diff options
Diffstat (limited to 'src/chips/opal/opal.hpp')
-rw-r--r-- | src/chips/opal/opal.hpp | 1398 |
1 files changed, 0 insertions, 1398 deletions
diff --git a/src/chips/opal/opal.hpp b/src/chips/opal/opal.hpp deleted file mode 100644 index e8110a5..0000000 --- a/src/chips/opal/opal.hpp +++ /dev/null @@ -1,1398 +0,0 @@ -/* - - The Opal OPL3 emulator. - - Note: this is not a complete emulator, just enough for Reality Adlib Tracker tunes. - - Missing features compared to a real OPL3: - - - Timers/interrupts - - OPL3 enable bit (it defaults to always on) - - CSW mode - - Test register - - Percussion mode - -*/ -#define OPAL_HAVE_SOFT_PANNING 1 /* libADLMIDI */ - - - -#include <stdint.h> - - - -//================================================================================================== -// Opal class. -//================================================================================================== -class Opal { - - class Channel; - - // Various constants - enum { - OPL3SampleRate = 49716, - NumChannels = 18, - NumOperators = 36, - - EnvOff = -1, - EnvAtt, - EnvDec, - EnvSus, - EnvRel - }; - - // A single FM operator - class Operator { - - public: - Operator(); - void SetMaster(Opal *opal) { Master = opal; } - void SetChannel(Channel *chan) { Chan = chan; } - - int16_t Output(uint16_t keyscalenum, uint32_t phase_step, int16_t vibrato, int16_t mod = 0, int16_t fbshift = 0); - - void SetKeyOn(bool on); - void SetTremoloEnable(bool on); - void SetVibratoEnable(bool on); - void SetSustainMode(bool on); - void SetEnvelopeScaling(bool on); - void SetFrequencyMultiplier(uint16_t scale); - void SetKeyScale(uint16_t scale); - void SetOutputLevel(uint16_t level); - void SetAttackRate(uint16_t rate); - void SetDecayRate(uint16_t rate); - void SetSustainLevel(uint16_t level); - void SetReleaseRate(uint16_t rate); - void SetWaveform(uint16_t wave); - - void ComputeRates(); - void ComputeKeyScaleLevel(); - - protected: - Opal * Master; // Master object - Channel * Chan; // Owning channel - uint32_t Phase; // The current offset in the selected waveform - uint16_t Waveform; // The waveform id this operator is using - uint16_t FreqMultTimes2; // Frequency multiplier * 2 - int EnvelopeStage; // Which stage the envelope is at (see Env* enums above) - int16_t EnvelopeLevel; // 0 - $1FF, 0 being the loudest - uint16_t OutputLevel; // 0 - $FF - uint16_t AttackRate; - uint16_t DecayRate; - uint16_t SustainLevel; - uint16_t ReleaseRate; - uint16_t AttackShift; - uint16_t AttackMask; - uint16_t AttackAdd; - const uint16_t *AttackTab; - uint16_t DecayShift; - uint16_t DecayMask; - uint16_t DecayAdd; - const uint16_t *DecayTab; - uint16_t ReleaseShift; - uint16_t ReleaseMask; - uint16_t ReleaseAdd; - const uint16_t *ReleaseTab; - uint16_t KeyScaleShift; - uint16_t KeyScaleLevel; - int16_t Out[2]; - bool KeyOn; - bool KeyScaleRate; // Affects envelope rate scaling - bool SustainMode; // Whether to sustain during the sustain phase, or release instead - bool TremoloEnable; - bool VibratoEnable; - }; - - // A single channel, which can contain two or more operators - class Channel { - - public: - Channel(); - void SetMaster(Opal *opal) { Master = opal; } - void SetOperators(Operator *a, Operator *b, Operator *c, Operator *d) { - Op[0] = a; - Op[1] = b; - Op[2] = c; - Op[3] = d; - if (a) - a->SetChannel(this); - if (b) - b->SetChannel(this); - if (c) - c->SetChannel(this); - if (d) - d->SetChannel(this); - } - - void Output(int16_t &left, int16_t &right); - void SetEnable(bool on) { Enable = on; } - void SetChannelPair(Channel *pair) { ChannelPair = pair; } - - void SetFrequencyLow(uint16_t freq); - void SetFrequencyHigh(uint16_t freq); - void SetKeyOn(bool