diff options
author | Wohlstand <admin@wohlnet.ru> | 2025-03-25 19:42:54 +0300 |
---|---|---|
committer | Wohlstand <admin@wohlnet.ru> | 2025-03-25 19:42:54 +0300 |
commit | 06fb33d4641cbb0d136d069edbf6d8687267166b (patch) | |
tree | e447d7ac3f356693fa5f4114c5d276571b986d9a /src/chips/ymfm/ymfm_opl.h | |
parent | de4fbb90c70da8a4dcf7d612f75bf5e8177e94bf (diff) | |
download | libADLMIDI-06fb33d4641cbb0d136d069edbf6d8687267166b.tar.gz libADLMIDI-06fb33d4641cbb0d136d069edbf6d8687267166b.tar.bz2 libADLMIDI-06fb33d4641cbb0d136d069edbf6d8687267166b.zip |
Added YMFM emulators
Diffstat (limited to 'src/chips/ymfm/ymfm_opl.h')
-rw-r--r-- | src/chips/ymfm/ymfm_opl.h | 902 |
1 files changed, 902 insertions, 0 deletions
diff --git a/src/chips/ymfm/ymfm_opl.h b/src/chips/ymfm/ymfm_opl.h new file mode 100644 index 0000000..320ff21 --- /dev/null +++ b/src/chips/ymfm/ymfm_opl.h @@ -0,0 +1,902 @@ +// BSD 3-Clause License +// +// Copyright (c) 2021, Aaron Giles +// All rights reserved. +// +// Redistribution and use in source and binary forms, with or without +// modification, are permitted provided that the following conditions are met: +// +// 1. Redistributions of source code must retain the above copyright notice, this +// list of conditions and the following disclaimer. +// +// 2. Redistributions in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// 3. Neither the name of the copyright holder nor the names of its +// contributors may be used to endorse or promote products derived from +// this software without specific prior written permission. +// +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" +// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE +// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE +// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE +// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL +// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR +// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER +// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, +// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + +#ifndef YMFM_OPL_H +#define YMFM_OPL_H + +#pragma once + +#include "ymfm.h" +#include "ymfm_adpcm.h" +#include "ymfm_fm.h" +#include "ymfm_pcm.h" + +namespace ymfm +{ + +//********************************************************* +// REGISTER CLASSES +//********************************************************* + +// ======================> opl_registers_base + +// +// OPL/OPL2/OPL3/OPL4 register map: +// +// System-wide registers: +// 01 xxxxxxxx Test register +// --x----- Enable OPL compatibility mode [OPL2 only] (1 = enable) +// 02 xxxxxxxx Timer A value (4 * OPN) +// 03 xxxxxxxx Timer B value +// 04 x------- RST +// -x------ Mask timer A +// --x----- Mask timer B +// ------x- Load timer B +// -------x Load timer A +// 08 x------- CSM mode [OPL/OPL2 only] +// -x------ Note select +// BD x------- AM depth +// -x------ PM depth +// --x----- Rhythm enable +// ---x---- Bass drum key on +// ----x--- Snare drum key on +// -----x-- Tom key on +// ------x- Top cymbal key on +// -------x High hat key on +// 101 --xxxxxx Test register 2 [OPL3 only] +// 104 --x----- Channel 6 4-operator mode [OPL3 only] +// ---x---- Channel 5 4-operator mode [OPL3 only] +// ----x--- Channel 4 4-operator mode [OPL3 only] +// -----x-- Channel 3 4-operator mode [OPL3 only] +// ------x- Channel 2 4-operator mode [OPL3 only] +// -------x Channel 1 4-operator mode [OPL3 only] +// 105 -------x New [OPL3 only] +// ------x- New2 [OPL4 only] +// +// Per-channel registers (channel in address bits 0-3) +// Note that all these apply to address+100 as well on OPL3+ +// A0-A8 xxxxxxxx F-number (low 8 bits) +// B0-B8 --x----- Key on +// ---xxx-- Block (octvate, 0-7) +// ------xx F-number (high two bits) +// C0-C8 x------- CHD output (to DO0 pin) [OPL3+ only] +// -x------ CHC output (to DO0 pin) [OPL3+ only] +// --x----- CHB output (mixed right, to DO2 pin) [OPL3+ only] +// ---x---- CHA output (mixed