summaryrefslogtreecommitdiff
path: root/src/sms/OOURA.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/sms/OOURA.c')
-rw-r--r--src/sms/OOURA.c638
1 files changed, 638 insertions, 0 deletions
diff --git a/src/sms/OOURA.c b/src/sms/OOURA.c
new file mode 100644
index 0000000..d88d20d
--- /dev/null
+++ b/src/sms/OOURA.c
@@ -0,0 +1,638 @@
+/* -_-_-_-_-_-_-_-_-_-_-_-_-_-_- Ooura Real DFT -_-_-_-_-_-_-_-_-_-_-_-_-_-_ */
+/* Copyright notice:
+ This code comes from the "General Purpose FFT Package" that I obtained at
+ the following website http://www.kurims.kyoto-u.ac.jp/~ooura/fft.html
+ It is exactly copied from the file fft4g.c, but I have changed the doubles to sfloats.
+ Here is the copyright notice included in the package:
+
+ Copyright(C) 1996-2001 Takuya OOURA
+ email: ooura@mmm.t.u-tokyo.ac.jp
+ download: http://momonga.t.u-tokyo.ac.jp/~ooura/fft.html
+ You may use, copy, modify this code for any purpose and
+ without fee. You may distribute this ORIGINAL package.
+
+ The following is documentation of the algorithm included with the source code:
+
+ -------- Real DFT / Inverse of Real DFT --------
+ [definition]
+ <case1> RDFT
+ R[k] = sum_j=0^n-1 a[j]*cos(2*pi*j*k/n), 0<=k<=n/2
+ I[k] = sum_j=0^n-1 a[j]*sin(2*pi*j*k/n), 0<k<n/2
+ <case2> IRDFT (excluding scale)
+ a[k] = (R[0] + R[n/2]*cos(pi*k))/2 +
+ sum_j=1^n/2-1 R[j]*cos(2*pi*j*k/n) +
+ sum_j=1^n/2-1 I[j]*sin(2*pi*j*k/n), 0<=k<n
+ [usage]
+ <case1>
+ ip[0] = 0; // first time only
+ rdft(n, 1, a, ip, w);
+ <case2>
+ ip[0] = 0; // first time only
+ rdft(n, -1, a, ip, w);
+ [parameters]
+ n :data length (int)
+ n >= 2, n = power of 2
+ a[0...n-1] :input/output data (sfloat *)
+ <case1>
+ output data
+ a[2*k] = R[k], 0<=k<n/2
+ a[2*k+1] = I[k], 0<k<n/2
+ a[1] = R[n/2]
+ <case2>
+ input data
+ a[2*j] = R[j], 0<=j<n/2
+ a[2*j+1] = I[j], 0<j<n/2
+ a[1] = R[n/2]
+ ip[0...*] :work area for bit reversal (int *)
+ length of ip >= 2+sqrt(n/2)
+ strictly,
+ length of ip >=
+ 2+(1<<(int)(log(n/2+0.5)/log(2))/2).
+ ip[0],ip[1] are pointers of the cos/sin table.
+ w[0...n/2-1] :cos/sin table (sfloat *)
+ w[],ip[] are initialized if ip[0] == 0.
+ [remark]
+ Inverse of
+ rdft(n, 1, a, ip, w);
+ is
+ rdft(n, -1, a, ip, w);
+ for (j = 0; j <= n - 1; j++) {
+ a[j] *= 2.0 / n;
+ }
+ .
+*/
+
+#include "OOURA.h"
+#include "math.h" /*! \todo (optimize) replace math.h trig functions (table lookup?) */
+
+/* ! \brief OOURA Real / Inverse DFT algoriithm
+ *
+ * The source code contains documentation from
+ * the original author.