on); - void SetOctave(uint16_t oct); - void SetLeftEnable(bool on); - void SetRightEnable(bool on); - void SetPan(uint8_t pan); - void SetFeedback(uint16_t val); - void SetModulationType(uint16_t type); - - uint16_t GetFreq() const { return Freq; } - uint16_t GetOctave() const { return Octave; } - uint16_t GetKeyScaleNumber() const { return KeyScaleNumber; } - uint16_t GetModulationType() const { return ModulationType; } - Channel * GetChannelPair() const { return ChannelPair; } /* libADLMIDI */ - - void ComputeKeyScaleNumber(); - - protected: - void ComputePhaseStep(); - - Operator * Op[4]; - - Opal * Master; // Master object - uint16_t Freq; // Frequency; actually it's a phase stepping value - uint16_t Octave; // Also known as "block" in Yamaha parlance - uint32_t PhaseStep; - uint16_t KeyScaleNumber; - uint16_t FeedbackShift; - uint16_t ModulationType; - Channel * ChannelPair; - bool Enable; - bool LeftEnable, RightEnable; - uint16_t LeftPan, RightPan; - }; - - public: - Opal(int sample_rate); - ~Opal(); - - void SetSampleRate(int sample_rate); - void Port(uint16_t reg_num, uint8_t val); - void Pan(uint16_t reg_num, uint8_t pan); - void Sample(int16_t *left, int16_t *right); - - protected: - void Init(int sample_rate); - void Output(int16_t &left, int16_t &right); - - int32_t SampleRate; - int32_t SampleAccum; - int16_t LastOutput[2], CurrOutput[2]; - Channel Chan[NumChannels]; - Operator Op[NumOperators]; -// uint16_t ExpTable[256]; -// uint16_t LogSinTable[256]; - uint16_t Clock; - uint16_t TremoloClock; - uint16_t TremoloLevel; - uint16_t VibratoTick; - uint16_t VibratoClock; - bool NoteSel; - bool TremoloDepth; - bool VibratoDepth; - - static const uint16_t RateTables[4][8]; - static const uint16_t ExpTable[256]; - static const uint16_t LogSinTable[256]; - static const uint16_t PanLawTable[128]; -}; -//-------------------------------------------------------------------------------------------------- -const uint16_t Opal::RateTables[4][8] = { - { 1, 0, 1, 0, 1, 0, 1, 0 }, - { 1, 0, 1, 0, 0, 0, 1, 0 }, - { 1, 0, 0, 0, 1, 0, 0, 0 }, - { 1, 0, 0, 0, 0, 0, 0, 0 }, -}; -//-------------------------------------------------------------------------------------------------- -const uint16_t Opal::ExpTable[0x100] = { - 1018, 1013, 1007, 1002, 996, 991, 986, 980, 975, 969, 964, 959, 953, 948, 942, 937, - 932, 927, 921, 916, 911, 906, 900, 895, 890, 885, 880, 874, 869, 864, 859, 854, - 849, 844, 839, 834, 829, 824, 819, 814, 809, 804, 799, 794, 789, 784, 779, 774, - 770, 765, 760, 755, 750, 745, 741, 736, 731, 726, 722, 717, 712, 708, 703, 698, - 693, 689, 684, 680, 675, 670, 666, 661, 657, 652, 648, 643, 639, 634, 630, 625, - 621, 616, 612, 607, 603, 599, 594, 590, 585, 581, 577, 572, 568, 564, 560, 555, - 551, 547, 542, 538, 534, 530, 526, 521, 517, 513, 509, 505, 501, 496, 492, 488, - 484, 480, 476, 472, 468, 464, 460, 456, 452, 448, 444, 440, 436, 432, 428, 424, - 420, 416, 412, 409, 405, 401, 397, 393, 389, 385, 382, 378, 374, 370, 367, 363, - 359, 355, 352, 348, 344, 340, 337, 333, 329, 326, 322, 318, 315, 311, 308, 304, - 300, 297, 293, 290, 286, 283, 279, 276, 272, 268, 265, 262, 258, 255, 251, 248, - 244, 241, 237, 234, 231, 227, 224, 220, 217, 214, 210, 207, 204, 200, 197, 194, - 190, 187, 184, 181, 177, 174, 171, 168, 164, 161, 158, 155, 152, 148, 145, 142, - 139, 136, 133, 130, 126, 123, 120, 117, 114, 111, 108, 105, 102, 99, 96, 93, - 90, 87, 84, 81, 78, 75, 72, 69, 66, 63, 60, 57, 54, 51, 48, 45, - 42, 40, 37, 34, 31, 28, 25, 22, 20, 17, 14, 11, 8, 6, 3, 0, -}; -//-------------------------------------------------------------------------------------------------- -const uint16_t Opal::LogSinTable[0x100] = { - 2137, 1731, 1543, 1419, 1326, 1252, 