, Bit8u val ) {
- Bit8u change = reg60 ^ val;
- reg60 = val;
- if ( change & 0x0f ) {
- UpdateDecay( chip );
- }
- if ( change & 0xf0 ) {
- UpdateAttack( chip );
- }
-}
-
-void Operator::Write80( const Chip* chip, Bit8u val ) {
- Bit8u change = (reg80 ^ val );
- if ( !change )
- return;
- reg80 = val;
- Bit8u sustain = val >> 4;
- //Turn 0xf into 0x1f
- sustain |= ( sustain + 1) & 0x10;
- sustainLevel = sustain << ( ENV_BITS - 5 );
- if ( change & 0x0f ) {
- UpdateRelease( chip );
- }
-}
-
-void Operator::WriteE0( const Chip* chip, Bit8u val ) {
- if ( !(regE0 ^ val) )
- return;
- //in opl3 mode you can always selet 7 waveforms regardless of waveformselect
- Bit8u waveForm = val & ( ( 0x3 & chip->waveFormMask ) | (0x7 & chip->opl3Active ) );
- regE0 = val;
+ }
+ else
+ {
+ vibStrength = 0;
+ vibrato = 0;
+ }
+ }
+
+ void Operator::UpdateRates(const Chip *chip)
+ {
+ //Mame seems to reverse this where enabling ksr actually lowers
+ //the rate, but pdf manuals says otherwise?
+ Bit8u newKsr = (Bit8u)((chanData >> SHIFT_KEYCODE) & 0xff);
+
+ if(!(reg20 & MASK_KSR))
+ newKsr >>= 2;
+
+ if(ksr == newKsr)
+ return;
+
+ ksr = newKsr;
+ UpdateAttack(chip);
+ UpdateDecay(chip);
+ UpdateRelease(chip);
+ }
+
+ INLINE Bit32s Operator::RateForward(Bit32u add)
+ {
+ rateIndex += add;
+ Bit32s ret = rateIndex >> RATE_SH;
+ rateIndex = rateIndex & RATE_MASK;
+ return ret;
+ }
+
+ template< Operator::State yes>
+ Bits Operator::TemplateVolume()
+ {
+ Bit32s vol = volume;
+ Bit32s change;
+
+ switch(yes)
+ {
+ case OFF:
+ return ENV_MAX;
+
+ case ATTACK:
+ change = RateForward(attackAdd);
+
+ if(!change)
+ return vol;
+
+ vol += ((~vol) * change) >> 3;
+
+ if(vol < ENV_MIN)
+ {
+ volume = ENV_MIN;
+ rateIndex = 0;
+ SetState(DECAY);
+ return ENV_MIN;
+ }
+
+ break;
+
+ case DECAY:
+ vol += RateForward(decayAdd);
+
+ if(GCC_UNLIKELY(vol >= sustainLevel))
+ {
+ //Check if we didn't overshoot max attenuation, then just go off
+ if(GCC_UNLIKELY(vol >= ENV_MAX))
+ {
+ volume = ENV_MAX;
+ SetState(OFF);
+ return ENV_MAX;
+ }
+
+ //Continue as sustain
+ rateIndex = 0;
+ SetState(SUSTAIN);
+ }
+
+ break;
+
+ case SUSTAIN:
+ if(reg20 & MASK_SUSTAIN)
+ return vol;
+
+ //In sustain phase, but not sustaining, do regular release
+ case RELEASE:
+ vol += RateForward(releaseAdd);;
+
+ if(GCC_UNLIKELY(vol >= ENV_MAX))
+ {
+ volume = ENV_MAX;
+ SetState(OFF);
+ return ENV_MAX;
+ }
+
+ break;
+ }
+
+ volume = vol;
+ return vol;
+ }
+
+ static const VolumeHandler VolumeHandlerTable[5] =
+ {
+ &Operator::TemplateVolume< Operator::OFF >,
+ &Operator::TemplateVolume< Operator::RELEASE >,
+ &Operator::TemplateVolume< Operator::SUSTAIN >,
+ &Operator::TemplateVolume< Operator::DECAY >,
+ &Operator::TemplateVolume< Operator::ATTACK >
+ };
+
+ INLINE Bitu Operator::ForwardVolume()
+ {
+ return currentLevel + (this->*volHandler)();
+ }
+
+
+ INLINE Bitu Operator::ForwardWave()
+ {
+ waveIndex += waveCurrent;
+ return waveIndex >> WAVE_SH;
+ }
+
+ void Operator::Write20(const Chip *chip, Bit8u val)
+ {
+ Bit8u change = (reg20 ^ val);
+
+ if(!change)
+ return;
+
+ reg20 = val;
+ //Shift the tremolo bit over the entire register, saved a branch, YES!
+ tremoloMask = (Bit8s)(val) >> 7;
+ tremoloMask &= ~((1 << ENV_EXTRA) - 1);
+
+ //Update specific features based on changes
+ if(change & MASK_KSR)
+ UpdateRates(chip);
+
+ //With sustain enable the volume doesn't change
+ if(reg20 & MASK_SUSTAIN || (!releaseAdd))
+ rateZero |= (1 << SUSTAIN);
+ else
+ rateZero &= ~(1 << SUSTAIN);
+
+ //Frequency multiplier or vibrato changed
+ if(change & (0xf | MASK_VIBRATO))
+ {
+ freqMul = chip->freqMul[ val & 0xf ];
+ UpdateFrequency();
+ }
+ }
+
+ void Operator::Write40(const Chip * /*chip*/, Bit8u val)
+ {
+ if(!(reg40 ^ val))
+ return;
+
+ reg40 = val;
+ UpdateAttenuation();
+ }
+
+ void Operator::Write60(const Chip *chip, Bit8u val)
+ {
+ Bit8u change = reg60 ^ val;
+ reg60 = val;
+
+ if(change & 0x0f)
+ UpdateDecay(chip);
+
+ if(change & 0xf0)
+ UpdateAttack(chip);
+ }
+
+ void Operator::Write80(const Chip *chip, Bit8u val)
+ {
+ Bit8u change = (reg80 ^ val);
+
+ if(!change)
+ return;
+
+ reg80 = val;
+ Bit8u sustain = val >> 4;
+ //Turn 0xf into 0x1f
+ sustain |= (sustain + 1) & 0x10;
+ sustainLevel = sustain << (ENV_BITS - 5);
+
+ if(change & 0x0f)
+ UpdateRelease(chip);
+ }
+
+ void Operator::WriteE0(const Chip *chip, Bit8u val)
+ {
+ if(!(regE0 ^ val))
+ return;
+
+ //in opl3 mode you can always selet 7 waveforms regardless of waveformselect
+ Bit8u waveForm = val & ((0x3 & chip->waveFormMask) | (0x7 & chip->opl3Active));
+ regE0 = val;
#if ( DBOPL_WAVE == WAVE_HANDLER )
- waveHandler = WaveHandlerTable[ waveForm ];
+ waveHandler = WaveHandlerTable[ waveForm ];
#else
- waveBase = WaveTable + WaveBaseTable[ waveForm ];
- waveStart = WaveStartTable[ waveForm ] << WAVE_SH;
- waveMask = WaveMaskTable[ waveForm ];
+ waveBase = WaveTable + WaveBaseTable[ waveForm ];
+ waveStart = WaveStartTable[ waveForm ] << WAVE_SH;
+ waveMask = WaveMaskTable[ waveForm ];
#endif
-}
-
-INLINE void Operator::SetState( Bit8u s ) {
- state = s;
- volHandler = VolumeHandlerTable[ s ];
-}
-
-INLINE bool Operator::Silent() const {
- if ( !ENV_SILENT( totalLevel + volume ) )
- return false;
- if ( !(rateZero & ( 1 << state ) ) )
- return false;
- return true;
-}
-
-INLINE void Operator::Prepare( const Chip* chip ) {
- currentLevel = totalLevel + (chip->tremoloValue & tremoloMask);
- waveCurrent = waveAdd;
- if ( vibStrength >> chip->vibratoShift ) {
- Bit32s add = vibrato >> chip->vibratoShift;
- //Sign extend over the shift value
- Bit32s neg = chip->vibratoSign;
- //Negate the add with -1 or 0
- add = ( add ^ neg ) - neg;
- waveCurrent += add;
- }
-}
-
-void Operator::KeyOn( Bit8u mask ) {
- if ( !keyOn ) {
- //Restart the frequency generator
+ }
+
+ INLINE void Operator::SetState(Bit8u s)
+ {
+ state = s;
+ volHandler = VolumeHandlerTable[ s ];
+ }
+
+ INLINE bool Operator::Silent() const
+ {
+ if(!ENV_SILENT(totalLevel + volume))
+ return false;
+
+ if(!(rateZero & (1 << state)))
+ return false;
+
+ return true;
+ }
+
+ INLINE void Operator::Prepare(const Chip *chip)
+ {
+ currentLevel = totalLevel + (chip->tremoloValue & tremoloMask);
+ waveCurrent = waveAdd;
+
+ if(vibStrength >> chip->vibratoShift)
+ {
+ Bit32s add = vibrato >> chip->vibratoShift;
+ //Sign extend over the shift value
+ Bit32s neg = chip->vibratoSign;
+ //Negate the add with -1 or 0
+ add = (add ^ neg) - neg;
+ waveCurrent += add;
+ }
+ }
+
+ void Operator::KeyOn(Bit8u mask)
+ {
+ if(!keyOn)
+ {
+ //Restart the frequency generator
#if ( DBOPL_WAVE > WAVE_HANDLER )
- waveIndex = waveStart;
+ waveIndex = waveStart;
#else
- waveIndex = 0;
+ waveIndex = 0;
#endif
- rateIndex = 0;
- SetState( ATTACK );
- }
- keyOn |= mask;
-}
-
-void Operator::KeyOff( Bit8u mask ) {
- keyOn &= ~mask;
- if ( !keyOn ) {
- if ( state != OFF ) {
- SetState( RELEASE );
- }
- }
-}
-
-INLINE Bits Operator::GetWave( Bitu index, Bitu vol ) {
+ rateIndex = 0;
+ SetState(ATTACK);
+ }
+
+ keyOn |= mask;
+ }
+
+ void Operator::KeyOff(Bit8u mask)
+ {
+ keyOn &= ~mask;
+
+ if(!keyOn)
+ {
+ if(state != OFF)
+ SetState(RELEASE);
+ }
+ }
+
+ INLINE Bits Operator::GetWave(Bitu index, Bitu vol)
+ {
#if ( DBOPL_WAVE == WAVE_HANDLER )
- return waveHandler( index, vol << ( 3 - ENV_EXTRA ) );
+ return waveHandler(index, vol << (3 - ENV_EXTRA));
#elif ( DBOPL_WAVE == WAVE_TABLEMUL )
- return (waveBase[ index & waveMask ] * MulTable[ vol >> ENV_EXTRA ]) >> MUL_SH;
+ return (waveBase[ index & waveMask ] * MulTable[ vol >> ENV_EXTRA ]) >> MUL_SH;
#elif ( DBOPL_WAVE == WAVE_TABLELOG )
- Bit32s wave = waveBase[ index & waveMask ];
- Bit32u total = ( wave & 0x7fff ) + vol << ( 3 - ENV_EXTRA );
- Bit32s sig = ExpTable[ total & 0xff ];
- Bit32u exp = total >> 8;
- Bit32s neg = wave >> 16;