left, to DO2 pin) [OPL3+ only] +// ----xxx- Feedback level for operator 1 (0-7) +// -------x Operator connection algorithm +// +// Per-operator registers (operator in bits 0-5) +// Note that all these apply to address+100 as well on OPL3+ +// 20-35 x------- AM enable +// -x------ PM enable (VIB) +// --x----- EG type +// ---x---- Key scale rate +// ----xxxx Multiple value (0-15) +// 40-55 xx------ Key scale level (0-3) +// --xxxxxx Total level (0-63) +// 60-75 xxxx---- Attack rate (0-15) +// ----xxxx Decay rate (0-15) +// 80-95 xxxx---- Sustain level (0-15) +// ----xxxx Release rate (0-15) +// E0-F5 ------xx Wave select (0-3) [OPL2 only] +// -----xxx Wave select (0-7) [OPL3+ only] +// + +template<int Revision> +class opl_registers_base : public fm_registers_base +{ + static constexpr bool IsOpl2 = (Revision == 2); + static constexpr bool IsOpl2Plus = (Revision >= 2); + static constexpr bool IsOpl3Plus = (Revision >= 3); + static constexpr bool IsOpl4Plus = (Revision >= 4); + +public: + // constants + static constexpr uint32_t OUTPUTS = IsOpl3Plus ? 4 : 1; + static constexpr uint32_t CHANNELS = IsOpl3Plus ? 18 : 9; + static constexpr uint32_t ALL_CHANNELS = (1 << CHANNELS) - 1; + static constexpr uint32_t OPERATORS = CHANNELS * 2; + static constexpr uint32_t WAVEFORMS = IsOpl3Plus ? 8 : (IsOpl2Plus ? 4 : 1); + static constexpr uint32_t REGISTERS = IsOpl3Plus ? 0x200 : 0x100; + static constexpr uint32_t REG_MODE = 0x04; + static constexpr uint32_t DEFAULT_PRESCALE = IsOpl4Plus ? 19 : (IsOpl3Plus ? 8 : 4); + static constexpr uint32_t EG_CLOCK_DIVIDER = 1; + static constexpr uint32_t CSM_TRIGGER_MASK = ALL_CHANNELS; + static constexpr bool DYNAMIC_OPS = IsOpl3Plus; + static constexpr bool MODULATOR_DELAY = !IsOpl3Plus; + static constexpr uint8_t STATUS_TIMERA = 0x40; + static constexpr uint8_t STATUS_TIMERB = 0x20; + static constexpr uint8_t STATUS_BUSY = 0; + static constexpr uint8_t STATUS_IRQ = 0x80; + + // constructor + opl_registers_base(); + + // reset to initial state + void reset(); + + // save/restore + void save_restore(ymfm_saved_state &state); + + // map channel number to register offset + static constexpr uint32_t channel_offset(uint32_t chnum) + { + assert(chnum < CHANNELS); + if (!IsOpl3Plus) + return chnum; + else + return (chnum % 9) + 0x100 * (chnum / 9); + } + + // map operator number to register offset + static constexpr uint32_t operator_offset(uint32_t opnum) + { + assert(opnum < OPERATORS); + if (!IsOpl3Plus) + return opnum + 2 * (opnum / 6); + else + return (opnum % 18) + 2 * ((opnum % 18) / 6) + 0x100 * (opnum / 18); + } + + // return an array of operator indices for each channel + struct operator_mapping { uint32_t chan[CHANNELS]; }; + void operator_map(operator_mapping &dest) const; + + // OPL4 apparently can read back FM registers? + uint8_t read(uint16_t index) const { return m_regdata[index]; } + + // handle writes to the register array + bool write(uint16_t index, uint8_t data, uint32_t &chan, uint32_t &opmask); + + // clock the noise and LFO, if present, returning LFO PM value + int32_t clock_noise_and_lfo(); + + // reset the LFO + void reset_lfo() { m_lfo_am_counter = m_lfo_pm_counter = 0; } + + // return the AM offset from LFO for the given channel + // on OPL this is just a fixed value + uint32_t lfo_am_offset(uint32_t choffs) const { (void)choffs; return m_lfo_am; } + + // return LFO/noise states + uint32_t noise_state() const { return m_noise_lfsr >> 23; } + + // caching helpers + void cache_operator_data(uint32_t choffs, uint32_t opoffs, opdata_cache &cache); + + // compute the phase step, given a PM value + uint32_t compute_phase_step(uint32_t choffs, uint32_t opoffs, opdata_cache const &cache, int32_t lfo_raw_pm); + + // log a key-on event + std::string log_keyon(uint32_t choffs, uint32_t opoffs); + + // system-wide registers + uint32_t test() const { return byte(0x01, 0, 8); } + uint32_t waveform_enable() const { return IsOpl2 ? byte(0x01, 5, 1) : (IsOpl3Plus ? 