1190, 1137, 1091, 1050, 1013, 979, 949, 920, 894, 869, - 846, 825, 804, 785, 767, 749, 732, 717, 701, 687, 672, 659, 646, 633, 621, 609, - 598, 587, 576, 566, 556, 546, 536, 527, 518, 509, 501, 492, 484, 476, 468, 461, - 453, 446, 439, 432, 425, 418, 411, 405, 399, 392, 386, 380, 375, 369, 363, 358, - 352, 347, 341, 336, 331, 326, 321, 316, 311, 307, 302, 297, 293, 289, 284, 280, - 276, 271, 267, 263, 259, 255, 251, 248, 244, 240, 236, 233, 229, 226, 222, 219, - 215, 212, 209, 205, 202, 199, 196, 193, 190, 187, 184, 181, 178, 175, 172, 169, - 167, 164, 161, 159, 156, 153, 151, 148, 146, 143, 141, 138, 136, 134, 131, 129, - 127, 125, 122, 120, 118, 116, 114, 112, 110, 108, 106, 104, 102, 100, 98, 96, - 94, 92, 91, 89, 87, 85, 83, 82, 80, 78, 77, 75, 74, 72, 70, 69, - 67, 66, 64, 63, 62, 60, 59, 57, 56, 55, 53, 52, 51, 49, 48, 47, - 46, 45, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34, 33, 32, 31, 30, - 29, 28, 27, 26, 25, 24, 23, 23, 22, 21, 20, 20, 19, 18, 17, 17, - 16, 15, 15, 14, 13, 13, 12, 12, 11, 10, 10, 9, 9, 8, 8, 7, - 7, 7, 6, 6, 5, 5, 5, 4, 4, 4, 3, 3, 3, 2, 2, 2, - 2, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, -}; -//-------------------------------------------------------------------------------------------------- -const uint16_t Opal::PanLawTable[128] = -{ - 65535, 65529, 65514, 65489, 65454, 65409, 65354, 65289, - 65214, 65129, 65034, 64929, 64814, 64689, 64554, 64410, - 64255, 64091, 63917, 63733, 63540, 63336, 63123, 62901, - 62668, 62426, 62175, 61914, 61644, 61364, 61075, 60776, - 60468, 60151, 59825, 59489, 59145, 58791, 58428, 58057, - 57676, 57287, 56889, 56482, 56067, 55643, 55211, 54770, - 54320, 53863, 53397, 52923, 52441, 51951, 51453, 50947, - 50433, 49912, 49383, 48846, 48302, 47750, 47191, - 46340, // Center left - 46340, // Center right - 45472, 44885, 44291, 43690, 43083, 42469, 41848, 41221, - 40588, 39948, 39303, 38651, 37994, 37330, 36661, 35986, - 35306, 34621, 33930, 33234, 32533, 31827, 31116, 30400, - 29680, 28955, 28225, 27492, 26754, 26012, 25266, 24516, - 23762, 23005, 22244, 21480, 20713, 19942, 19169, 18392, - 17613, 16831, 16046, 15259, 14469, 13678, 12884, 12088, - 11291, 10492, 9691, 8888, 8085, 7280, 6473, 5666, - 4858, 4050, 3240, 2431, 1620, 810, 0 -}; - - - -//================================================================================================== -// This is the temporary code for generating the above tables. Maths and data from this nice -// reverse-engineering effort: -// -// https://docs.google.com/document/d/18IGx18NQY_Q1PJVZ-bHywao9bhsDoAqoIn1rIm42nwo/edit -//================================================================================================== -#if 0 -#include <math.h> - -void GenerateTables() { - - // Build the exponentiation table (reversed from the official OPL3 ROM) - FILE *fd = fopen("exptab.txt", "wb"); - if (fd) { - for (int i = 0; i < 0x100; i++) { - int v = (pow(2, (0xFF - i) / 256.0) - 1) * 1024 + 0.5; - if (i & 15) - fprintf(fd, " %4d,", v); - else - fprintf(fd, "\n\t%4d,", v); - } - fclose(fd); - } - - // Build the log-sin table - fd = fopen("sintab.txt", "wb"); - if (fd) { - for (int i = 0; i < 0x100; i++) { - int v = -log(sin((i + 0.5) * 3.1415926535897933 / 256 / 2)) / log(2) * 256 + 0.5; - if (i & 15) - fprintf(fd, " %4d,", v); - else - fprintf(fd, "\n\t%4d,", v); - } - fclose(fd); - } -} -#endif - - - -//================================================================================================== -// Constructor/destructor. -//================================================================================================== -Opal::Opal(int