+ */
+void rdft(int n, int isgn, sfloat *a, int *ip, sfloat *w)
+{
+ int nw, nc;
+ sfloat xi;
+
+ nw = ip[0];
+ if (n > (nw << 2)) {
+ nw = n >> 2;
+ makewt(nw, ip, w);
+ }
+ nc = ip[1];
+ if (n > (nc << 2)) {
+ nc = n >> 2;
+ makect(nc, ip, w + nw);
+ }
+ if (isgn >= 0) {
+ if (n > 4) {
+ bitrv2(n, ip + 2, a);
+ cftfsub(n, a, w);
+ rftfsub(n, a, nc, w + nw);
+ } else if (n == 4) {
+ cftfsub(n, a, w);
+ }
+ xi = a[0] - a[1];
+ a[0] += a[1];
+ a[1] = xi;
+ } else {
+ a[1] = 0.5 * (a[0] - a[1]);
+ a[0] -= a[1];
+ if (n > 4) {
+ rftbsub(n, a, nc, w + nw);
+ bitrv2(n, ip + 2, a);
+ cftbsub(n, a, w);
+ } else if (n == 4) {
+ cftfsub(n, a, w);
+ }
+ }
+}
+
+
+void makewt(int nw, int *ip, sfloat *w)
+{
+ int j, nwh;
+ sfloat delta, x, y;
+
+ ip[0] = nw;
+ ip[1] = 1;
+ if (nw > 2) {
+ nwh = nw >> 1;
+ delta = atan(1.0) / nwh;
+ w[0] = 1;
+ w[1] = 0;
+ w[nwh] = cos(delta * nwh);
+ w[nwh + 1] = w[nwh];
+ if (nwh > 2) {
+ for (j = 2; j < nwh; j += 2) {
+ x = cos(delta * j);
+ y = sin(delta * j);
+ w[j] = x;
+ w[j + 1] = y;
+ w[nw - j] = y;
+ w[nw - j + 1] = x;
+ }
+ bitrv2(nw, ip + 2, w);
+ }
+ }
+}
+
+void makect(int nc, int *ip, sfloat *c)
+{
+ int j, nch;
+ sfloat delta;
+
+ ip[1] = nc;
+ if (nc > 1) {
+ nch = nc >> 1;
+ delta = atan(1.0) / nch;
+ c[0] = cos(delta * nch);
+ c[nch] = 0.5 * c[0];
+ for (j = 1; j < nch; j++) {
+ c[j] = 0.5 * cos(delta * j);
+ c[nc - j] = 0.5 * sin(delta * j);
+ }
+ }
+}
+
+void bitrv2(int n, int *ip, sfloat *a)
+{
+ int j, j1, k, k1, l, m, m2;
+ sfloat xr, xi, yr, yi;
+
+ ip[0] = 0;
+ l = n;
+ m = 1;
+ while ((m << 3) < l) {
+ l >>= 1;
+ for (j = 0; j < m; j++) {
+ ip[m + j] = ip[j] + l;
+ }
+ m <<= 1;
+ }
+ m2 = 2 * m;
+ if ((m << 3) == l) {
+ for (k = 0; k < m; k++) {
+ for (j = 0; j < k; j++) {
+ j1 = 2 * j + ip[k];
+ k1 = 2 * k + ip[j];
+ xr = a[j1];
+ xi = a[j1 + 1];
+ yr = a[k1];
+ yi = a[k1 + 1];
+ a[j1] = yr;
+ a[j1 + 1] = yi;
+ a[k1] = xr;
+ a[k1 + 1] = xi;
+ j1 += m2;
+ k1 += 2 * m2;
+ xr = a[j1];
+ xi = a[j1 + 1];
+ yr = a[k1];
+ yi = a[k1 + 1];
+ a[j1] = yr;
+ a[j1 + 1] = yi;
+ a[k1] = xr;
+ a[k1 + 1] = xi;
+ j1 += m2;
+ k1 -= m2;
+ xr = a[j1];
+ xi = a[j1 + 1];
+ yr = a[k1];
+ yi = a[k1 + 1];
+ a[j1] = yr;
+ a[j1 + 1] = yi;
+ a[k1] = xr;
+ a[k1 + 1] = xi;
+ j1 += m2;