1 : 0); } + uint32_t timer_a_value() const { return byte(0x02, 0, 8) * 4; } // 8->10 bits + uint32_t timer_b_value() const { return byte(0x03, 0, 8); } + uint32_t status_mask() const { return byte(0x04, 0, 8) & 0x78; } + uint32_t irq_reset() const { return byte(0x04, 7, 1); } + uint32_t reset_timer_b() const { return byte(0x04, 7, 1) | byte(0x04, 5, 1); } + uint32_t reset_timer_a() const { return byte(0x04, 7, 1) | byte(0x04, 6, 1); } + uint32_t enable_timer_b() const { return 1; } + uint32_t enable_timer_a() const { return 1; } + uint32_t load_timer_b() const { return byte(0x04, 1, 1); } + uint32_t load_timer_a() const { return byte(0x04, 0, 1); } + uint32_t csm() const { return IsOpl3Plus ? 0 : byte(0x08, 7, 1); } + uint32_t note_select() const { return byte(0x08, 6, 1); } + uint32_t lfo_am_depth() const { return byte(0xbd, 7, 1); } + uint32_t lfo_pm_depth() const { return byte(0xbd, 6, 1); } + uint32_t rhythm_enable() const { return byte(0xbd, 5, 1); } + uint32_t rhythm_keyon() const { return byte(0xbd, 4, 0); } + uint32_t newflag() const { return IsOpl3Plus ? byte(0x105, 0, 1) : 0; } + uint32_t new2flag() const { return IsOpl4Plus ? byte(0x105, 1, 1) : 0; } + uint32_t fourop_enable() const { return IsOpl3Plus ? byte(0x104, 0, 6) : 0; } + + // per-channel registers + uint32_t ch_block_freq(uint32_t choffs) const { return word(0xb0, 0, 5, 0xa0, 0, 8, choffs); } + uint32_t ch_feedback(uint32_t choffs) const { return byte(0xc0, 1, 3, choffs); } + uint32_t ch_algorithm(uint32_t choffs) const { return byte(0xc0, 0, 1, choffs) | (IsOpl3Plus ? (8 | (byte(0xc3, 0, 1, choffs) << 1)) : 0); } + uint32_t ch_output_any(uint32_t choffs) const { return newflag() ? byte(0xc0 + choffs, 4, 4) : 1; } + uint32_t ch_output_0(uint32_t choffs) const { return newflag() ? byte(0xc0 + choffs, 4, 1) : 1; } + uint32_t ch_output_1(uint32_t choffs) const { return newflag() ? byte(0xc0 + choffs, 5, 1) : (IsOpl3Plus ? 1 : 0); } + uint32_t ch_output_2(uint32_t choffs) const { return newflag() ? byte(0xc0 + choffs, 6, 1) : 0; } + uint32_t ch_output_3(uint32_t choffs) const { return newflag() ? byte(0xc0 + choffs, 7, 1) : 0; } + + // per-operator registers + uint32_t op_lfo_am_enable(uint32_t opoffs) const { return byte(0x20, 7, 1, opoffs); } + uint32_t op_lfo_pm_enable(uint32_t opoffs) const { return byte(0x20, 6, 1, opoffs); } + uint32_t op_eg_sustain(uint32_t opoffs) const { return byte(0x20, 5, 1, opoffs); } + uint32_t op_ksr(uint32_t opoffs) const { return byte(0x20, 4, 1, opoffs); } + uint32_t op_multiple(uint32_t opoffs) const { return byte(0x20, 0, 4, opoffs); } + uint32_t op_ksl(uint32_t opoffs) const { uint32_t temp = byte(0x40, 6, 2, opoffs); return bitfield(temp, 1) | (bitfield(temp, 0) << 1); } + uint32_t op_total_level(uint32_t opoffs) const { return byte(0x40, 0, 6, opoffs); } + uint32_t op_attack_rate(uint32_t opoffs) const { return byte(0x60, 4, 4, opoffs); } + uint32_t op_decay_rate(uint32_t opoffs) const { return byte(0x60, 0, 4, opoffs); } + uint32_t op_sustain_level(uint32_t opoffs) const { return byte(0x80, 4, 4, opoffs); } + uint32_t op_release_rate(uint32_t opoffs) const { return byte(0x80, 0, 4, opoffs); } + uint32_t op_waveform(uint32_t opoffs) const { return IsOpl2Plus ? byte(0xe0, 0, newflag() ? 3 : 2, opoffs) : 0; } + +protected: + // return a bitfield extracted from a byte + uint32_t byte(uint32_t offset, uint32_t start, uint32_t count, uint32_t extra_offset = 0) const + { + return bitfield(m_regdata[offset + extra_offset], start, count); + } + + // return a bitfield extracted from a pair of bytes, MSBs listed first + uint32_t word(uint32_t offset1, uint32_t start1, uint32_t count1, uint32_t offset2, uint32_t start2, uint32_t count2, uint32_t extra_offset = 0) const + { + return (byte(offset1, start1, count1, extra_offset) << count2) | byte(offset2, start2, count2, extra_offset); + } + + // helper to determine if the this channel is an active rhythm channel + bool is_rhythm(uint32_t choffs) const + { + return