sample_rate) { - - Init(sample_rate); -} -//-------------------------------------------------------------------------------------------------- -Opal::~Opal() { -} - - - -//================================================================================================== -// Initialise the emulation. -//================================================================================================== -void Opal::Init(int sample_rate) { - - Clock = 0; - TremoloClock = 0; - TremoloLevel = 0; - VibratoTick = 0; - VibratoClock = 0; - NoteSel = false; - TremoloDepth = false; - VibratoDepth = false; - -// // Build the exponentiation table (reversed from the official OPL3 ROM) -// for (int i = 0; i < 0x100; i++) -// ExpTable[i] = (pow(2, (0xFF - i) / 256.0) - 1) * 1024 + 0.5; -// -// // Build the log-sin table -// for (int i = 0; i < 0x100; i++) -// LogSinTable[i] = -log(sin((i + 0.5) * 3.1415926535897933 / 256 / 2)) / log(2) * 256 + 0.5; - - // Let sub-objects know where to find us - for (int i = 0; i < NumOperators; i++) - Op[i].SetMaster(this); - - for (int i = 0; i < NumChannels; i++) - Chan[i].SetMaster(this); - - // Add the operators to the channels. Note, some channels can't use all the operators - // FIXME: put this into a separate routine - const int chan_ops[] = { - 0, 1, 2, 6, 7, 8, 12, 13, 14, 18, 19, 20, 24, 25, 26, 30, 31, 32, - }; - - for (int i = 0; i < NumChannels; i++) { - Channel *chan = &Chan[i]; - int op = chan_ops[i]; - if (i < 3 || (i >= 9 && i < 12)) - chan->SetOperators(&Op[op], &Op[op + 3], &Op[op + 6], &Op[op + 9]); - else - chan->SetOperators(&Op[op], &Op[op + 3], 0, 0); - } - - // Initialise the operator rate data. We can't do this in the Operator constructor as it - // relies on referencing the master and channel objects - for (int i = 0; i < NumOperators; i++) - Op[i].ComputeRates(); - - // Initialise channel panning at center. - for (int i = 0; i < NumChannels; i++) { - Chan[i].SetPan(64); - Chan[i].SetLeftEnable(true); - Chan[i].SetRightEnable(true); - } - - SetSampleRate(sample_rate); -} - - - -//================================================================================================== -// Change the sample rate. -//================================================================================================== -void Opal::SetSampleRate(int sample_rate) { - - // Sanity - if (sample_rate == 0) - sample_rate = OPL3SampleRate; - - SampleRate = sample_rate; - SampleAccum = 0; - LastOutput[0] = LastOutput[1] = 0; - CurrOutput[0] = CurrOutput[1] = 0; -} - - - -//================================================================================================== -// Write a value to an OPL3 register. -//================================================================================================== -void Opal::Port(uint16_t reg_num, uint8_t val) { - - const int op_lookup[] = { - // 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F - 0, 1, 2, 3, 4, 5, -1, -1, 6, 7, 8, 9, 10, 11, -1, -1, - // 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F - 12, 13, 14, 15, 16, 17, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, - }; - - uint16_t type = reg_num & 0xE0; - - // Is it BD, the one-off register stuck in the middle of the register array? - if (reg_num == 0xBD) { - TremoloDepth = (val & 0x80) != 0; - VibratoDepth = (val & 0x40) != 0; - return; - } - - // Global registers - if (type == 0x00) { - - // 4-OP enables - if (reg_num == 0x104) { - - // Enable/disable channels based on which 4-op enables - uint8_t mask = 1; - for (int i = 0; i < 6; i++, mask <<= 1) { - - // The 4-op channels are 0, 1, 2, 9, 10, 11 - uint16_t chan = i < 3 ? i : i + 6; - Channel *primary = &Chan[chan]; - Channel *secondary = &Chan[chan + 3]; - - if (val & mask) { - - // Let primary channel know it's controlling the