- return ((sig ^ neg) - neg) >> exp;
+ Bit32s wave = waveBase[ index & waveMask ];
+ Bit32u total = (wave & 0x7fff) + vol << (3 - ENV_EXTRA);
+ Bit32s sig = ExpTable[ total & 0xff ];
+ Bit32u exp = total >> 8;
+ Bit32s neg = wave >> 16;
+ return ((sig ^ neg) - neg) >> exp;
#else
#error "No valid wave routine"
#endif
-}
-
-Bits INLINE Operator::GetSample( Bits modulation ) {
- Bitu vol = ForwardVolume();
- if ( ENV_SILENT( vol ) ) {
- //Simply forward the wave
- waveIndex += waveCurrent;
- return 0;
- } else {
- Bitu index = ForwardWave();
- index += modulation;
- return GetWave( index, vol );
- }
-}
-
-Operator::Operator() {
- chanData = 0;
- freqMul = 0;
- waveIndex = 0;
- waveAdd = 0;
- waveCurrent = 0;
- keyOn = 0;
- ksr = 0;
- reg20 = 0;
- reg40 = 0;
- reg60 = 0;
- reg80 = 0;
- regE0 = 0;
- SetState( OFF );
- rateZero = (1 << OFF);
- sustainLevel = ENV_MAX;
- currentLevel = ENV_MAX;
- totalLevel = ENV_MAX;
- volume = ENV_MAX;
- releaseAdd = 0;
-}
+ }
-/*
- Channel
-*/
+ Bits INLINE Operator::GetSample(Bits modulation)
+ {
+ Bitu vol = ForwardVolume();
+
+ if(ENV_SILENT(vol))
+ {
+ //Simply forward the wave
+ waveIndex += waveCurrent;
+ return 0;
+ }
+ else
+ {
+ Bitu index = ForwardWave();
+ index += modulation;
+ return GetWave(index, vol);
+ }
+ }
-Channel::Channel() {
- old[0] = old[1] = 0;
- chanData = 0;
- regB0 = 0;
- regC0 = 0;
- maskLeft = -1;
- maskRight = -1;
- feedback = 31;
- fourMask = 0;
- synthHandler = &Channel::BlockTemplate< sm2FM >;
-};
-
-void Channel::SetChanData( const Chip* chip, Bit32u data ) {
- Bit32u change = chanData ^ data;
- chanData = data;
- Op( 0 )->chanData = data;
- Op( 1 )->chanData = data;
- //Since a frequency update triggered this, always update frequency
- Op( 0 )->UpdateFrequency();
- Op( 1 )->UpdateFrequency();
- if ( change & ( 0xff << SHIFT_KSLBASE ) ) {
- Op( 0 )->UpdateAttenuation();
- Op( 1 )->UpdateAttenuation();
- }
- if ( change & ( 0xff << SHIFT_KEYCODE ) ) {
- Op( 0 )->UpdateRates( chip );
- Op( 1 )->UpdateRates( chip );
- }
-}
-
-void Channel::UpdateFrequency( const Chip* chip, Bit8u fourOp ) {
- //Extrace the frequency bits
- Bit32u data = chanData & 0xffff;
- Bit32u kslBase = KslTable[ data >> 6 ];
- Bit32u keyCode = ( data & 0x1c00) >> 9;
- if ( chip->reg08 & 0x40 ) {
- keyCode |= ( data & 0x100)>>8; /* notesel == 1 */
- } else {
- keyCode |= ( data & 0x200)>>9; /* notesel == 0 */
- }
- //Add the keycode and ksl into the highest bits of chanData
- data |= (keyCode << SHIFT_KEYCODE) | ( kslBase << SHIFT_KSLBASE );
- ( this + 0 )->SetChanData( chip, data );
- if ( fourOp & 0x3f ) {
- ( this + 1 )->SetChanData( chip, data );
- }
-}
-
-void Channel::WriteA0( const Chip* chip, Bit8u val ) {
- Bit8u fourOp = chip->reg104 & chip->opl3Active & fourMask;
- //Don't handle writes to silent fourop channels
- if ( fourOp > 0x80 )
- return;
- Bit32u change = (chanData ^ val ) & 0xff;
- if ( change ) {
- chanData ^= change;
- UpdateFrequency( chip, fourOp );
- }
-}
-
-void Channel::WriteB0( const Chip* chip, Bit8u val ) {
- Bit8u fourOp = chip->reg104 & chip->opl3Active & fourMask;
- //Don't handle writes to silent fourop channels
- if ( fourOp > 0x80 )
- return;
- Bitu change = (chanData ^ ( val << 8 ) ) & 0x1f00;
- if ( change ) {
- chanData ^= change;
- UpdateFrequency( chip, fourOp );
- }
- //Check for a change in the keyon/off state
- if ( !(( val ^ regB0) & 0x20))
- return;
- regB0 = val;
- if ( val & 0x20 ) {
- Op(0)->KeyOn( 0x1 );
- Op(1)->KeyOn( 0x1 );
- if ( fourOp & 0x3f ) {
- ( this + 1 )->Op(0)->KeyOn( 1 );
- ( this + 1 )->Op(1)->KeyOn( 1 );
- }
- } else {
- Op(0)->KeyOff( 0x1 );
- Op(1)->KeyOff( 0x1 );
- if ( fourOp & 0x3f ) {
- ( this + 1 )->Op(0)->KeyOff( 1 );
- ( this + 1 )->Op(1)->KeyOff( 1 );
- }
- }
-}
-
-void Channel::WriteC0( const Chip* chip, Bit8u val ) {
- Bit8u change = val ^ regC0;
- if ( !change )
- return;
- regC0 = val;
- feedback = ( val >> 1 ) & 7;
- if ( feedback ) {
- //We shift the input to the right 10 bit wave index value
- feedback = 9 - feedback;
- } else {
- feedback = 31;
- }
- //Select the new synth mode
- if ( chip->opl3Active ) {
- //4-op mode enabled for this channel
- if ( (chip->reg104 & fourMask) & 0x3f ) {
- Channel* chan0, *chan1;
- //Check if it's the 2nd channel in a 4-op
- if ( !(fourMask & 0x80 ) ) {
- chan0 = this;
- chan1 = this + 1;
- } else {
- chan0 = this - 1;
- chan1 = this;
- }
-
- Bit8u synth = ( (chan0->regC0 & 1) << 0 )| (( chan1->regC0 & 1) << 1 );
- switch ( synth ) {
- case 0:
- chan0->synthHandler = &Channel::BlockTemplate< sm3FMFM >;
- break;
- case 1:
- chan0->synthHandler = &Channel::BlockTemplate< sm3AMFM >;
- break;
- case 2:
- chan0->synthHandler = &Channel::BlockTemplate< sm3FMAM >;
- break;
- case 3:
- chan0->synthHandler = &Channel::BlockTemplate< sm3AMAM >;
- break;
- }
- //Disable updating percussion channels
- } else if ((fourMask & 0x40) && ( chip->regBD & 0x20) ) {
-
- //Regular dual op, am or fm
- } else if ( val & 1 ) {
- synthHandler = &Channel::BlockTemplate< sm3AM >;
- } else {
- synthHandler = &Channel::BlockTemplate< sm3FM >;
- }
- maskLeft = ( val & 0x10 ) ? -1 : 0;
- maskRight = ( val & 0x20 ) ? -1 : 0;
- //opl2 active
- } else {
- //Disable updating percussion channels
- if ( (fourMask & 0x40) && ( chip->regBD & 0x20 ) ) {
-
- //Regular dual op, am or fm
- } else if ( val & 1 ) {
- synthHandler = &Channel::BlockTemplate< sm2AM >;
- } else {
- synthHandler = &Channel::BlockTemplate< sm2FM >;
- }
- }
-}
-
-void Channel::ResetC0( const Chip* chip ) {
- Bit8u val = regC0;
- regC0 ^= 0xff;
- WriteC0( chip, val );
-};
-
-template< bool opl3Mode>
-INLINE void Channel::GeneratePercussion( Chip* chip, Bit32s* output ) {
- Channel* chan = this;
-
- //BassDrum
- Bit32s mod = (Bit32u)((old[0] + old[1])) >> feedback;
- old[0] = old[1];
- old[1] = Op(0)->GetSample( mod );
-
- //When bassdrum is in AM mode first operator is ignoed
- if ( chan->regC0 & 1 ) {
- mod = 0;
- } else {
- mod = old[0];
- }
- Bit32s sample = Op(1)->GetSample( mod );
-
-
- //Precalculate stuff used by other outputs
- Bit32u noiseBit = chip->ForwardNoise() & 0x1;
- Bit32u c2 = Op(2)->ForwardWave();
- Bit32u c5 = Op(5)->ForwardWave();
- Bit32u phaseBit = (((c2 & 0x88) ^ ((c2<<5) & 0x80)) | ((c5 ^ (c5<<2)) & 0x20)) ? 0x02 : 0x00;
-
- //Hi-Hat
- Bit32u hhVol = Op(2)->ForwardVolume();
- if ( !ENV_SILENT( hhVol ) ) {
- Bit32u hhIndex = (phaseBit<<8) | (0x34 << ( phaseBit ^ (noiseBit << 1 )));
- sample += Op(2)->GetWave( hhIndex, hhVol );
- }
- //Snare Drum
- Bit32u sdVol = Op(3)->ForwardVolume();
- if ( !ENV_SILENT( sdVol ) ) {
- Bit32u sdIndex = ( 0x100 + (c2 & 0x100) ) ^ ( noiseBit << 8 );
- sample += Op(3)->GetWave( sdIndex, sdVol );
- }
- //Tom-tom
- sample += Op(4)->GetSample( 0 );
-
- //Top-Cymbal
- Bit32u tcVol = Op(5)->ForwardVolume();
- if ( !ENV_SILENT( tcVol ) ) {
- Bit32u tcIndex = (1 + phaseBit) << 8;
- sample += Op(5)->GetWave( tcIndex, tcVol );
- }
- sample <<= 1;
- if ( opl3Mode ) {
- output[0] += sample;
- output[1] += sample;
- } else {
- output[0] += sample;
- }
-}
-
-template<SynthMode mode>
-Channel* Channel::BlockTemplate( Chip* chip, Bit32u samples, Bit32s* output ) {
- switch( mode ) {
- case sm2AM:
- case sm3AM:
- if ( Op(0)->Silent() && Op(1)->Silent() ) {
- old[0] = old[1] = 0;
- return (this + 1);
- }
- break;
- case sm2FM:
- case sm3FM:
- if ( Op(1)->Silent() ) {
- old[0] = old[1] = 0;
- return (this + 1);
- }
- break;
- case sm3FMFM:
- if ( Op(3)->Silent() ) {
- old[0] = old[1] = 0;
- return (this + 2);
- }
- break;
- case sm3AMFM:
- if ( Op(0)->Silent() && Op(3)->Silent() ) {
- old[0] = old[1] = 0;
- return (this + 2);
- }
- break;
- case sm3FMAM:
- if ( Op(1)->Silent() && Op(3)->Silent() ) {
- old[0] = old[1] = 0;
- return (this + 2);
- }
- break;
- case sm3AMAM:
- if ( Op(0)->Silent() && Op(2)->Silent() && Op(3)->Silent() ) {