+ k1 += 2 * m2;
+ xr = a[j1];
+ xi = a[j1 + 1];
+ yr = a[k1];
+ yi = a[k1 + 1];
+ a[j1] = yr;
+ a[j1 + 1] = yi;
+ a[k1] = xr;
+ a[k1 + 1] = xi;
+ }
+ j1 = 2 * k + m2 + ip[k];
+ k1 = j1 + m2;
+ xr = a[j1];
+ xi = a[j1 + 1];
+ yr = a[k1];
+ yi = a[k1 + 1];
+ a[j1] = yr;
+ a[j1 + 1] = yi;
+ a[k1] = xr;
+ a[k1 + 1] = xi;
+ }
+ } else {
+ for (k = 1; k < m; k++) {
+ for (j = 0; j < k; j++) {
+ j1 = 2 * j + ip[k];
+ k1 = 2 * k + ip[j];
+ xr = a[j1];
+ xi = a[j1 + 1];
+ yr = a[k1];
+ yi = a[k1 + 1];
+ a[j1] = yr;
+ a[j1 + 1] = yi;
+ a[k1] = xr;
+ a[k1 + 1] = xi;
+ j1 += m2;
+ k1 += m2;
+ xr = a[j1];
+ xi = a[j1 + 1];
+ yr = a[k1];
+ yi = a[k1 + 1];
+ a[j1] = yr;
+ a[j1 + 1] = yi;
+ a[k1] = xr;
+ a[k1 + 1] = xi;
+ }
+ }
+ }
+}
+
+void cftfsub(int n, sfloat *a, sfloat *w)
+{
+ int j, j1, j2, j3, l;
+ sfloat x0r, x0i, x1r, x1i, x2r, x2i, x3r, x3i;
+
+ l = 2;
+ if (n > 8) {
+ cft1st(n, a, w);
+ l = 8;
+ while ((l << 2) < n) {
+ cftmdl(n, l, a, w);
+ l <<= 2;
+ }
+ }
+ if ((l << 2) == n) {
+ for (j = 0; j < l; j += 2) {
+ j1 = j + l;
+ j2 = j1 + l;
+ j3 = j2 + l;
+ x0r = a[j] + a[j1];
+ x0i = a[j + 1] + a[j1 + 1];
+ x1r = a[j] - a[j1];
+ x1i = a[j + 1] - a[j1 + 1];
+ x2r = a[j2] + a[j3];
+ x2i = a[j2 + 1] + a[j3 + 1];
+ x3r = a[j2] - a[j3];
+ x3i = a[j2 + 1] - a[j3 + 1];
+ a[j] = x0r + x2r;
+ a[j + 1] = x0i + x2i;
+ a[j2] = x0r - x2r;
+ a[j2 + 1] = x0i - x2i;
+ a[j1] = x1r - x3i;
+ a[j1 + 1] = x1i + x3r;
+ a[j3] = x1r + x3i;
+ a[j3 + 1] = x1i - x3r;
+ }
+ } else {
+ for (j = 0; j < l; j += 2) {
+ j1 = j + l;
+ x0r = a[j] - a[j1];
+ x0i = a[j + 1] - a[j1 + 1];
+ a[j] += a[j1];
+ a[j + 1] += a[j1 + 1];
+ a[j1] = x0r;
+ a[j1 + 1] = x0i;
+ }
+ }
+}
+
+
+void cftbsub(int n, sfloat *a, sfloat *w)
+{
+ int j, j1, j2, j3, l;
+ sfloat x0r, x0i, x1r, x1i, x2r, x2i, x3r, x3i;
+
+ l = 2;
+ if (n > 8) {
+ cft1st(n, a, w);
+ l = 8;
+ while ((l << 2) < n) {
+ cftmdl(n, l, a, w);
+ l <<= 2;
+ }
+ }
+ if ((l << 2) == n) {
+ for (j = 0; j < l; j += 2) {
+ j1 = j + l;
+ j2 = j1 + l;
+ j3 = j2 + l;
+ x0r = a[j] + a[j1];
+ x0i = -a[j + 1] - a[j1 + 1];
+ x1r = a[j] - a[j1];
+ x1i = -a[j + 1] + a[j1 + 1];
+ x2r = a[j2] + a[j3];
+ x2i = a[j2 + 1] + a[j3 + 1];
+ x3r = a[j2] - a[j3];
+ x3i = a[j2 + 1] - a[j3 + 1];
+ a[j] = x0r + x2r;
+ a[j + 1] = x0i - x2i;