secondary channel - primary->SetChannelPair(secondary); - - // Turn off the second channel in the pair - secondary->SetEnable(false); - - } else { - - // Let primary channel know it's no longer controlling the secondary channel - primary->SetChannelPair(0); - - // Turn on the second channel in the pair - secondary->SetEnable(true); - } - } - - // CSW / Note-sel - } else if (reg_num == 0x08) { - - NoteSel = (val & 0x40) != 0; - - // Get the channels to recompute the Key Scale No. as this varies based on NoteSel - for (int i = 0; i < NumChannels; i++) - Chan[i].ComputeKeyScaleNumber(); - } - - // Channel registers - } else if (type >= 0xA0 && type <= 0xC0) { - - // Convert to channel number - int chan_num = reg_num & 15; - - // Valid channel? - if (chan_num >= 9) - return; - - // Is it the other bank of channels? - if (reg_num & 0x100) - chan_num += 9; - - Channel &chan = Chan[chan_num]; - - /* libADLMIDI: registers Ax and Cx affect both channels */ - Channel *chans[2] = {&chan, chan.GetChannelPair()}; - unsigned numchans = chans[1] ? 2 : 1; - - // Do specific registers - switch (reg_num & 0xF0) { - - // Frequency low - case 0xA0: { - for (unsigned i = 0; i < numchans; ++i) { /* libADLMIDI */ - chans[i]->SetFrequencyLow(val); - } - break; - } - - // Key-on / Octave / Frequency High - case 0xB0: { - for (unsigned i = 0; i < numchans; ++i) { /* libADLMIDI */ - chans[i]->SetKeyOn((val & 0x20) != 0); - chans[i]->SetOctave(val >> 2 & 7); - chans[i]->SetFrequencyHigh(val & 3); - } - break; - } - - // Right Stereo Channel Enable / Left Stereo Channel Enable / Feedback Factor / Modulation Type - case 0xC0: { - chan.SetRightEnable((val & 0x20) != 0); - chan.SetLeftEnable((val & 0x10) != 0); - chan.SetFeedback(val >> 1 & 7); - chan.SetModulationType(val & 1); - break; - } - } - - // Operator registers - } else if ((type >= 0x20 && type <= 0x80) || type == 0xE0) { - - // Convert to operator number - int op_num = op_lookup[reg_num & 0x1F]; - - // Valid register? - if (op_num < 0) - return; - - // Is it the other bank of operators? - if (reg_num & 0x100) - op_num += 18; - - Operator &op = Op[op_num]; - - // Do specific registers - switch (type) { - - // Tremolo Enable / Vibrato Enable / Sustain Mode / Envelope Scaling / Frequency Multiplier - case 0x20: { - op.SetTremoloEnable((val & 0x80) != 0); - op.SetVibratoEnable((val & 0x40) != 0); - op.SetSustainMode((val & 0x20) != 0); - op.SetEnvelopeScaling((val & 0x10) != 0); - op.SetFrequencyMultiplier(val & 15); - break; - } - - // Key Scale / Output Level - case 0x40: { - op.SetKeyScale(val >> 6); - op.SetOutputLevel(val & 0x3F); - break; - } - - // Attack Rate / Decay Rate - case 0x60: { - op.SetAttackRate(val >> 4); - op.SetDecayRate(val & 15); - break; - } - - // Sustain Level / Release Rate - case 0x80: { - op.SetSustainLevel(val >> 4); - op.SetReleaseRate(val & 15); - break; - } - - // Waveform - case 0xE0: { - op.SetWaveform(val & 7); - break; - } - } - } -} - - - -//================================================================================================== -// Set panning on the channel designated by the register number. -// This is extended functionality. -//================================================================================================== -void Opal::Pan(uint16_t reg_num, uint8_t pan) -{ - uint8_t high = (reg_num >> 8) & 1; - uint8_t regm = reg_num & 0xff; - Chan[9 * high + (regm & 0x0f)].SetPan(pan); -} - - - -//================================================================================================== -// Generate sample. Every time you call this you will get two signed 16-bit samples (one for each -// stereo channel) which will sound correct when played back at the sample