- old[0] = old[1] = 0;
- return (this + 2);
- }
- break;
- default:break;
- }
- //Init the operators with the the current vibrato and tremolo values
- Op( 0 )->Prepare( chip );
- Op( 1 )->Prepare( chip );
- if ( mode > sm4Start ) {
- Op( 2 )->Prepare( chip );
- Op( 3 )->Prepare( chip );
- }
- if ( mode > sm6Start ) {
- Op( 4 )->Prepare( chip );
- Op( 5 )->Prepare( chip );
- }
- for ( Bitu i = 0; i < samples; i++ ) {
- //Early out for percussion handlers
- if ( mode == sm2Percussion ) {
- GeneratePercussion<false>( chip, output + i );
- continue; //Prevent some unitialized value bitching
- } else if ( mode == sm3Percussion ) {
- GeneratePercussion<true>( chip, output + i * 2 );
- continue; //Prevent some unitialized value bitching
- }
-
- //Do unsigned shift so we can shift out all bits but still stay in 10 bit range otherwise
- Bit32s mod = (Bit32u)((old[0] + old[1])) >> feedback;
- old[0] = old[1];
- old[1] = Op(0)->GetSample( mod );
- Bit32s sample;
- Bit32s out0 = old[0];
- if ( mode == sm2AM || mode == sm3AM ) {
- sample = out0 + Op(1)->GetSample( 0 );
- } else if ( mode == sm2FM || mode == sm3FM ) {
- sample = Op(1)->GetSample( out0 );
- } else if ( mode == sm3FMFM ) {
- Bits next = Op(1)->GetSample( out0 );
- next = Op(2)->GetSample( next );
- sample = Op(3)->GetSample( next );
- } else if ( mode == sm3AMFM ) {
- sample = out0;
- Bits next = Op(1)->GetSample( 0 );
- next = Op(2)->GetSample( next );
- sample += Op(3)->GetSample( next );
- } else if ( mode == sm3FMAM ) {
- sample = Op(1)->GetSample( out0 );
- Bits next = Op(2)->GetSample( 0 );
- sample += Op(3)->GetSample( next );
- } else if ( mode == sm3AMAM ) {
- sample = out0;
- Bits next = Op(1)->GetSample( 0 );
- sample += Op(2)->GetSample( next );
- sample += Op(3)->GetSample( 0 );
- }
- switch( mode ) {
- case sm2AM:
- case sm2FM:
- output[ i ] += sample;
- break;
- case sm3AM:
- case sm3FM:
- case sm3FMFM:
- case sm3AMFM:
- case sm3FMAM:
- case sm3AMAM:
- output[ i * 2 + 0 ] += sample & maskLeft;
- output[ i * 2 + 1 ] += sample & maskRight;
- break;
- default:break;
- }
- }
- switch( mode ) {
- case sm2AM:
- case sm2FM:
- case sm3AM:
- case sm3FM:
- return ( this + 1 );
- case sm3FMFM:
- case sm3AMFM:
- case sm3FMAM:
- case sm3AMAM:
- return( this + 2 );
- case sm2Percussion:
- case sm3Percussion:
- return( this + 3 );
- }
- return 0;
-}
+ Operator::Operator()
+ {
+ chanData = 0;
+ freqMul = 0;
+ waveIndex = 0;
+ waveAdd = 0;
+ waveCurrent = 0;
+ keyOn = 0;
+ ksr = 0;
+ reg20 = 0;
+ reg40 = 0;
+ reg60 = 0;
+ reg80 = 0;
+ regE0 = 0;
+ SetState(OFF);
+ rateZero = (1 << OFF);
+ sustainLevel = ENV_MAX;
+ currentLevel = ENV_MAX;
+ totalLevel = ENV_MAX;
+ volume = ENV_MAX;
+ releaseAdd = 0;
+ }
+
+ /*
+ Channel
+ */
+
+ Channel::Channel()
+ {
+ old[0] = old[1] = 0;
+ chanData = 0;
+ regB0 = 0;
+ regC0 = 0;
+ maskLeft = -1;
+ maskRight = -1;
+ feedback = 31;
+ fourMask = 0;
+ synthHandler = &Channel::BlockTemplate< sm2FM >;
+ };
+
+ void Channel::SetChanData(const Chip *chip, Bit32u data)
+ {
+ Bit32u change = chanData ^ data;
+ chanData = data;
+ Op(0)->chanData = data;
+ Op(1)->chanData = data;
+ //Since a frequency update triggered this, always update frequency
+ Op(0)->UpdateFrequency();
+ Op(1)->UpdateFrequency();
+
+ if(change & (0xff << SHIFT_KSLBASE))
+ {
+ Op(0)->UpdateAttenuation();
+ Op(1)->UpdateAttenuation();
+ }
+
+ if(change & (0xff << SHIFT_KEYCODE))
+ {
+ Op(0)->UpdateRates(chip);
+ Op(1)->UpdateRates(chip);
+ }
+ }
+
+ void Channel::UpdateFrequency(const Chip *chip, Bit8u fourOp)
+ {
+ //Extrace the frequency bits
+ Bit32u data = chanData & 0xffff;
+ Bit32u kslBase = KslTable[ data >> 6 ];
+ Bit32u keyCode = (data & 0x1c00) >> 9;
+
+ if(chip->reg08 & 0x40)
+ {
+ keyCode |= (data & 0x100) >> 8; /* notesel == 1 */
+ }
+ else
+ {
+ keyCode |= (data & 0x200) >> 9; /* notesel == 0 */
+ }
+
+ //Add the keycode and ksl into the highest bits of chanData
+ data |= (keyCode << SHIFT_KEYCODE) | (kslBase << SHIFT_KSLBASE);
+ (this + 0)->SetChanData(chip, data);
+
+ if(fourOp & 0x3f)
+ (this + 1)->SetChanData(chip, data);
+ }
+
+ void Channel::WriteA0(const Chip *chip, Bit8u val)
+ {
+ Bit8u fourOp = chip->reg104 & chip->opl3Active & fourMask;
+
+ //Don't handle writes to silent fourop channels
+ if(fourOp > 0x80)
+ return;
+
+ Bit32u change = (chanData ^ val) & 0xff;
+
+ if(change)
+ {
+ chanData ^= change;
+ UpdateFrequency(chip, fourOp);
+ }
+ }
+
+ void Channel::WriteB0(const Chip *chip, Bit8u val)
+ {
+ Bit8u fourOp = chip->reg104 & chip->opl3Active & fourMask;
+
+ //Don't handle writes to silent fourop channels
+ if(fourOp > 0x80)
+ return;
+
+ Bitu change = (chanData ^ (val << 8)) & 0x1f00;
+
+ if(change)
+ {
+ chanData ^= change;
+ UpdateFrequency(chip, fourOp);
+ }
+
+ //Check for a change in the keyon/off state
+ if(!((val ^ regB0) & 0x20))
+ return;
+
+ regB0 = val;
+
+ if(val & 0x20)
+ {
+ Op(0)->KeyOn(0x1);
+ Op(1)->KeyOn(0x1);
+
+ if(fourOp & 0x3f)
+ {
+ (this + 1)->Op(0)->KeyOn(1);
+ (this + 1)->Op(1)->KeyOn(1);
+ }
+ }
+ else
+ {
+ Op(0)->KeyOff(0x1);
+ Op(1)->KeyOff(0x1);
+
+ if(fourOp & 0x3f)
+ {
+ (this + 1)->Op(0)->KeyOff(1);
+ (this + 1)->Op(1)->KeyOff(1);
+ }
+ }
+ }
+
+ void Channel::WriteC0(const Chip *chip, Bit8u val)
+ {
+ Bit8u change = val ^ regC0;
+
+ if(!change)
+ return;
+
+ regC0 = val;
+ feedback = (val >> 1) & 7;
+
+ if(feedback)
+ {
+ //We shift the input to the right 10 bit wave index value
+ feedback = 9 - feedback;
+ }
+ else
+ feedback = 31;
+
+ //Select the new synth mode
+ if(chip->opl3Active)
+ {
+ //4-op mode enabled for this channel
+ if((chip->reg104 & fourMask) & 0x3f)
+ {
+ Channel *chan0, *chan1;
+
+ //Check if it's the 2nd channel in a 4-op
+ if(!(fourMask & 0x80))
+ {
+ chan0 = this;
+ chan1 = this + 1;
+ }
+ else
+ {
+ chan0 = this - 1;
+ chan1 = this;
+ }
+
+ Bit8u synth = ((chan0->regC0 & 1) << 0) | ((chan1->regC0 & 1) << 1);
+
+ switch(synth)
+ {
+ case 0:
+ chan0->synthHandler = &Channel::BlockTemplate< sm3FMFM >;
+ break;
+
+ case 1:
+ chan0->synthHandler = &Channel::BlockTemplate< sm3AMFM >;
+ break;
+
+ case 2:
+ chan0->synthHandler = &Channel::BlockTemplate< sm3FMAM >;
+ break;
+
+ case 3:
+ chan0->synthHandler = &Channel::BlockTemplate< sm3AMAM >;
+ break;
+ }
+
+ //Disable updating percussion channels
+ }
+ else if((fourMask & 0x40) && (chip->regBD & 0x20))
+ {
+ //Regular dual op, am or fm
+ }
+ else if(val & 1)
+ synthHandler = &Channel::BlockTemplate< sm3AM >;
+ else
+ synthHandler = &Channel::BlockTemplate< sm3FM >;
+
+ maskLeft = (val & 0x10) ? -1 : 0;
+ maskRight = (val & 0x20) ? -1 : 0;
+ //opl2 active
+ }
+ else
+ {
+ //Disable updating percussion channels
+ if((fourMask & 0x40) && (chip->regBD & 0x20))
+ {
+ //Regular dual op, am or fm
+ }
+ else if(val & 1)
+ synthHandler = &Channel::BlockTemplate< sm2AM >;
+ else
+ synthHandler = &Channel::BlockTemplate< sm2FM >;
+ }
+ }
+
+ void Channel::ResetC0(const Chip *chip)
+ {
+ Bit8u val = regC0;
+ regC0 ^= 0xff;
+ WriteC0(chip, val);
+ };
+
+ template< bool opl3Mode>
+ INLINE void Channel::GeneratePercussion(Chip *chip, Bit32s *output)
+ {
+ Channel *chan = this;
+ //BassDrum
+ Bit32s mod = (Bit32u)((old[0] + old[1])) >> feedback;
+ old[0] = old[1];
+ old[1] = Op(0)->GetSample(mod);
+
+ //When bassdrum is in AM mode first operator is ignoed
+ if(chan->regC0 & 1)
+ mod = 0;
+ else
+ mod = old[0];
+
+ Bit32s sample = Op(1)->GetSample(mod);
+ //Precalculate stuff used by other outputs
+ Bit32u noiseBit = chip->ForwardNoise() & 0x1;
+ Bit32u c2 = Op(2)->ForwardWave();
+ Bit32u c5 = Op(5)->ForwardWave();
+ Bit32u phaseBit = (((c2 & 0x88) ^ ((c2 << 5) & 0x80)) | ((c5 ^ (c5 << 2)) & 0x20)) ? 0x02 : 0x00;
+ //Hi-Hat
+ Bit32u hhVol = Op(2)->ForwardVolume();
+
+ if(!ENV_SILENT(hhVol))
+ {
+ Bit32u hhIndex = (phaseBit << 8) | (0x34 << (phaseBit ^ (noiseBit << 1)));