rhythm_enable() && (choffs >= 6 && choffs <= 8); + } + + // internal state + uint16_t m_lfo_am_counter; // LFO AM counter + uint16_t m_lfo_pm_counter; // LFO PM counter + uint32_t m_noise_lfsr; // noise LFSR state + uint8_t m_lfo_am; // current LFO AM value + uint8_t m_regdata[REGISTERS]; // register data + uint16_t m_waveform[WAVEFORMS][WAVEFORM_LENGTH]; // waveforms +}; + +using opl_registers = opl_registers_base<1>; +using opl2_registers = opl_registers_base<2>; +using opl3_registers = opl_registers_base<3>; +using opl4_registers = opl_registers_base<4>; + + + +// ======================> opll_registers + +// +// OPLL register map: +// +// System-wide registers: +// 0E --x----- Rhythm enable +// ---x---- Bass drum key on +// ----x--- Snare drum key on +// -----x-- Tom key on +// ------x- Top cymbal key on +// -------x High hat key on +// 0F xxxxxxxx Test register +// +// Per-channel registers (channel in address bits 0-3) +// 10-18 xxxxxxxx F-number (low 8 bits) +// 20-28 --x----- Sustain on +// ---x---- Key on +// --- xxx- Block (octvate, 0-7) +// -------x F-number (high bit) +// 30-38 xxxx---- Instrument selection +// ----xxxx Volume +// +// User instrument registers (for carrier, modulator operators) +// 00-01 x------- AM enable +// -x------ PM enable (VIB) +// --x----- EG type +// ---x---- Key scale rate +// ----xxxx Multiple value (0-15) +// 02 xx------ Key scale level (carrier, 0-3) +// --xxxxxx Total level (modulator, 0-63) +// 03 xx------ Key scale level (modulator, 0-3) +// ---x---- Rectified wave (carrier) +// ----x--- Rectified wave (modulator) +// -----xxx Feedback level for operator 1 (0-7) +// 04-05 xxxx---- Attack rate (0-15) +// ----xxxx Decay rate (0-15) +// 06-07 xxxx---- Sustain level (0-15) +// ----xxxx Release rate (0-15) +// +// Internal (fake) registers: +// 40-48 xxxxxxxx Current instrument base address +// 4E-5F xxxxxxxx Current instrument base address + operator slot (0/1) +// 70-FF xxxxxxxx Data for instruments (1-16 plus 3 drums) +// + +class opll_registers : public fm_registers_base +{ +public: + static constexpr uint32_t OUTPUTS = 2; + static constexpr uint32_t CHANNELS = 9; + static constexpr uint32_t ALL_CHANNELS = (1 << CHANNELS) - 1; + static constexpr uint32_t OPERATORS = CHANNELS * 2; + static constexpr uint32_t WAVEFORMS = 2; + static constexpr uint32_t REGISTERS = 0x40; + static constexpr uint32_t REG_MODE = 0x3f; + static constexpr uint32_t DEFAULT_PRESCALE = 4; + static constexpr uint32_t EG_CLOCK_DIVIDER = 1; + static constexpr uint32_t CSM_TRIGGER_MASK = 0; + static constexpr bool EG_HAS_DEPRESS = true; + static constexpr bool MODULATOR_DELAY = true; + static constexpr uint8_t STATUS_TIMERA = 0; + static constexpr uint8_t STATUS_TIMERB = 0; + static constexpr uint8_t STATUS_BUSY = 0; + static constexpr uint8_t STATUS_IRQ = 0; + + // OPLL-specific constants + static constexpr uint32_t INSTDATA_SIZE = 0x90; + + // constructor + opll_registers(); + + // reset to initial state + void reset(); + + // save/restore + void save_restore(ymfm_saved_state &state); + + // map channel number to register offset + static constexpr uint32_t channel_offset(uint32_t chnum) + { + assert(chnum < CHANNELS); + return chnum; + } + + // map operator number to register offset + static constexpr uint32_t operator_offset(uint32_t opnum) + { + assert(opnum < OPERATORS); + return opnum; + } + + // return an array of operator indices for each channel + struct operator_mapping { uint32_t chan[CHANNELS]; }; + void operator_map(operator_mapping &dest) const; + + // read a register value + uint8_t read(uint16_t index) const { return m_regdata[index]; } + + // handle writes to the register array + bool write(uint16_t index, uint8_t data, uint32_t &chan, uint32_t &opmask); + + // clock the noise and LFO, if present, returning LFO PM value + int32_t clock_noise_and_lfo(); + + // reset the LFO + void reset_lfo() { m_lfo_am_counter = m_lfo_pm_counter = 0; } + + // return the AM offset from LFO for the