rate given when the -// class was constructed. -//================================================================================================== -void Opal::Sample(int16_t *left, int16_t *right) { - - // If the destination sample rate is higher than the OPL3 sample rate, we need to skip ahead - while (SampleAccum >= SampleRate) { - - LastOutput[0] = CurrOutput[0]; - LastOutput[1] = CurrOutput[1]; - - Output(CurrOutput[0], CurrOutput[1]); - - SampleAccum -= SampleRate; - } - - // Mix with the partial accumulation - int32_t omblend = SampleRate - SampleAccum; - *left = (LastOutput[0] * omblend + CurrOutput[0] * SampleAccum) / SampleRate; - *right = (LastOutput[1] * omblend + CurrOutput[1] * SampleAccum) / SampleRate; - - SampleAccum += OPL3SampleRate; -} - - - -//================================================================================================== -// Produce final output from the chip. This is at the OPL3 sample-rate. -//================================================================================================== -void Opal::Output(int16_t &left, int16_t &right) { - - int32_t leftmix = 0, rightmix = 0; - - // Sum the output of each channel - for (int i = 0; i < NumChannels; i++) { - - int16_t chanleft, chanright; - Chan[i].Output(chanleft, chanright); - - leftmix += chanleft; - rightmix += chanright; - } - - // Clamp - if (leftmix < -0x8000) - left = -0x8000; - else if (leftmix > 0x7FFF) - left = 0x7FFF; - else - left = leftmix; - - if (rightmix < -0x8000) - right = -0x8000; - else if (rightmix > 0x7FFF) - right = 0x7FFF; - else - right = rightmix; - - Clock++; - - // Tremolo. According to this post, the OPL3 tremolo is a 13,440 sample length triangle wave - // with a peak at 26 and a trough at 0 and is simply added to the logarithmic level accumulator - // http://forums.submarine.org.uk/phpBB/viewtopic.php?f=9&t=1171 - TremoloClock = (TremoloClock + 1) % 13440; - TremoloLevel = ((TremoloClock < 13440 / 2) ? TremoloClock : 13440 - TremoloClock) / 256; - if (!TremoloDepth) - TremoloLevel >>= 2; - - // Vibrato. This appears to be a 8 sample long triangle wave with a magnitude of the three - // high bits of the channel frequency, positive and negative, divided by two if the vibrato - // depth is zero. It is only cycled every 1,024 samples. - VibratoTick++; - if (VibratoTick >= 1024) { - VibratoTick = 0; - VibratoClock = (VibratoClock + 1) & 7; - } -} - - - -//================================================================================================== -// Channel constructor. -//================================================================================================== -Opal::Channel::Channel() { - - Master = 0; - Freq = 0; - Octave = 0; - PhaseStep = 0; - KeyScaleNumber = 0; - FeedbackShift = 0; - ModulationType = 0; - ChannelPair = 0; - Enable = true; -} - - - -//================================================================================================== -// Produce output from channel. -//================================================================================================== -void Opal::Channel::Output(int16_t &left, int16_t &right) { - - // Has the channel been disabled? This is usually a result of the 4-op enables being used to - // disable the secondary channel in each 4-op pair - if (!Enable) { - left = right = 0; - return; - } - - int16_t vibrato = (Freq >> 7) & 7; - if (!Master->VibratoDepth) - vibrato >>= 1; - - // 0 3 7 3 0 -3 -7 -3 - uint16_t clk = Master->VibratoClock; - if (!