+ sample += Op(2)->GetWave(hhIndex, hhVol);
+ }
+
+ //Snare Drum
+ Bit32u sdVol = Op(3)->ForwardVolume();
+
+ if(!ENV_SILENT(sdVol))
+ {
+ Bit32u sdIndex = (0x100 + (c2 & 0x100)) ^ (noiseBit << 8);
+ sample += Op(3)->GetWave(sdIndex, sdVol);
+ }
+
+ //Tom-tom
+ sample += Op(4)->GetSample(0);
+ //Top-Cymbal
+ Bit32u tcVol = Op(5)->ForwardVolume();
+
+ if(!ENV_SILENT(tcVol))
+ {
+ Bit32u tcIndex = (1 + phaseBit) << 8;
+ sample += Op(5)->GetWave(tcIndex, tcVol);
+ }
+
+ sample <<= 1;
+
+ if(opl3Mode)
+ {
+ output[0] += sample;
+ output[1] += sample;
+ }
+ else
+ output[0] += sample;
+ }
+
+ template<SynthMode mode>
+ Channel *Channel::BlockTemplate(Chip *chip, Bit32u samples, Bit32s *output)
+ {
+ switch(mode)
+ {
+ case sm2AM:
+ case sm3AM:
+ if(Op(0)->Silent() && Op(1)->Silent())
+ {
+ old[0] = old[1] = 0;
+ return (this + 1);
+ }
+
+ break;
+
+ case sm2FM:
+ case sm3FM:
+ if(Op(1)->Silent())
+ {
+ old[0] = old[1] = 0;
+ return (this + 1);
+ }
+
+ break;
+
+ case sm3FMFM:
+ if(Op(3)->Silent())
+ {
+ old[0] = old[1] = 0;
+ return (this + 2);
+ }
+
+ break;
+
+ case sm3AMFM:
+ if(Op(0)->Silent() && Op(3)->Silent())
+ {
+ old[0] = old[1] = 0;
+ return (this + 2);
+ }
+
+ break;
+
+ case sm3FMAM:
+ if(Op(1)->Silent() && Op(3)->Silent())
+ {
+ old[0] = old[1] = 0;
+ return (this + 2);
+ }
+
+ break;
+
+ case sm3AMAM:
+ if(Op(0)->Silent() && Op(2)->Silent() && Op(3)->Silent())
+ {
+ old[0] = old[1] = 0;
+ return (this + 2);
+ }
+
+ break;
+
+ default:
+ break;
+ }
+
+ //Init the operators with the the current vibrato and tremolo values
+ Op(0)->Prepare(chip);
+ Op(1)->Prepare(chip);
+
+ if(mode > sm4Start)
+ {
+ Op(2)->Prepare(chip);
+ Op(3)->Prepare(chip);
+ }
+
+ if(mode > sm6Start)
+ {
+ Op(4)->Prepare(chip);
+ Op(5)->Prepare(chip);
+ }
+
+ for(Bitu i = 0; i < samples; i++)
+ {
+ //Early out for percussion handlers
+ if(mode == sm2Percussion)
+ {
+ GeneratePercussion<false>(chip, output + i);
+ continue; //Prevent some unitialized value bitching
+ }
+ else if(mode == sm3Percussion)
+ {
+ GeneratePercussion<true>(chip, output + i * 2);
+ continue; //Prevent some unitialized value bitching
+ }
+
+ //Do unsigned shift so we can shift out all bits but still stay in 10 bit range otherwise
+ Bit32s mod = (Bit32u)((old[0] + old[1])) >> feedback;
+ old[0] = old[1];
+ old[1] = Op(0)->GetSample(mod);
+ Bit32s sample;
+ Bit32s out0 = old[0];
+
+ if(mode == sm2AM || mode == sm3AM)
+ sample = out0 + Op(1)->GetSample(0);
+ else if(mode == sm2FM || mode == sm3FM)
+ sample = Op(1)->GetSample(out0);
+ else if(mode == sm3FMFM)
+ {
+ Bits next = Op(1)->GetSample(out0);
+ next = Op(2)->GetSample(next);
+ sample = Op(3)->GetSample(next);
+ }
+ else if(mode == sm3AMFM)
+ {
+ sample = out0;
+ Bits next = Op(1)->GetSample(0);
+ next = Op(2)->GetSample(next);
+ sample += Op(3)->GetSample(next);
+ }
+ else if(mode == sm3FMAM)
+ {
+ sample = Op(1)->GetSample(out0);
+ Bits next = Op(2)->GetSample(0);
+ sample += Op(3)->GetSample(next);
+ }
+ else if(mode == sm3AMAM)
+ {
+ sample = out0;
+ Bits next = Op(1)->GetSample(0);
+ sample += Op(2)->GetSample(next);
+ sample += Op(3)->GetSample(0);
+ }
+
+ switch(mode)
+ {
+ case sm2AM:
+ case sm2FM:
+ output[ i ] += sample;
+ break;
+
+ case sm3AM:
+ case sm3FM:
+ case sm3FMFM:
+ case sm3AMFM:
+ case sm3FMAM:
+ case sm3AMAM:
+ output[ i * 2 + 0 ] += sample & maskLeft;
+ output[ i * 2 + 1 ] += sample & maskRight;
+ break;
+
+ default:
+ break;
+ }
+ }
+
+ switch(mode)
+ {
+ case sm2AM:
+ case sm2FM:
+ case sm3AM:
+ case sm3FM:
+ return (this + 1);
+
+ case sm3FMFM:
+ case sm3AMFM:
+ case sm3FMAM:
+ case sm3AMAM:
+ return(this + 2);
+
+ case sm2Percussion:
+ case sm3Percussion:
+ return(this + 3);
+ }
+
+ return 0;
+ }
+
+ /*
+ Chip
+ */
+
+ Chip::Chip()
+ {
+ reg08 = 0;
+ reg04 = 0;
+ regBD = 0;
+ reg104 = 0;
+ opl3Active = 0;
+ }
+
+ INLINE Bit32u Chip::ForwardNoise()
+ {
+ noiseCounter += noiseAdd;
+ Bitu count = noiseCounter >> LFO_SH;
+ noiseCounter &= WAVE_MASK;
+
+ for(; count > 0; --count)
+ {
+ //Noise calculation from mame
+ noiseValue ^= (0x800302) & (0 - (noiseValue & 1));
+ noiseValue >>= 1;
+ }
+
+ return noiseValue;
+ }
+
+ INLINE Bit32u Chip::ForwardLFO(Bit32u samples)
+ {
+ //Current vibrato value, runs 4x slower than tremolo
+ vibratoSign = (VibratoTable[ vibratoIndex >> 2]) >> 7;
+ vibratoShift = (VibratoTable[ vibratoIndex >> 2] & 7) + vibratoStrength;
+ tremoloValue = TremoloTable[ tremoloIndex ] >> tremoloStrength;
+ //Check hom many samples there can be done before the value changes
+ Bit32u todo = LFO_MAX - lfoCounter;
+ Bit32u count = (todo + lfoAdd - 1) / lfoAdd;
+
+ if(count > samples)
+ {
+ count = samples;
+ lfoCounter += count * lfoAdd;
+ }
+ else
+ {
+ lfoCounter += count * lfoAdd;
+ lfoCounter &= (LFO_MAX - 1);
+ //Maximum of 7 vibrato value * 4
+ vibratoIndex = (vibratoIndex + 1) & 31;
+
+ //Clip tremolo to the the table size
+ if(tremoloIndex + 1 < TREMOLO_TABLE)
+ ++tremoloIndex;
+ else
+ tremoloIndex = 0;
+ }
+
+ return count;
+ }
+
+
+ void Chip::WriteBD(Bit8u val)
+ {
+ Bit8u change = regBD ^ val;
+
+ if(!change)
+ return;
+
+ regBD = val;
+ //TODO could do this with shift and xor?
+ vibratoStrength = (val & 0x40) ? 0x00 : 0x01;
+ tremoloStrength = (val & 0x80) ? 0x00 : 0x02;
+
+ if(val & 0x20)
+ {
+ //Drum was just enabled, make sure channel 6 has the right synth
+ if(change & 0x20)
+ {
+ if(opl3Active)
+ chan[6].synthHandler = &Channel::BlockTemplate< sm3Percussion >;
+ else
+ chan[6].synthHandler = &Channel::BlockTemplate< sm2Percussion >;
+ }
+
+ //Bass Drum
+ if(val & 0x10)
+ {
+ chan[6].op[0].KeyOn(0x2);
+ chan[6].op[1].KeyOn(0x2);
+ }
+ else
+ {
+ chan[6].op[0].KeyOff(0x2);
+ chan[6].op[1].KeyOff(0x2);
+ }
+
+ //Hi-Hat
+ if(val & 0x1)
+ chan[7].op[0].KeyOn(0x2);
+ else
+ chan[7].op[0].KeyOff(0x2);
+
+ //Snare
+ if(val & 0x8)
+ chan[7].op[1].KeyOn(0x2);
+ else
+ chan[7].op[1].KeyOff(0x2);
+
+ //Tom-Tom
+ if(val & 0x4)
+ chan[8].op[0].KeyOn(0x2);
+ else
+ chan[8].op[0].KeyOff(0x2);
+
+ //Top Cymbal
+ if(val & 0x2)
+ chan[8].op[1].KeyOn(0x2);
+ else
+ chan[8].op[1].KeyOff(0x2);
+
+ //Toggle keyoffs when we turn off the percussion
+ }
+ else if(change & 0x20)
+ {
+ //Trigger a reset to setup the original synth handler
+ chan[6].ResetC0(this);
+ chan[6].op[0].KeyOff(0x2);
+ chan[6].op[1].KeyOff(0x2);
+ chan[7].op[0].KeyOff(0x2);
+ chan[7].op[1].KeyOff(0x2);
+ chan[8].op[0].KeyOff(0x2);
+ chan[8].op[1].KeyOff(0x2);
+ }
+ }
-/*
- Chip
-*/
-Chip::Chip() {
- reg08 = 0;
- reg04 = 0;
- regBD = 0;
- reg104 = 0;
- opl3Active = 0;
-}
-
-INLINE Bit32u Chip::ForwardNoise() {
- noiseCounter += noiseAdd;
- Bitu count = noiseCounter >> LFO_SH;
- noiseCounter &= WAVE_MASK;
- for ( ; count > 0; --count ) {
- //Noise calculation from mame
- noiseValue ^= ( 0x800302 ) & ( 0 - (noiseValue & 1 ) );
- noiseValue >>= 1;
- }
- return noiseValue;
-}
-
-INLINE Bit32u Chip::ForwardLFO( Bit32u samples ) {
- //Current vibrato value, runs 4x slower than tremolo
- vibratoSign = ( VibratoTable[ vibratoIndex >> 2] ) >> 7;
- vibratoShift = ( VibratoTable[ vibratoIndex >> 2] & 7) + vibratoStrength;
- tremoloValue = TremoloTable[ tremoloIndex ] >> tremoloStrength;
-
- //Check hom many samples there can be done before the value changes
- Bit32u todo = LFO_MAX - lfoCounter;
- Bit32u count = (todo + lfoAdd - 1) / lfoAdd;
- if ( count > samples ) {
- count = samples;
- lfoCounter += count * lfoAdd;
- } else {
- lfoCounter += count * lfoAdd;
- lfoCounter &= (LFO_MAX - 1);
- //Maximum of 7 vibrato value * 4
- vibratoIndex = ( vibratoIndex + 1 ) & 31;
- //Clip tremolo to the the table size
- if ( tremoloIndex + 1 < TREMOLO_TABLE )
- ++tremoloIndex;
- else
- tremoloIndex = 0;
- }
- return count;
-}
-
-
-void Chip::WriteBD( Bit8u val ) {
- Bit8u change = regBD ^ val;
- if ( !change )
- return;
- regBD = val;
- //TODO could do this with shift and xor?