given channel + // on OPL this is just a fixed value + uint32_t lfo_am_offset(uint32_t choffs) const { (void)choffs; return m_lfo_am; } + + // return LFO/noise states + uint32_t noise_state() const { return m_noise_lfsr >> 23; } + + // caching helpers + void cache_operator_data(uint32_t choffs, uint32_t opoffs, opdata_cache &cache); + + // compute the phase step, given a PM value + uint32_t compute_phase_step(uint32_t choffs, uint32_t opoffs, opdata_cache const &cache, int32_t lfo_raw_pm); + + // log a key-on event + std::string log_keyon(uint32_t choffs, uint32_t opoffs); + + // set the instrument data + void set_instrument_data(uint8_t const *data) + { + std::copy_n(data, INSTDATA_SIZE, &m_instdata[0]); + } + + // system-wide registers + uint32_t rhythm_enable() const { return byte(0x0e, 5, 1); } + uint32_t rhythm_keyon() const { return byte(0x0e, 4, 0); } + uint32_t test() const { return byte(0x0f, 0, 8); } + uint32_t waveform_enable() const { return 1; } + uint32_t timer_a_value() const { return 0; } + uint32_t timer_b_value() const { return 0; } + uint32_t status_mask() const { return 0; } + uint32_t irq_reset() const { return 0; } + uint32_t reset_timer_b() const { return 0; } + uint32_t reset_timer_a() const { return 0; } + uint32_t enable_timer_b() const { return 0; } + uint32_t enable_timer_a() const { return 0; } + uint32_t load_timer_b() const { return 0; } + uint32_t load_timer_a() const { return 0; } + uint32_t csm() const { return 0; } + + // per-channel registers + uint32_t ch_block_freq(uint32_t choffs) const { return word(0x20, 0, 4, 0x10, 0, 8, choffs); } + uint32_t ch_sustain(uint32_t choffs) const { return byte(0x20, 5, 1, choffs); } + uint32_t ch_total_level(uint32_t choffs) const { return instchbyte(0x02, 0, 6, choffs); } + uint32_t ch_feedback(uint32_t choffs) const { return instchbyte(0x03, 0, 3, choffs); } + uint32_t ch_algorithm(uint32_t choffs) const { (void)choffs; return 0; } + uint32_t ch_instrument(uint32_t choffs) const { return byte(0x30, 4, 4, choffs); } + uint32_t ch_output_any(uint32_t choffs) const { (void)choffs; return 1; } + uint32_t ch_output_0(uint32_t choffs) const { return !is_rhythm(choffs); } + uint32_t ch_output_1(uint32_t choffs) const { return is_rhythm(choffs); } + uint32_t ch_output_2(uint32_t choffs) const { (void)choffs; return 0; } + uint32_t ch_output_3(uint32_t choffs) const { (void)choffs; return 0; } + + // per-operator registers + uint32_t op_lfo_am_enable(uint32_t opoffs) const { return instopbyte(0x00, 7, 1, opoffs); } + uint32_t op_lfo_pm_enable(uint32_t opoffs) const { return instopbyte(0x00, 6, 1, opoffs); } + uint32_t op_eg_sustain(uint32_t opoffs) const { return instopbyte(0x00, 5, 1, opoffs); } + uint32_t op_ksr(uint32_t opoffs) const { return instopbyte(0x00, 4, 1, opoffs); } + uint32_t op_multiple(uint32_t opoffs) const { return instopbyte(0x00, 0, 4, opoffs); } + uint32_t op_ksl(uint32_t opoffs) const { return instopbyte(0x02, 6, 2, opoffs); } + uint32_t op_waveform(uint32_t opoffs) const { return instchbyte(0x03, 3 + bitfield(opoffs, 0), 1, opoffs >> 1); } + uint32_t op_attack_rate(uint32_t opoffs) const { return instopbyte(0x04, 4, 4, opoffs); } + uint32_t op_decay_rate(uint32_t opoffs) const { return instopbyte(0x04, 0, 4, opoffs); } + uint32_t op_sustain_level(uint32_t opoffs) const { return instopbyte(0x06, 4, 4, opoffs); } + uint32_t op_release_rate(uint32_t opoffs) const { return instopbyte(0x06, 0, 4, opoffs); } + uint32_t op_volume(uint32_t opoffs) const { return byte(0x30, 4 * bitfield(~opoffs, 0), 4, opoffs >> 1); } + +private: + // return a bitfield extracted from a byte + uint32_t byte(uint32_t offset, uint32_t start, uint32_t count, uint32_t extra_offset = 0) const + { + return bitfield(m_regdata[offset + extra_offset], start, count); + } + + // return a bitfield extracted from a pair of bytes, MSBs listed first + uint32_t word(uint32_t offset1, uint32_t start1, uint32_t count1, uint32_t offset2, uint32_t start2, uint32_t