+ a[j2] = x0r - x2r;
+ a[j2 + 1] = x0i + x2i;
+ a[j1] = x1r - x3i;
+ a[j1 + 1] = x1i - x3r;
+ a[j3] = x1r + x3i;
+ a[j3 + 1] = x1i + x3r;
+ }
+ } else {
+ for (j = 0; j < l; j += 2) {
+ j1 = j + l;
+ x0r = a[j] - a[j1];
+ x0i = -a[j + 1] + a[j1 + 1];
+ a[j] += a[j1];
+ a[j + 1] = -a[j + 1] - a[j1 + 1];
+ a[j1] = x0r;
+ a[j1 + 1] = x0i;
+ }
+ }
+}
+
+
+void cft1st(int n, sfloat *a, sfloat *w)
+{
+ int j, k1, k2;
+ sfloat wk1r, wk1i, wk2r, wk2i, wk3r, wk3i;
+ sfloat x0r, x0i, x1r, x1i, x2r, x2i, x3r, x3i;
+
+ x0r = a[0] + a[2];
+ x0i = a[1] + a[3];
+ x1r = a[0] - a[2];
+ x1i = a[1] - a[3];
+ x2r = a[4] + a[6];
+ x2i = a[5] + a[7];
+ x3r = a[4] - a[6];
+ x3i = a[5] - a[7];
+ a[0] = x0r + x2r;
+ a[1] = x0i + x2i;
+ a[4] = x0r - x2r;
+ a[5] = x0i - x2i;
+ a[2] = x1r - x3i;
+ a[3] = x1i + x3r;
+ a[6] = x1r + x3i;
+ a[7] = x1i - x3r;
+ wk1r = w[2];
+ x0r = a[8] + a[10];
+ x0i = a[9] + a[11];
+ x1r = a[8] - a[10];
+ x1i = a[9] - a[11];
+ x2r = a[12] + a[14];
+ x2i = a[13] + a[15];
+ x3r = a[12] - a[14];
+ x3i = a[13] - a[15];
+ a[8] = x0r + x2r;
+ a[9] = x0i + x2i;
+ a[12] = x2i - x0i;
+ a[13] = x0r - x2r;
+ x0r = x1r - x3i;
+ x0i = x1i + x3r;
+ a[10] = wk1r * (x0r - x0i);
+ a[11] = wk1r * (x0r + x0i);
+ x0r = x3i + x1r;
+ x0i = x3r - x1i;
+ a[14] = wk1r * (x0i - x0r);
+ a[15] = wk1r * (x0i + x0r);
+ k1 = 0;
+ for (j = 16; j < n; j += 16) {
+ k1 += 2;
+ k2 = 2 * k1;
+ wk2r = w[k1];
+ wk2i = w[k1 + 1];
+ wk1r = w[k2];
+ wk1i = w[k2 + 1];
+ wk3r = wk1r - 2 * wk2i * wk1i;
+ wk3i = 2 * wk2i * wk1r - wk1i;
+ x0r = a[j] + a[j + 2];
+ x0i = a[j + 1] + a[j + 3];
+ x1r = a[j] - a[j + 2];
+ x1i = a[j + 1] - a[j + 3];
+ x2r = a[j + 4] + a[j + 6];
+ x2i = a[j + 5] + a[j + 7];
+ x3r = a[j + 4] - a[j + 6];
+ x3i = a[j + 5] - a[j + 7];
+ a[j] = x0r + x2r;
+ a[j + 1] = x0i + x2i;
+ x0r -= x2r;
+ x0i -= x2i;
+ a[j + 4] = wk2r * x0r - wk2i * x0i;
+ a[j + 5] = wk2r * x0i + wk2i * x0r;
+ x0r = x1r - x3i;
+ x0i = x1i + x3r;
+ a[j + 2] = wk1r * x0r - wk1i * x0i;
+ a[j + 3] = wk1r * x0i + wk1i * x0r;
+ x0r = x1r + x3i;
+ x0i = x1i - x3r;
+ a[j + 6] = wk3r * x0r - wk3i * x0i;
+ a[j + 7] = wk3r * x0i + wk3i * x0r;
+ wk1r = w[k2 + 2];
+ wk1i = w[k2 + 3];
+ wk3r = wk1r - 2 * wk2r * wk1i;
+ wk3i = 2 * wk2r * wk1r - wk1i;
+ x0r = a[j + 8] + a[j + 10];