- vibratoStrength = (val & 0x40) ? 0x00 : 0x01;
- tremoloStrength = (val & 0x80) ? 0x00 : 0x02;
- if ( val & 0x20 ) {
- //Drum was just enabled, make sure channel 6 has the right synth
- if ( change & 0x20 ) {
- if ( opl3Active ) {
- chan[6].synthHandler = &Channel::BlockTemplate< sm3Percussion >;
- } else {
- chan[6].synthHandler = &Channel::BlockTemplate< sm2Percussion >;
- }
- }
- //Bass Drum
- if ( val & 0x10 ) {
- chan[6].op[0].KeyOn( 0x2 );
- chan[6].op[1].KeyOn( 0x2 );
- } else {
- chan[6].op[0].KeyOff( 0x2 );
- chan[6].op[1].KeyOff( 0x2 );
- }
- //Hi-Hat
- if ( val & 0x1 ) {
- chan[7].op[0].KeyOn( 0x2 );
- } else {
- chan[7].op[0].KeyOff( 0x2 );
- }
- //Snare
- if ( val & 0x8 ) {
- chan[7].op[1].KeyOn( 0x2 );
- } else {
- chan[7].op[1].KeyOff( 0x2 );
- }
- //Tom-Tom
- if ( val & 0x4 ) {
- chan[8].op[0].KeyOn( 0x2 );
- } else {
- chan[8].op[0].KeyOff( 0x2 );
- }
- //Top Cymbal
- if ( val & 0x2 ) {
- chan[8].op[1].KeyOn( 0x2 );
- } else {
- chan[8].op[1].KeyOff( 0x2 );
- }
- //Toggle keyoffs when we turn off the percussion
- } else if ( change & 0x20 ) {
- //Trigger a reset to setup the original synth handler
- chan[6].ResetC0( this );
- chan[6].op[0].KeyOff( 0x2 );
- chan[6].op[1].KeyOff( 0x2 );
- chan[7].op[0].KeyOff( 0x2 );
- chan[7].op[1].KeyOff( 0x2 );
- chan[8].op[0].KeyOff( 0x2 );
- chan[8].op[1].KeyOff( 0x2 );
- }
-}
-
-
-#define REGOP( _FUNC_ ) \
- index = ( ( reg >> 3) & 0x20 ) | ( reg & 0x1f ); \
- if ( OpOffsetTable[ index ] ) { \
- Operator* regOp = (Operator*)( ((char *)this ) + OpOffsetTable[ index ] ); \
- regOp->_FUNC_( this, val ); \
- }
-
-#define REGCHAN( _FUNC_ ) \
- index = ( ( reg >> 4) & 0x10 ) | ( reg & 0xf ); \
- if ( ChanOffsetTable[ index ] ) { \
- Channel* regChan = (Channel*)( ((char *)this ) + ChanOffsetTable[ index ] ); \
- regChan->_FUNC_( this, val ); \
- }
-
-void Chip::WriteReg( Bit32u reg, Bit8u val ) {
- Bitu index;
- switch ( (reg & 0xf0) >> 4 ) {
- case 0x00 >> 4:
- if ( reg == 0x01 ) {
- waveFormMask = ( val & 0x20 ) ? 0x7 : 0x0;
- } else if ( reg == 0x104 ) {
- //Only detect changes in lowest 6 bits
- if ( !((reg104 ^ val) & 0x3f) )
- return;
- //Always keep the highest bit enabled, for checking > 0x80
- reg104 = 0x80 | ( val & 0x3f );
- } else if ( reg == 0x105 ) {
- //MAME says the real opl3 doesn't reset anything on opl3 disable/enable till the next write in another register
- if ( !((opl3Active ^ val) & 1 ) )
- return;
- opl3Active = ( val & 1 ) ? 0xff : 0;
- //Update the 0xc0 register for all channels to signal the switch to mono/stereo handlers
- for ( int i = 0; i < 18;i++ ) {
- chan[i].ResetC0( this );
- }
- } else if ( reg == 0x08 ) {
- reg08 = val;
- }
- case 0x10 >> 4:
- break;
- case 0x20 >> 4:
- case 0x30 >> 4:
- REGOP( Write20 );
- break;
- case 0x40 >> 4:
- case 0x50 >> 4:
- REGOP( Write40 );
- break;
- case 0x60 >> 4:
- case 0x70 >> 4:
- REGOP( Write60 );
- break;
- case 0x80 >> 4:
- case 0x90 >> 4:
- REGOP( Write80 );
- break;
- case 0xa0 >> 4:
- REGCHAN( WriteA0 );
- break;
- case 0xb0 >> 4:
- if ( reg == 0xbd ) {
- WriteBD( val );
- } else {
- REGCHAN( WriteB0 );
- }
- break;
- case 0xc0 >> 4:
- REGCHAN( WriteC0 );
- case 0xd0 >> 4:
- break;
- case 0xe0 >> 4:
- case 0xf0 >> 4:
- REGOP( WriteE0 );
- break;
- }
-}
-
-
-Bit32u Chip::WriteAddr( Bit32u port, Bit8u val ) {
- switch ( port & 3 ) {
- case 0:
- return val;
- case 2:
- if ( opl3Active || (val == 0x05) )
- return 0x100 | val;
- else
- return val;
- }
- return 0;
-}
-
-void Chip::GenerateBlock2( Bitu total, Bit32s* output ) {
- while ( total > 0 ) {
- Bit32u samples = ForwardLFO( total );
- memset(output, 0, sizeof(Bit32s) * samples);
- int count = 0;
- for( Channel* ch = chan; ch < chan + 9; ) {
- count++;
- ch = (ch->*(ch->synthHandler))( this, samples, output );
- }
- total -= samples;
- output += samples;
- }
-}
-
-void Chip::GenerateBlock3( Bitu total, Bit32s* output ) {
- while ( total > 0 ) {
- Bit32u samples = ForwardLFO( total );
- memset(output, 0, sizeof(Bit32s) * samples *2);
- int count = 0;
- for( Channel* ch = chan; ch < chan + 18; ) {
- count++;
- ch = (ch->*(ch->synthHandler))( this, samples, output );
- }
- total -= samples;
- output += samples * 2;
- }
-}
-
-void Chip::Setup( Bit32u rate ) {
- double original = OPLRATE;
-// double original = rate;
- double scale = original / (double)rate;
-
- //Noise counter is run at the same precision as general waves
- noiseAdd = (Bit32u)( 0.5 + scale * ( 1 << LFO_SH ) );
- noiseCounter = 0;
- noiseValue = 1; //Make sure it triggers the noise xor the first time
- //The low frequency oscillation counter
- //Every time his overflows vibrato and tremoloindex are increased
- lfoAdd = (Bit32u)( 0.5 + scale * ( 1 << LFO_SH ) );
- lfoCounter = 0;
- vibratoIndex = 0;
- tremoloIndex = 0;
-
- //With higher octave this gets shifted up
- //-1 since the freqCreateTable = *2
+#define REGOP( _FUNC_ ) \
+ index = ( ( reg >> 3) & 0x20 ) | ( reg & 0x1f ); \
+ if ( OpOffsetTable[ index ] ) { \
+ Operator* regOp = (Operator*)( ((char *)this ) + OpOffsetTable[ index ] ); \
+ regOp->_FUNC_( this, val ); \
+ }
+
+#define REGCHAN( _FUNC_ ) \
+ index = ( ( reg >> 4) & 0x10 ) | ( reg & 0xf ); \
+ if ( ChanOffsetTable[ index ] ) { \
+ Channel* regChan = (Channel*)( ((char *)this ) + ChanOffsetTable[ index ] ); \
+ regChan->_FUNC_( this, val ); \
+ }
+
+ void Chip::WriteReg(Bit32u reg, Bit8u val)
+ {
+ Bitu index;
+
+ switch((reg & 0xf0) >> 4)
+ {
+ case 0x00 >> 4:
+ if(reg == 0x01)
+ waveFormMask = (val & 0x20) ? 0x7 : 0x0;
+ else if(reg == 0x104)
+ {
+ //Only detect changes in lowest 6 bits
+ if(!((reg104 ^ val) & 0x3f))
+ return;
+
+ //Always keep the highest bit enabled, for checking > 0x80
+ reg104 = 0x80 | (val & 0x3f);
+ }
+ else if(reg == 0x105)
+ {
+ //MAME says the real opl3 doesn't reset anything on opl3 disable/enable till the next write in another register
+ if(!((opl3Active ^ val) & 1))
+ return;
+
+ opl3Active = (val & 1) ? 0xff : 0;
+
+ //Update the 0xc0 register for all channels to signal the switch to mono/stereo handlers
+ for(int i = 0; i < 18; i++)
+ chan[i].ResetC0(this);
+ }
+ else if(reg == 0x08)
+ reg08 = val;
+
+ case 0x10 >> 4:
+ break;
+
+ case 0x20 >> 4:
+ case 0x30 >> 4:
+ REGOP(Write20);
+ break;
+
+ case 0x40 >> 4:
+ case 0x50 >> 4:
+ REGOP(Write40);
+ break;
+
+ case 0x60 >> 4:
+ case 0x70 >> 4:
+ REGOP(Write60);
+ break;
+
+ case 0x80 >> 4:
+ case 0x90 >> 4:
+ REGOP(Write80);
+ break;
+
+ case 0xa0 >> 4:
+ REGCHAN(WriteA0);
+ break;
+
+ case 0xb0 >> 4:
+ if(reg == 0xbd)
+ WriteBD(val);
+ else
+ REGCHAN(WriteB0);
+
+ break;
+
+ case 0xc0 >> 4:
+ REGCHAN(WriteC0);
+
+ case 0xd0 >> 4:
+ break;
+
+ case 0xe0 >> 4:
+ case 0xf0 >> 4:
+ REGOP(WriteE0);
+ break;
+ }
+ }
+
+
+ Bit32u Chip::WriteAddr(Bit32u port, Bit8u val)
+ {
+ switch(port & 3)
+ {
+ case 0:
+ return val;
+
+ case 2:
+ if(opl3Active || (val == 0x05))
+ return 0x100 | val;
+ else
+ return val;
+ }
+
+ return 0;
+ }
+
+ void Chip::GenerateBlock2(Bitu total, Bit32s *output)
+ {
+ while(total > 0)
+ {
+ Bit32u samples = ForwardLFO(total);
+ memset(output, 0, sizeof(Bit32s) * samples);
+ int count = 0;
+
+ for(Channel *ch = chan; ch < chan + 9;)
+ {
+ count++;
+ ch = (ch->*(ch->synthHandler))(this, samples, output);
+ }
+
+ total -= samples;
+ output += samples;
+ }
+ }
+
+ void Chip::GenerateBlock3(Bitu total, Bit32s *output)
+ {
+ while(total > 0)
+ {
+ Bit32u samples = ForwardLFO(total);
+ memset(output, 0, sizeof(Bit32s) * samples * 2);
+ int count = 0;
+
+ for(Channel *ch = chan; ch < chan + 18;)
+ {
+ count++;
+ ch = (ch->*(ch->synthHandler))(this, samples, output);
+ }
+
+ total -= samples;
+ output += samples * 2;
+ }
+ }
+
+ void Chip::Setup(Bit32u rate)
+ {
+ double original = OPLRATE;
+ // double original = rate;
+ double scale = original / (double)rate;
+ //Noise counter is run at the same precision as general waves
+ noiseAdd = (Bit32u)(0.5 + scale * (1 << LFO_SH));
+ noiseCounter = 0;
+ noiseValue = 1; //Make sure it triggers the noise xor the first time
+ //The low frequency oscillation counter
+ //Every time his overflows vibrato and tremoloindex are increased
+ lfoAdd = (Bit32u)(0.5 + scale * (1 << LFO_SH));
+ lfoCounter = 0;
+ vibratoIndex = 0;
+ tremoloIndex = 0;
+ //With higher octave this gets shifted up
+ //-1 since the freqCreateTable = *2
#ifdef WAVE_PRECISION
- double freqScale = ( 1 << 7 ) * scale * ( 1 << ( WAVE_SH - 1 - 10));
- for ( int i = 0; i < 16; i++ ) {
- freqMul[i] = (Bit32u)( 0.5 + freqScale * FreqCreateTable[ i ] );
- }
+ double freqScale = (1 << 7) * scale * (1 << (WAVE_SH - 1 - 10));
+
+ for(int i = 0; i < 16; i++)
+ freqMul[i] = (Bit32u)(0.5 + freqScale * FreqCreateTable[ i ]);
+
#else
- Bit32u freqScale = (Bit32u)( 0.5 + scale * ( 1 << ( WAVE_SH - 1 - 10)));
- for ( int i = 0; i < 16; i++ ) {
- freqMul[i] = freqScale * FreqCreateTable[ i ];
- }
+ Bit32u freqScale = (Bit32u)(0.5 + scale * (1 << (WAVE_SH - 1 - 10)));
+
+ for(int i = 0; i < 16; i++)
+ freqMul[i] = freqScale * FreqCreateTable[ i ];
+
#endif
- //-3 since the real envelope takes 8 steps to reach the single value we supply
- for ( Bit8u i = 0; i < 76; i++ ) {
- Bit8u index, shift;
- EnvelopeSelect( i, index, shift );
- linearRates[i] = (Bit32u)( scale * (EnvelopeIncreaseTable[ index ] << ( RATE_SH + ENV_EXTRA - shift - 3 )));
- }
-
- if(rate == 48000)
- {
- /* BISQWIT ADD: Use precalculated table for this common sample-rate.