count2, uint32_t extra_offset = 0) const + { + return (byte(offset1, start1, count1, extra_offset) << count2) | byte(offset2, start2, count2, extra_offset); + } + + // helpers to read from instrument channel/operator data + uint32_t instchbyte(uint32_t offset, uint32_t start, uint32_t count, uint32_t choffs) const { return bitfield(m_chinst[choffs][offset], start, count); } + uint32_t instopbyte(uint32_t offset, uint32_t start, uint32_t count, uint32_t opoffs) const { return bitfield(m_opinst[opoffs][offset], start, count); } + + // helper to determine if the this channel is an active rhythm channel + bool is_rhythm(uint32_t choffs) const + { + return rhythm_enable() && choffs >= 6; + } + + // internal state + uint16_t m_lfo_am_counter; // LFO AM counter + uint16_t m_lfo_pm_counter; // LFO PM counter + uint32_t m_noise_lfsr; // noise LFSR state + uint8_t m_lfo_am; // current LFO AM value + uint8_t const *m_chinst[CHANNELS]; // pointer to instrument data for each channel + uint8_t const *m_opinst[OPERATORS]; // pointer to instrument data for each operator + uint8_t m_regdata[REGISTERS]; // register data + uint8_t m_instdata[INSTDATA_SIZE]; // instrument data + uint16_t m_waveform[WAVEFORMS][WAVEFORM_LENGTH]; // waveforms +}; + + + +//********************************************************* +// OPL IMPLEMENTATION CLASSES +//********************************************************* + +// ======================> ym3526 + +class ym3526 +{ +public: + using fm_engine = fm_engine_base<opl_registers>; + using output_data = fm_engine::output_data; + static constexpr uint32_t OUTPUTS = fm_engine::OUTPUTS; + + // constructor + ym3526(ymfm_interface &intf); + + // reset + void reset(); + + // save/restore + void save_restore(ymfm_saved_state &state); + + // pass-through helpers + uint32_t sample_rate(uint32_t input_clock) const { return m_fm.sample_rate(input_clock); } + void invalidate_caches() { m_fm.invalidate_caches(); } + + // read access + uint8_t read_status(); + uint8_t read(uint32_t offset); + + // write access + void write_address(uint8_t data); + void write_data(uint8_t data); + void write(uint32_t offset, uint8_t data); + + // generate samples of sound + void generate(output_data *output, uint32_t numsamples = 1); +protected: + // internal state + uint8_t m_address; // address register + fm_engine m_fm; // core FM engine +}; + + +// ======================> y8950 + +class y8950 +{ +public: + using fm_engine = fm_engine_base<opl_registers>; + using output_data = fm_engine::output_data; + static constexpr uint32_t OUTPUTS = fm_engine::OUTPUTS; + + static constexpr uint8_t STATUS_ADPCM_B_PLAYING = 0x01; + static constexpr uint8_t STATUS_ADPCM_B_BRDY = 0x08; + static constexpr uint8_t STATUS_ADPCM_B_EOS = 0x10; + static constexpr uint8_t ALL_IRQS = STATUS_ADPCM_B_BRDY | STATUS_ADPCM_B_EOS | fm_engine::STATUS_TIMERA | fm_engine::STATUS_TIMERB; + + // constructor + y8950(ymfm_interface &intf); + + // reset + void reset(); + + // save/restore + void save_restore(ymfm_saved_state &state); + + // pass-through helpers + uint32_t sample_rate(uint32_t input_clock) const { return m_fm.sample_rate(input_clock); } + void invalidate_caches() { m_fm.invalidate_caches(); } + + // read access + uint8_t read_status(); + uint8_t read_data(); + uint8_t read(uint32_t offset); + + // write access + void write_address(uint8_t data); + void write_data(uint8_t data); + void write(uint32_t offset, uint8_t data); + + // generate samples of sound + void generate(output_data *output, uint32_t numsamples = 1); + +protected: + // internal state + uint8_t m_address; // address register + uint8_t m_io_ddr; // data direction register for I/O + fm_engine m_fm; // core FM engine + adpcm_b_engine m_adpcm_b; // ADPCM-B engine +}; + + + +//********************************************************* +// OPL2 IMPLEMENTATION CLASSES +//********************************************************* + +// ======================> ym3812 + +class ym3812 +{ +public: + using fm_engine = fm_engine_base<opl2_registers>; + using output_data = fm_engine::output_data; + static constexpr uint32_t OUTPUTS = fm_engine::OUTPUTS; + + // constructor + ym3812(ymfm_interface &intf); + + // reset + void reset(); + + // save/restore + void save_restore(ymfm_saved_state &state); + + // pass-through helpers + uint32_t sample_rate(uint32_t input_clock) const { return m_fm.sample_rate(input_clock); } + void invalidate_caches() { m_fm.invalidate_caches(); } + + // read access + uint8_t read_status(); + uint8_t read(uint32_t offset); + + // write access + void write_address(uint8_t data); + void write_data(uint8_t data); + void write(uint32_t offset, uint8_t data); + + // generate samples of sound + void generate(output_data *output, uint32_t numsamples = 1); + +protected: + // internal state + uint8_t m_address; // address register + fm_engine m_fm; // core FM engine +}; + + + +//********************************************************* +// OPL3 IMPLEMENTATION CLASSES +//********************************************************* + +// ======================> ymf262 + +class ymf262 +{ +public: + using fm_engine = fm_engine_base<opl3_registers>; + using output_data = fm_engine::output_data; + static constexpr uint32_t OUTPUTS = fm_engine::OUTPUTS; + + // constructor + ymf262(ymfm_interface &intf); + + // reset + void reset(); + + // save/restore + void save_restore(ymfm_saved_state &state); + + // pass-through helpers + uint32_t sample_rate(uint32_t input_clock) const { return m_fm.sample_rate(input_clock); } + void invalidate_caches() { m_fm.invalidate_caches(); } + + // read access + uint8_t read_status(); + uint8_t read(uint32_t offset); + + // write access + void write_address(uint8_t data); + void write_data(uint8_t data); + void write_address_hi(uint8_t data); + void write(uint32_t offset, uint8_t data); + + // generate samples of sound + void generate(output_data *output, uint32_t numsamples = 1); + +protected: + // internal state + uint16_t m_address; // address register + fm_engine m_fm; // core FM engine +}; + + +// ======================> ymf289b + +class ymf289b +{ + static constexpr uint8_t STATUS_BUSY_FLAGS = 0x05; + +public: + using fm_engine = fm_engine_base<opl3_registers>; + using output_data = fm_engine::output_data; + static constexpr uint32_t OUTPUTS = 2; + + // constructor + ymf289b(ymfm_interface &intf); + + // reset + void reset(); + + // save/restore + void save_restore(ymfm_saved_state &state); + + // pass-through helpers + uint32_t sample_rate(uint32_t input_clock) const { return m_fm.sample_rate(input_clock); } + void invalidate_caches() { m_fm.invalidate_caches(); } + + // read access + uint8_t read_status(); + uint8_t read_data(); + uint8_t read(uint32_t offset); + + // write access + void write_address(uint8_t data); + void write_data(uint8_t data); + void write_address_hi(uint8_t data); + void write(uint32_t offset, uint8_t data); + + // generate samples of sound + void generate(output_data *output, uint32_t numsamples = 1); + +protected: + // internal helpers + bool ymf289b_mode() { return ((m_fm.regs().read(0x105) & 0x04) != 0); } + + // internal state + uint16_t m_address; // address register + fm_engine m_fm; // core FM engine +}; + + + +//********************************************************* +// OPL4 IMPLEMENTATION CLASSES +//********************************************************* + +// ======================> ymf278b + +class ymf278b +{ + // Using the nominal datasheet frequency of 33.868MHz, the output of the + // chip will be clock/768 = 44.1kHz. However, the FM engine is clocked + // internally at clock/(19*36), or 49.515kHz, so the FM output needs to + // be downsampled. We treat this as needing to clock the FM engine an + // extra tick every few samples. The exact ratio is 768/(19*36) or + // 768/684 = 192/171. So if we always clock the FM once, we'll have + // 192/171 - 1 = 21/171 left. Thus we count 21 for each sample and when + // it