+ x0i = a[j + 9] + a[j + 11];
+ x1r = a[j + 8] - a[j + 10];
+ x1i = a[j + 9] - a[j + 11];
+ x2r = a[j + 12] + a[j + 14];
+ x2i = a[j + 13] + a[j + 15];
+ x3r = a[j + 12] - a[j + 14];
+ x3i = a[j + 13] - a[j + 15];
+ a[j + 8] = x0r + x2r;
+ a[j + 9] = x0i + x2i;
+ x0r -= x2r;
+ x0i -= x2i;
+ a[j + 12] = -wk2i * x0r - wk2r * x0i;
+ a[j + 13] = -wk2i * x0i + wk2r * x0r;
+ x0r = x1r - x3i;
+ x0i = x1i + x3r;
+ a[j + 10] = wk1r * x0r - wk1i * x0i;
+ a[j + 11] = wk1r * x0i + wk1i * x0r;
+ x0r = x1r + x3i;
+ x0i = x1i - x3r;
+ a[j + 14] = wk3r * x0r - wk3i * x0i;
+ a[j + 15] = wk3r * x0i + wk3i * x0r;
+ }
+}
+
+
+void cftmdl(int n, int l, sfloat *a, sfloat *w)
+{
+ int j, j1, j2, j3, k, k1, k2, m, m2;
+ sfloat wk1r, wk1i, wk2r, wk2i, wk3r, wk3i;
+ sfloat x0r, x0i, x1r, x1i, x2r, x2i, x3r, x3i;
+
+ m = l << 2;
+ for (j = 0; j < l; j += 2) {
+ j1 = j + l;
+ j2 = j1 + l;
+ j3 = j2 + l;
+ x0r = a[j] + a[j1];
+ x0i = a[j + 1] + a[j1 + 1];
+ x1r = a[j] - a[j1];
+ x1i = a[j + 1] - a[j1 + 1];
+ x2r = a[j2] + a[j3];
+ x2i = a[j2 + 1] + a[j3 + 1];
+ x3r = a[j2] - a[j3];
+ x3i = a[j2 + 1] - a[j3 + 1];
+ a[j] = x0r + x2r;
+ a[j + 1] = x0i + x2i;
+ a[j2] = x0r - x2r;
+ a[j2 + 1] = x0i - x2i;
+ a[j1] = x1r - x3i;
+ a[j1 + 1] = x1i + x3r;
+ a[j3] = x1r + x3i;
+ a[j3 + 1] = x1i - x3r;
+ }
+ wk1r = w[2];
+ for (j = m; j < l + m; j += 2) {
+ j1 = j + l;
+ j2 = j1 + l;
+ j3 = j2 + l;
+ x0r = a[j] + a[j1];
+ x0i = a[j + 1] + a[j1 + 1];
+ x1r = a[j] - a[j1];
+ x1i = a[j + 1] - a[j1 + 1];
+ x2r = a[j2] + a[j3];
+ x2i = a[j2 + 1] + a[j3 + 1];
+ x3r = a[j2] - a[j3];
+ x3i = a[j2 + 1] - a[j3 + 1];
+ a[j] = x0r + x2r;
+ a[j + 1] = x0i + x2i;
+ a[j2] = x2i - x0i;
+ a[j2 + 1] = x0r - x2r;
+ x0r = x1r - x3i;
+ x0i = x1i + x3r;
+ a[j1] = wk1r * (x0r - x0i);
+ a[j1 + 1] = wk1r * (x0r + x0i);
+ x0r = x3i + x1r;
+ x0i = x3r - x1i;
+ a[j3] = wk1r * (x0i - x0r);
+ a[j3 + 1] = wk1r * (x0i + x0r);
+ }
+ k1 = 0;
+ m2 = 2 * m;
+ for (k = m2; k < n; k += m2) {
+ k1 += 2;
+ k2 = 2 * k1;
+ wk2r = w[k1];
+ wk2i = w[k1 + 1];
+ wk1r = w[k2];
+ wk1i = w[k2 + 1];
+ wk3r = wk1r - 2 * wk2i * wk1i;
+ wk3i = 2 * wk2i * wk1r - wk1i;
+ for (j = k; j < l + k; j += 2) {
+ j1 = j + l;
+ j2 = j1 + l;
+ j3 = j2 + l;
+ x0r = a[j] + a[j1];
+ x0i = a[j + 1] + a[j1 + 1];