- * Because the actual generation code, below, is MOLASSES SLOW on DOS.
- */
- static const Bit32u precalculated_table[62] =
-{2152,2700,3228,3712,4304,5399,6456,7424,8608,10799,12912,14849,17216,21598,
-25824,29698,34432,43196,51650,59398,68864,86392,103310,118795,137746,172847,
-206619,237693,275559,345774,413238,475500,543030,678787,814545,950302,1086060,
-1357575,1629090,1900605,2172120,2715151,3258181,3801211,4344241,5430302,
-6516362,7602423,8688483,10860604,13032725,15204846,17376967,21721209,26065451,
-30409693,34753934,43442418,52130902,60819386,69507869,69507869 };
- for ( Bit8u i = 0; i < 62; i++ )
- attackRates[i] = precalculated_table[i];
+ //-3 since the real envelope takes 8 steps to reach the single value we supply
+ for(Bit8u i = 0; i < 76; i++)
+ {
+ Bit8u index, shift;
+ EnvelopeSelect(i, index, shift);
+ linearRates[i] = (Bit32u)(scale * (EnvelopeIncreaseTable[ index ] << (RATE_SH + ENV_EXTRA - shift - 3)));
+ }
+
+ if(rate == 48000)
+ {
+ /* BISQWIT ADD: Use precalculated table for this common sample-rate.
+ * Because the actual generation code, below, is MOLASSES SLOW on DOS.
+ */
+ static const Bit32u precalculated_table[62] =
+ {
+ 2152, 2700, 3228, 3712, 4304, 5399, 6456, 7424, 8608, 10799, 12912, 14849, 17216, 21598,
+ 25824, 29698, 34432, 43196, 51650, 59398, 68864, 86392, 103310, 118795, 137746, 172847,
+ 206619, 237693, 275559, 345774, 413238, 475500, 543030, 678787, 814545, 950302, 1086060,
+ 1357575, 1629090, 1900605, 2172120, 2715151, 3258181, 3801211, 4344241, 5430302,
+ 6516362, 7602423, 8688483, 10860604, 13032725, 15204846, 17376967, 21721209, 26065451,
+ 30409693, 34753934, 43442418, 52130902, 60819386, 69507869, 69507869
+ };
+
+ for(Bit8u i = 0; i < 62; i++)
+ attackRates[i] = precalculated_table[i];
+ }
+ else if(rate == 44100)
+ {
+ static const Bit32u precalculated_table[62] =
+ {
+ 2342, 2939, 3513, 4040, 4685, 5877, 7027, 8081, 9369, 11754, 14054, 16162, 18738, 23508,
+ 28108, 32325, 37478, 47018, 56219, 64649, 74965, 94044, 112448, 129292, 149929, 188132,
+ 224945, 258713, 300002, 376263, 449999, 517550, 591053, 738816, 886579, 1034343, 1182106,
+ 1477633, 1773159, 2068686, 2364213, 2955266, 3546319, 4137373, 4728426, 5910533,
+ 7092639, 8274746, 9456853, 11821066, 14185279, 16549492, 18913706, 23642132, 28370559,
+ 33098985, 37827412, 47284265, 56741118, 66197971, 75654824, 75654824
+ };
+
+ for(Bit8u i = 0; i < 62; i++)
+ attackRates[i] = precalculated_table[i];
+ }
+ else if(rate == 22050)
+ {
+ static const Bit32u precalculated_table[62] =
+ {
+ 4685, 5877, 7027, 8081, 9369, 11754, 14054, 16162, 18738, 23508, 28108, 32325, 37478,
+ 47018, 56219, 64649, 74965, 94044, 112448, 129292, 149929, 188132, 224945, 258713, 300002,
+ 376263, 449999, 517550, 591053, 738816, 886579, 1034343, 1182106, 1477633, 1773159,
+ 2068686, 2364213, 2955266, 3546319, 4137373, 4728426, 5910533, 7092639, 8274746,
+ 9456853, 11821066, 14185279, 16549492, 18913706, 23642132, 28370559, 33098985,
+ 37827412, 47284265, 56741118, 66197971, 75654824, 94568530, 113482236, 132395942,
+ 151309648, 151309648
+ };
+
+ for(Bit8u i = 0; i < 62; i++)
+ attackRates[i] = precalculated_table[i];
+ }
+ //Generate the best matching attack rate
+ else for(Bit8u i = 0; i < 62; i++)
+ {
+ Bit8u index, shift;
+ EnvelopeSelect(i, index, shift);
+ //Original amount of samples the attack would take
+ Bit32s original = (Bit32u)((AttackSamplesTable[ index ] << shift) / scale);
+ Bit32s guessAdd = (Bit32u)(scale * (EnvelopeIncreaseTable[ index ] << (RATE_SH - shift - 3)));
+ Bit32s bestAdd = guessAdd;
+ Bit32u bestDiff = 1 << 30;
+
+ for(Bit32u passes = 0; passes < 16; passes ++)
+ {
+ Bit32s volume = ENV_MAX;
+ Bit32s samples = 0;
+ Bit32u count = 0;
+
+ while(volume > 0 && samples < original * 2)
+ {
+ count += guessAdd;
+ Bit32s change = count >> RATE_SH;
+ count &= RATE_MASK;
+
+ if(GCC_UNLIKELY(change)) // less than 1 %
+ volume += (~volume * change) >> 3;
+
+ samples++;
+ }
+
+ Bit32s diff = original - samples;
+ Bit32u lDiff = labs(diff);
+
+ //Init last on first pass
+ if(lDiff < bestDiff)
+ {
+ bestDiff = lDiff;
+ bestAdd = guessAdd;
+
+ if(!bestDiff)
+ break;
+ }
+
+ //Below our target
+ if(diff < 0)
+ {
+ //Better than the last time
+ Bit32s mul = ((original - diff) << 12) / original;
+ guessAdd = ((guessAdd * mul) >> 12);
+ guessAdd++;
+ }
+ else if(diff > 0)
+ {
+ Bit32s mul = ((original - diff) << 12) / original;
+ guessAdd = (guessAdd * mul) >> 12;
+ guessAdd--;
+ }
+ }
+
+ attackRates[i] = bestAdd;
+ }
+
+ /*fprintf(stderr, "attack rate table: ");
+ for ( Bit8u i = 0; i < 62; i++ )
+ fprintf(stderr, ",%u", attackRates[i]);
+ fprintf(stderr, "\n");*/
+
+ for(Bit8u i = 62; i < 76; i++)
+ {
+ //This should provide instant volume maximizing
+ attackRates[i] = 8 << RATE_SH;
+ }
+
+ //Setup the channels with the correct four op flags
+ //Channels are accessed through a table so they appear linear here
+ chan[ 0].fourMask = 0x00 | (1 << 0);
+ chan[ 1].fourMask = 0x80 | (1 << 0);
+ chan[ 2].fourMask = 0x00 | (1 << 1);
+ chan[ 3].fourMask = 0x80 | (1 << 1);
+ chan[ 4].fourMask = 0x00 | (1 << 2);
+ chan[ 5].fourMask = 0x80 | (1 << 2);
+ chan[ 9].fourMask = 0x00 | (1 << 3);
+ chan[10].fourMask = 0x80 | (1 << 3);
+ chan[11].fourMask = 0x00 | (1 << 4);
+ chan[12].fourMask = 0x80 | (1 << 4);
+ chan[13].fourMask = 0x00 | (1 << 5);
+ chan[14].fourMask = 0x80 | (1 << 5);
+ //mark the percussion channels
+ chan[ 6].fourMask = 0x40;
+ chan[ 7].fourMask = 0x40;
+ chan[ 8].fourMask = 0x40;
+ //Clear Everything in opl3 mode
+ WriteReg(0x105, 0x1);
+
+ for(int i = 0; i < 512; i++)
+ {
+ if(i == 0x105)
+ continue;
+
+ WriteReg(i, 0xff);
+ WriteReg(i, 0x0);
+ }
+
+ WriteReg(0x105, 0x0);
+
+ //Clear everything in opl2 mode
+ for(int i = 0; i < 255; i++)
+ {
+ WriteReg(i, 0xff);
+ WriteReg(i, 0x0);
+ }
}
- else if(rate == 44100)
- {
- static const Bit32u precalculated_table[62] =
-{2342,2939,3513,4040,4685,5877,7027,8081,9369,11754,14054,16162,18738,23508,
-28108,32325,37478,47018,56219,64649,74965,94044,112448,129292,149929,188132,