gets above 171, we tick an extra time. + static constexpr uint32_t FM_EXTRA_SAMPLE_THRESH = 171; + static constexpr uint32_t FM_EXTRA_SAMPLE_STEP = 192 - FM_EXTRA_SAMPLE_THRESH; + +public: + using fm_engine = fm_engine_base<opl4_registers>; + static constexpr uint32_t OUTPUTS = 6; + using output_data = ymfm_output<OUTPUTS>; + + static constexpr uint8_t STATUS_BUSY = 0x01; + static constexpr uint8_t STATUS_LD = 0x02; + + // constructor + ymf278b(ymfm_interface &intf); + + // reset + void reset(); + + // save/restore + void save_restore(ymfm_saved_state &state); + + // pass-through helpers + uint32_t sample_rate(uint32_t input_clock) const { return input_clock / 768; } + void invalidate_caches() { m_fm.invalidate_caches(); } + + // read access + uint8_t read_status(); + uint8_t read_data_pcm(); + uint8_t read(uint32_t offset); + + // write access + void write_address(uint8_t data); + void write_data(uint8_t data); + void write_address_hi(uint8_t data); + void write_address_pcm(uint8_t data); + void write_data_pcm(uint8_t data); + void write(uint32_t offset, uint8_t data); + + // generate samples of sound + void generate(output_data *output, uint32_t numsamples = 1); + +protected: + // internal state + uint16_t m_address; // address register + uint32_t m_fm_pos; // FM resampling position + uint32_t m_load_remaining; // how many more samples until LD flag clears + bool m_next_status_id; // flag to track which status ID to return + fm_engine m_fm; // core FM engine + pcm_engine m_pcm; // core PCM engine +}; + + + +//********************************************************* +// OPLL IMPLEMENTATION CLASSES +//********************************************************* + +// ======================> opll_base + +class opll_base +{ +public: + using fm_engine = fm_engine_base<opll_registers>; + using output_data = fm_engine::output_data; + static constexpr uint32_t OUTPUTS = fm_engine::OUTPUTS; + + // constructor + opll_base(ymfm_interface &intf, uint8_t const *data); + + // configuration + void set_instrument_data(uint8_t const *data) { m_fm.regs().set_instrument_data(data); } + + // reset + void reset(); + + // save/restore + void save_restore(ymfm_saved_state &state); + + // pass-through helpers + uint32_t sample_rate(uint32_t input_clock) const { return m_fm.sample_rate(input_clock); } + void invalidate_caches() { m_fm.invalidate_caches(); } + + // read access -- doesn't really have any, but provide these for consistency + uint8_t read_status() { return 0x00; } + uint8_t read(uint32_t offset) { (void)offset; return 0x00; } + + // write access + void write_address(uint8_t data); + void write_data(uint8_t data); + void write(uint32_t offset, uint8_t data); + + // generate samples of sound + void generate(output_data *output, uint32_t numsamples = 1); + +protected: + // internal state + uint8_t m_address; // address register + fm_engine m_fm; // core FM engine +}; + + +// ======================> ym2413 + +class ym2413 : public opll_base +{ +public: + // constructor + ym2413(ymfm_interface &intf, uint8_t const *instrument_data = nullptr); + +private: + // internal state + static uint8_t const s_default_instruments[]; +}; + + +// ======================> ym2413 + +class ym2423 : public opll_base +{ +public: + // constructor + ym2423(ymfm_interface &intf, uint8_t const *instrument_data = nullptr); + +private: + // internal state + static uint8_t const s_default_instruments[]; +}; + + +// ======================> ymf281 + +class ymf281 : public opll_base +{ +public: + // constructor + ymf281(ymfm_interface &intf, uint8_t const *instrument_data = nullptr); + +private: + // internal state + static uint8_t const s_default_instruments[]; +}; + + +// ======================> ds1001 + +class ds1001 : public opll_base +{ +public: + // constructor + ds1001(ymfm_interface &intf, uint8_t const *instrument_data = nullptr); + +private: + // internal state + static uint8_t const s_default_instruments[]; +}; + +} + +#endif // YMFM_OPL_H |