+ x1r = a[j] - a[j1];
+ x1i = a[j + 1] - a[j1 + 1];
+ x2r = a[j2] + a[j3];
+ x2i = a[j2 + 1] + a[j3 + 1];
+ x3r = a[j2] - a[j3];
+ x3i = a[j2 + 1] - a[j3 + 1];
+ a[j] = x0r + x2r;
+ a[j + 1] = x0i + x2i;
+ x0r -= x2r;
+ x0i -= x2i;
+ a[j2] = wk2r * x0r - wk2i * x0i;
+ a[j2 + 1] = wk2r * x0i + wk2i * x0r;
+ x0r = x1r - x3i;
+ x0i = x1i + x3r;
+ a[j1] = wk1r * x0r - wk1i * x0i;
+ a[j1 + 1] = wk1r * x0i + wk1i * x0r;
+ x0r = x1r + x3i;
+ x0i = x1i - x3r;
+ a[j3] = wk3r * x0r - wk3i * x0i;
+ a[j3 + 1] = wk3r * x0i + wk3i * x0r;
+ }
+ wk1r = w[k2 + 2];
+ wk1i = w[k2 + 3];
+ wk3r = wk1r - 2 * wk2r * wk1i;
+ wk3i = 2 * wk2r * wk1r - wk1i;
+ for (j = k + m; j < l + (k + m); j += 2) {
+ j1 = j + l;
+ j2 = j1 + l;
+ j3 = j2 + l;
+ x0r = a[j] + a[j1];
+ x0i = a[j + 1] + a[j1 + 1];
+ x1r = a[j] - a[j1];
+ x1i = a[j + 1] - a[j1 + 1];
+ x2r = a[j2] + a[j3];
+ x2i = a[j2 + 1] + a[j3 + 1];
+ x3r = a[j2] - a[j3];
+ x3i = a[j2 + 1] - a[j3 + 1];
+ a[j] = x0r + x2r;
+ a[j + 1] = x0i + x2i;
+ x0r -= x2r;
+ x0i -= x2i;
+ a[j2] = -wk2i * x0r - wk2r * x0i;
+ a[j2 + 1] = -wk2i * x0i + wk2r * x0r;
+ x0r = x1r - x3i;
+ x0i = x1i + x3r;
+ a[j1] = wk1r * x0r - wk1i * x0i;
+ a[j1 + 1] = wk1r * x0i + wk1i * x0r;
+ x0r = x1r + x3i;
+ x0i = x1i - x3r;
+ a[j3] = wk3r * x0r - wk3i * x0i;
+ a[j3 + 1] = wk3r * x0i + wk3i * x0r;
+ }
+ }
+}
+
+
+void rftfsub(int n, sfloat *a, int nc, sfloat *c)
+{
+ int j, k, kk, ks, m;
+ sfloat wkr, wki, xr, xi, yr, yi;
+
+ m = n >> 1;
+ ks = 2 * nc / m;
+ kk = 0;
+ for (j = 2; j < m; j += 2) {
+ k = n - j;
+ kk += ks;
+ wkr = 0.5 - c[nc - kk];
+ wki = c[kk];
+ xr = a[j] - a[k];
+ xi = a[j + 1] + a[k + 1];
+ yr = wkr * xr - wki * xi;
+ yi = wkr * xi + wki * xr;
+ a[j] -= yr;
+ a[j + 1] -= yi;
+ a[k] += yr;
+ a[k + 1] -= yi;
+ }
+}
+
+void rftbsub(int n, sfloat *a, int nc, sfloat *c)
+{
+ int j, k, kk, ks, m;
+ sfloat wkr, wki, xr, xi, yr, yi;
+
+ a[1] = -a[1];
+ m = n >> 1;
+ ks = 2 * nc / m;
+ kk = 0;
+ for (j = 2; j < m; j += 2) {
+ k = n - j;
+ kk += ks;
+ wkr = 0.5 - c[nc - kk];
+ wki = c[kk];
+ xr = a[j] - a[k];
+ xi = a[j + 1] + a[k + 1];
+ yr = wkr * xr + wki * xi;
+ yi = wkr * xi - wki * xr;
+ a[j] -= yr;
+ a[j + 1] = yi - a[j + 1];
+ a[k] += yr;
+ a[k + 1] = yi - a[k + 1];
+ }
+ a[m + 1] = -a[m + 1];
+}