-224945,258713,300002,376263,449999,517550,591053,738816,886579,1034343,1182106,
-1477633,1773159,2068686,2364213,2955266,3546319,4137373,4728426,5910533,
-7092639,8274746,9456853,11821066,14185279,16549492,18913706,23642132,28370559,
-33098985,37827412,47284265,56741118,66197971,75654824,75654824 };
- for ( Bit8u i = 0; i < 62; i++ )
- attackRates[i] = precalculated_table[i];
- }
- else if(rate == 22050)
- {
- static const Bit32u precalculated_table[62] =
-{4685,5877,7027,8081,9369,11754,14054,16162,18738,23508,28108,32325,37478,
-47018,56219,64649,74965,94044,112448,129292,149929,188132,224945,258713,300002,
-376263,449999,517550,591053,738816,886579,1034343,1182106,1477633,1773159,
-2068686,2364213,2955266,3546319,4137373,4728426,5910533,7092639,8274746,
-9456853,11821066,14185279,16549492,18913706,23642132,28370559,33098985,
-37827412,47284265,56741118,66197971,75654824,94568530,113482236,132395942,
-151309648,151309648 };
- for ( Bit8u i = 0; i < 62; i++ )
- attackRates[i] = precalculated_table[i];
- }
- //Generate the best matching attack rate
- else for ( Bit8u i = 0; i < 62; i++ ) {
- Bit8u index, shift;
- EnvelopeSelect( i, index, shift );
- //Original amount of samples the attack would take
- Bit32s original = (Bit32u)( (AttackSamplesTable[ index ] << shift) / scale);
-
- Bit32s guessAdd = (Bit32u)( scale * (EnvelopeIncreaseTable[ index ] << ( RATE_SH - shift - 3 )));
- Bit32s bestAdd = guessAdd;
- Bit32u bestDiff = 1 << 30;
- for( Bit32u passes = 0; passes < 16; passes ++ ) {
- Bit32s volume = ENV_MAX;
- Bit32s samples = 0;
- Bit32u count = 0;
- while ( volume > 0 && samples < original * 2 ) {
- count += guessAdd;
- Bit32s change = count >> RATE_SH;
- count &= RATE_MASK;
- if ( GCC_UNLIKELY(change) ) { // less than 1 %
- volume += ( ~volume * change ) >> 3;
- }
- samples++;
-
- }
- Bit32s diff = original - samples;
- Bit32u lDiff = labs( diff );
- //Init last on first pass
- if ( lDiff < bestDiff ) {
- bestDiff = lDiff;
- bestAdd = guessAdd;
- if ( !bestDiff )
- break;
- }
- //Below our target
- if ( diff < 0 ) {
- //Better than the last time
- Bit32s mul = ((original - diff) << 12) / original;
- guessAdd = ((guessAdd * mul) >> 12);
- guessAdd++;
- } else if ( diff > 0 ) {
- Bit32s mul = ((original - diff) << 12) / original;
- guessAdd = (guessAdd * mul) >> 12;
- guessAdd--;
- }
- }
- attackRates[i] = bestAdd;
- }
- /*fprintf(stderr, "attack rate table: ");
- for ( Bit8u i = 0; i < 62; i++ )
- fprintf(stderr, ",%u", attackRates[i]);
- fprintf(stderr, "\n");*/
-
- for ( Bit8u i = 62; i < 76; i++ ) {
- //This should provide instant volume maximizing
- attackRates[i] = 8 << RATE_SH;
- }
- //Setup the channels with the correct four op flags
- //Channels are accessed through a table so they appear linear here
- chan[ 0].fourMask = 0x00 | ( 1 << 0 );
- chan[ 1].fourMask = 0x80 | ( 1 << 0 );
- chan[ 2].fourMask = 0x00 | ( 1 << 1 );
- chan[ 3].fourMask = 0x80 | ( 1 << 1 );
- chan[ 4].fourMask = 0x00 | ( 1 << 2 );
- chan[ 5].fourMask = 0x80 | ( 1 << 2 );
-
- chan[ 9].fourMask = 0x00 | ( 1 << 3 );
- chan[10].fourMask = 0x80 | ( 1 << 3 );
- chan[11].fourMask = 0x00 | ( 1 << 4 );
- chan[12].fourMask = 0x80 | ( 1 << 4 );
- chan[13].fourMask = 0x00 | ( 1 << 5 );
- chan[14].fourMask = 0x80 | ( 1 << 5 );
-
- //mark the percussion channels
- chan[ 6].fourMask = 0x40;
- chan[ 7].fourMask = 0x40;
- chan[ 8].fourMask = 0x40;
-
- //Clear Everything in opl3 mode
- WriteReg( 0x105, 0x1 );
- for ( int i = 0; i < 512; i++ ) {
- if ( i == 0x105 )
- continue;
- WriteReg( i, 0xff );
- WriteReg( i, 0x0 );
- }
- WriteReg( 0x105, 0x0 );
- //Clear everything in opl2 mode
- for ( int i = 0; i < 255; i++ ) {
- WriteReg( i, 0xff );
- WriteReg( i, 0x0 );
- }
-}
-
-static bool doneTables = false;
-void InitTables( void ) {
- if ( doneTables )
- return;
- doneTables = true;
+
+ static bool doneTables = false;
+ void InitTables(void)
+ {
+ if(doneTables)
+ return;
+
+ doneTables = true;
#if ( DBOPL_WAVE == WAVE_HANDLER ) || ( DBOPL_WAVE == WAVE_TABLELOG )
- //Exponential volume table, same as the real adlib
- for ( int i = 0; i < 256; i++ ) {
- //Save them in reverse
- ExpTable[i] = (int)( 0.5 + ( pow(2.0, ( 255 - i) * ( 1.0 /256 ) )-1) * 1024 );
- ExpTable[i] += 1024; //or remove the -1 oh well :)
- //Preshift to the left once so the final volume can shift to the right
- ExpTable[i] *= 2;
- }
+
+ //Exponential volume table, same as the real adlib
+ for(int i = 0; i < 256; i++)
+ {
+ //Save them in reverse
+ ExpTable[i] = (int)(0.5 + (pow(2.0, (255 - i) * (1.0 / 256)) - 1) * 1024);
+ ExpTable[i] += 1024; //or remove the -1 oh well :)
+ //Preshift to the left once so the final volume can shift to the right
+ ExpTable[i] *= 2;
+ }
+
#endif
#if ( DBOPL_WAVE == WAVE_HANDLER )
- //Add 0.5 for the trunc rounding of the integer cast
- //Do a PI sinetable instead of the original 0.5 PI
- for ( int i = 0; i < 512; i++ ) {
- SinTable[i] = (Bit16s)( 0.5 - log10( sin( (i + 0.5) * (PI / 512.0) ) ) / log10(2.0)*256 );
- }
+
+ //Add 0.5 for the trunc rounding of the integer cast
+ //Do a PI sinetable instead of the original 0.5 PI
+ for(int i = 0; i < 512; i++)
+ SinTable[i] = (Bit16s)(0.5 - log10(sin((i + 0.5) * (PI / 512.0))) / log10(2.0) * 256);
+
#endif
#if ( DBOPL_WAVE == WAVE_TABLEMUL )
- //Multiplication based tables
- for ( int i = 0; i < 384; i++ ) {
- int s = i * 8;
- //TODO maybe keep some of the precision errors of the original table?
- double val = ( 0.5 + ( pow(2.0, -1.0 + ( 255 - s) * ( 1.0 /256 ) )) * ( 1 << MUL_SH ));
- MulTable[i] = (Bit16u)(val);
- }
-
- //Sine Wave Base
- for ( int i = 0; i < 512; i++ ) {
- WaveTable[ 0x0200 + i ] = (Bit16s)(sin( (i + 0.5) * (PI / 512.0) ) * 4084);
- WaveTable[ 0x0000 + i ] = -WaveTable[ 0x200 + i ];
- }
- //Exponential wave
- for ( int i = 0; i < 256; i++ ) {
- WaveTable[ 0x700 + i ] = (Bit16s)( 0.5 + ( pow(2.0, -1.0 + ( 255 - i * 8) * ( 1.0 /256 ) ) ) * 4085 );
- WaveTable[ 0x6ff - i ] = -WaveTable[ 0x700 + i ];
- }
+
+ //Multiplication based tables
+ for(int i = 0; i < 384; i++)
+ {
+ int s = i * 8;
+ //TODO maybe keep some of the precision errors of the original table?
+ double val = (0.5 + (pow(2.0, -1.0 + (255 - s) * (1.0 / 256))) * (1 << MUL_SH));
+ MulTable[i] = (Bit16u)(val);
+ }
+
+ //Sine Wave Base
+ for(int i = 0; i < 512; i++)
+ {
+ WaveTable[ 0x0200 + i ] = (Bit16s)(sin((i + 0.5) * (PI / 512.0)) * 4084);
+ WaveTable[ 0x0000 + i ] = -WaveTable[ 0x200 + i ];
+ }
+
+ //Exponential wave
+ for(int i = 0; i < 256; i++)
+ {
+ WaveTable[ 0x700 + i ] = (Bit16s)(0.5 + (pow(2.0, -1.0 + (255 - i * 8) * (1.0 / 256))) * 4085);
+ WaveTable[ 0x6ff - i ] = -WaveTable[ 0x700 + i ];
+ }
+
#endif
#if ( DBOPL_WAVE == WAVE_TABLELOG )
- //Sine Wave Base
- for ( int i = 0; i < 512; i++ ) {
- WaveTable[ 0x0200 + i ] = (Bit16s)( 0.5 - log10( sin( (i + 0.5) * (PI / 512.0) ) ) / log10(2.0)*256 );
- WaveTable[ 0x0000 + i ] = ((Bit16s)0x8000) | WaveTable[ 0x200 + i];
- }
- //Exponential wave
- for ( int i = 0; i < 256; i++ ) {
- WaveTable[ 0x700 + i ] = i * 8;
- WaveTable[ 0x6ff - i ] = ((Bit16s)0x8000) | i * 8;
- }
-#endif
- // | |//\\|____|WAV7|//__|/\ |____|/\/\|
- // |\\//| | |WAV7| | \/| | |
- // |06 |0126|27 |7 |3 |4 |4 5 |5 |
+ //Sine Wave Base
+ for(int i = 0; i < 512; i++)
+ {
+ WaveTable[ 0x0200 + i ] = (Bit16s)(0.5 - log10(sin((i + 0.5) * (PI / 512.0))) / log10(2.0) * 256);
+ WaveTable[ 0x0000 + i ] = ((Bit16s)0x8000) | WaveTable[ 0x200 + i];
+ }
+
+ //Exponential wave
+ for(int i = 0; i < 256; i++)
+ {
+ WaveTable[ 0x700 + i ] = i * 8;
+ WaveTable[ 0x6ff - i ] = ((Bit16s)0x8000) | i * 8;
+ }
+#endif
+ // | |//\\|____|WAV7|//__|/\ |____|/\/\|
+ // |\\//| | |WAV7| | \/| | |
+ // |06 |0126|27 |7 |3 |4 |4 5 |5 |
#if (( DBOPL_WAVE == WAVE_TABLELOG ) || ( DBOPL_WAVE == WAVE_TABLEMUL ))
- for ( int i = 0; i < 256; i++ ) {
- //Fill silence gaps
- WaveTable[ 0x400 + i ] = WaveTable[0];
- WaveTable[ 0x500 + i ] = WaveTable[0];
- WaveTable[ 0x900 + i ] = WaveTable[0];
- WaveTable[ 0xc00 + i ] = WaveTable[0];
- WaveTable[ 0xd00 + i ] = WaveTable[0];
- //Replicate sines in other pieces
- WaveTable[ 0x800 + i ] = WaveTable[ 0x200 + i ];
- //double speed sines
- WaveTable[ 0xa00 + i ] = WaveTable[ 0x200 + i * 2 ];
- WaveTable[ 0xb00 + i ] = WaveTable[ 0x000 + i * 2 ];
- WaveTable[ 0xe00 + i ] = WaveTable[ 0x200 + i * 2 ];
- WaveTable[ 0xf00 + i ] = WaveTable[ 0x200 + i * 2 ];
- }
+
+ for(int i = 0; i < 256; i++)
+ {
+ //Fill silence gaps
+ WaveTable[ 0x400 + i ] = WaveTable[0];
+ WaveTable[ 0x500 + i ] = WaveTable[0];
+ WaveTable[ 0x900 + i ] = WaveTable[0];
+ WaveTable[ 0xc00 + i ] = WaveTable[0];
+ WaveTable[ 0xd00 + i ] = WaveTable[0];
+ //Replicate sines in other pieces
+ WaveTable[ 0x800 + i ] = WaveTable[ 0x200 + i ];
+ //double speed sines
+ WaveTable[ 0xa00 + i ] = WaveTable[ 0x200 + i * 2 ];
+ WaveTable[ 0xb00 + i ] = WaveTable[ 0x000 + i * 2 ];
+ WaveTable[ 0xe00 + i ] = WaveTable[ 0x200 + i * 2 ];
+ WaveTable[ 0xf00 + i ] = WaveTable[ 0x200 + i * 2 ];
+ }
+
#endif
- //Create the ksl table
- for ( int oct = 0; oct < 8; oct++ ) {
- int base = oct * 8;
- for ( int i = 0; i < 16; i++ ) {
- int val = base - KslCreateTable[i];
- if ( val < 0 )
- val = 0;
- //*4 for the final range to match attenuation range
- KslTable[ oct * 16 + i ] = val * 4;
- }
- }
- //Create the Tremolo table, just increase and decrease a triangle wave
- for ( Bit8u i = 0; i < TREMOLO_TABLE / 2; i++ ) {
- Bit8u val = i << ENV_EXTRA;
- TremoloTable[i] = val;
- TremoloTable[TREMOLO_TABLE - 1 - i] = val;
- }
- //Create a table with offsets of the channels from the start of the chip
- DBOPL::Chip* chip = 0;
- for ( Bitu i = 0; i < 32; i++ ) {
- Bitu index = i & 0xf;
- if ( index >= 9 ) {
- ChanOffsetTable[i] = 0;
- continue;
- }
- //Make sure the four op channels follow eachother
- if ( index < 6 ) {
- index = (index % 3) * 2 + ( index / 3 );
- }
- //Add back the bits for highest ones
- if ( i >= 16 )
- index += 9;
- Bitu blah = reinterpret_cast<Bitu>( &(chip->chan[ index ]) );
- ChanOffsetTable[i] = blah;
- }
- //Same for operators
- for ( Bitu i = 0; i < 64; i++ ) {
- if ( i % 8 >= 6 || ( (i / 8) % 4 == 3 ) ) {
- OpOffsetTable[i] = 0;
- continue;
- }
- Bitu chNum = (i / 8) * 3 + (i % 8) % 3;
- //Make sure we use 16 and up for the 2nd range to match the chanoffset gap
- if ( chNum >= 12 )
- chNum += 16 - 12;
- Bitu opNum = ( i % 8 ) / 3;
- DBOPL::Channel* chan = 0;
- Bitu blah = reinterpret_cast<Bitu>( &(chan->op[opNum]) );
- OpOffsetTable[i] = ChanOffsetTable[ chNum ] + blah;
- }
+ //Create the ksl table
+ for(int oct = 0; oct < 8; oct++)
+ {
+ int base = oct * 8;
+
+ for(int i = 0; i < 16; i++)
+ {
+ int val = base - KslCreateTable[i];
+
+ if(val < 0)
+ val = 0;
+
+ //*4 for the final range to match attenuation range
+ KslTable[ oct * 16 + i ] = val * 4;
+ }
+ }
+
+ //Create the Tremolo table, just increase and decrease a triangle wave
+ for(Bit8u i = 0; i < TREMOLO_TABLE / 2; i++)
+ {
+ Bit8u val = i << ENV_EXTRA;
+ TremoloTable[i] = val;
+ TremoloTable[TREMOLO_TABLE - 1 - i] = val;
+ }
+
+ //Create a table with offsets of the channels from the start of the chip
+ DBOPL::Chip *chip = 0;
+
+ for(Bitu i = 0; i < 32; i++)
+ {
+ Bitu index = i & 0xf;
+
+ if(index >= 9)
+ {
+ ChanOffsetTable[i] = 0;
+ continue;
+ }
+
+ //Make sure the four op channels follow eachother
+ if(index < 6)
+ index = (index % 3) * 2 + (index / 3);
+
+ //Add back the bits for highest ones
+ if(i >= 16)
+ index += 9;
+
+ Bitu blah = reinterpret_cast<Bitu>(&(chip->chan[ index ]));
+ ChanOffsetTable[i] = blah;
+ }
+
+ //Same for operators
+ for(Bitu i = 0; i < 64; i++)
+ {
+ if(i % 8 >= 6 || ((i / 8) % 4 == 3))
+ {
+ OpOffsetTable[i] = 0;
+ continue;
+ }
+
+ Bitu chNum = (i / 8) * 3 + (i % 8) % 3;
+
+ //Make sure we use 16 and up for the 2nd range to match the chanoffset gap
+ if(chNum >= 12)
+ chNum += 16 - 12;
+
+ Bitu opNum = (i % 8) / 3;
+ DBOPL::Channel *chan = 0;
+ Bitu blah = reinterpret_cast<Bitu>(&(chan->op[opNum]));
+ OpOffsetTable[i] = ChanOffsetTable[ chNum ] + blah;
+ }
+
#if 0
- //Stupid checks if table's are correct
- for ( Bitu i = 0; i < 18; i++ ) {
- Bit32u find = (Bit16u)( &(chip->chan[ i ]) );
- for ( Bitu c = 0; c < 32; c++ ) {
- if ( ChanOffsetTable[c] == find ) {
- find = 0;
- break;
- }
- }
- if ( find ) {
- find = find;
- }
- }
- for ( Bitu i = 0; i < 36; i++ ) {
- Bit32u find = (Bit16u)( &(chip->chan[ i / 2 ].op[i % 2]) );
- for ( Bitu c = 0; c < 64; c++ ) {
- if ( OpOffsetTable[c] == find ) {
- find = 0;
- break;
- }
- }
- if ( find ) {
- find = find;
- }
- }
+
+ //Stupid checks if table's are correct
+ for(Bitu i = 0; i < 18; i++)
+ {
+ Bit32u find = (Bit16u)(&(chip->chan[ i ]));
+
+ for(Bitu c = 0; c < 32; c++)
+ {
+ if(ChanOffsetTable[c] == find)
+ {
+ find = 0;
+ break;
+ }
+ }
+
+ if(find)
+ find = find;
+ }
+
+ for(Bitu i = 0; i < 36; i++)
+ {
+ Bit32u find = (Bit16u)(&(chip->chan[ i / 2 ].op[i % 2]));
+
+ for(Bitu c = 0; c < 64; c++)
+ {
+ if(OpOffsetTable[c] == find)
+ {
+ find = 0;
+ break;
+ }
+ }
+
+ if(find)
+ find = find;
+ }
+
#endif
-}
-
-Bit32u Handler::WriteAddr( Bit32u port, Bit8u val ) {
- return chip.WriteAddr( port, val );
-
-}
-void Handler::WriteReg( Bit32u addr, Bit8u val ) {
- chip.WriteReg( addr, val );
-}
-
-void Handler::Generate( void(*AddSamples_m32)(Bitu,Bit32s*),
- void(*AddSamples_s32)(Bitu,Bit32s*),
- Bitu samples ) {
- Bit32s buffer[ 512 * 2 ];
- if ( GCC_UNLIKELY(samples > 512) )
- samples = 512;
- if ( !chip.opl3Active ) {
- chip.GenerateBlock2( samples, buffer );
- AddSamples_m32( samples, buffer );
- } else {
- chip.GenerateBlock3( samples, buffer );
- AddSamples_s32( samples, buffer );
- }
-}
-
-void Handler::GenerateArr(Bit32s* out, Bitu *samples )
-{
- if ( GCC_UNLIKELY(*samples > 512) )
- *samples = 512;
- if ( !chip.opl3Active ) {
- chip.GenerateBlock2( *samples, out );
- } else {
- chip.GenerateBlock3( *samples, out );
}
-}
-void Handler::Init( Bitu rate ) {
- InitTables();
- chip.Setup( rate );
-}
+ Bit32u Handler::WriteAddr(Bit32u port, Bit8u val)
+ {
+ return chip.WriteAddr(port, val);
+ }
+ void Handler::WriteReg(Bit32u addr, Bit8u val)
+ {
+ chip.WriteReg(addr, val);
+ }
+
+ void Handler::Generate(void(*AddSamples_m32)(Bitu, Bit32s *),
+ void(*AddSamples_s32)(Bitu, Bit32s *),
+ Bitu samples)
+ {
+ Bit32s buffer[ 512 * 2 ];
+
+ if(GCC_UNLIKELY(samples > 512))
+ samples = 512;
+
+ if(!chip.opl3Active)
+ {
+ chip.GenerateBlock2(samples, buffer);
+ AddSamples_m32(samples, buffer);
+ }
+ else
+ {
+ chip.GenerateBlock3(samples, buffer);
+ AddSamples_s32(samples, buffer);
+ }
+ }
+
+ void Handler::GenerateArr(Bit32s *out, Bitu *samples)
+ {
+ if(GCC_UNLIKELY(*samples > 512))
+ *samples = 512;
+
+ if(!chip.opl3Active)
+ chip.GenerateBlock2(*samples, out);
+ else
+ chip.GenerateBlock3(*samples, out);
+ }
+
+ void Handler::Init(Bitu rate)
+ {
+ InitTables();
+ chip.Setup(rate);
+ }
+
+} //Namespace DBOPL
-} //Namespace DBOPL
+#endif //ADLMIDI_USE_DOSBOX_OPL