(clk & 3)) - vibrato = 0; // Position 0 and 4 is zero - else { - if (clk & 1) - vibrato >>= 1; // Odd positions are half the magnitude - if (clk & 4) - vibrato = -vibrato; // The second half positions are negative - } - - vibrato <<= Octave; - - // Combine individual operator outputs - int16_t out, acc; - - // Running in 4-op mode? - if (ChannelPair) { - - // Get the secondary channel's modulation type. This is the only thing from the secondary - // channel that is used - if (ChannelPair->GetModulationType() == 0) { - - if (ModulationType == 0) { - - // feedback -> modulator -> modulator -> modulator -> carrier - out = Op[0]->Output(KeyScaleNumber, PhaseStep, vibrato, 0, FeedbackShift); - out = Op[1]->Output(KeyScaleNumber, PhaseStep, vibrato, out, 0); - out = Op[2]->Output(KeyScaleNumber, PhaseStep, vibrato, out, 0); - out = Op[3]->Output(KeyScaleNumber, PhaseStep, vibrato, out, 0); - - } else { - - // (feedback -> carrier) + (modulator -> modulator -> carrier) - out = Op[0]->Output(KeyScaleNumber, PhaseStep, vibrato, 0, FeedbackShift); - acc = Op[1]->Output(KeyScaleNumber, PhaseStep, vibrato, 0, 0); - acc = Op[2]->Output(KeyScaleNumber, PhaseStep, vibrato, acc, 0); - out += Op[3]->Output(KeyScaleNumber, PhaseStep, vibrato, acc, 0); - } - - } else { - - if (ModulationType == 0) { - - // (feedback -> modulator -> carrier) + (modulator -> carrier) - out = Op[0]->Output(KeyScaleNumber, PhaseStep, vibrato, 0, FeedbackShift); - out = Op[1]->Output(KeyScaleNumber, PhaseStep, vibrato, out, 0); - acc = Op[2]->Output(KeyScaleNumber, PhaseStep, vibrato, 0, 0); - out += Op[3]->Output(KeyScaleNumber, PhaseStep, vibrato, acc, 0); - - } else { - - // (feedback -> carrier) + (modulator -> carrier) + carrier - out = Op[0]->Output(KeyScaleNumber, PhaseStep, vibrato, 0, FeedbackShift); - acc = Op[1]->Output(KeyScaleNumber, PhaseStep, vibrato, 0, 0); - out += Op[2]->Output(KeyScaleNumber, PhaseStep, vibrato, acc, 0); - out += Op[3]->Output(KeyScaleNumber, PhaseStep, vibrato, 0, 0); - } - } - - } else { - - // Standard 2-op mode - if (ModulationType == 0) { - - // Frequency modulation (well, phase modulation technically) - out = Op[0]->Output(KeyScaleNumber, PhaseStep, vibrato, 0, FeedbackShift); - out = Op[1]->Output(KeyScaleNumber, PhaseStep, vibrato, out, 0); - - } else { - - // Additive - out = Op[0]->Output(KeyScaleNumber, PhaseStep, vibrato, 0, FeedbackShift); - out += Op[1]->Output(KeyScaleNumber, PhaseStep, vibrato); - } - } - - left = LeftEnable ? out : 0; - right = RightEnable ? out : 0; - - left = left * LeftPan / 65536; - right = right * RightPan / 65536; -} - - - -//================================================================================================== -// Set phase step for operators using this channel. -//================================================================================================== -void Opal::Channel::SetFrequencyLow(uint16_t freq) { - - Freq = (Freq & 0x300) | (freq & 0xFF); - ComputePhaseStep(); -} -//-------------------------------------------------------------------------------------------------- -void Opal::Channel::SetFrequencyHigh(uint16_t freq) { - - Freq = (Freq & 0xFF) | ((freq & 3) << 8); - ComputePhaseStep(); - - // Only the high bits of Freq affect the Key Scale No. - ComputeKeyScaleNumber(); -} - - - -//================================================================================================== -// Set the octave of the channel (0 to 7). -//================================================================================================== -void Opal::Channel::SetOctave(uint16_t oct) { - - Octave = oct & 7; - ComputePhaseStep(); - ComputeKeyScaleNumber(); -} - - - -//================================================================================================== -// Keys the channel on/off. -//================================================================================================== -void Opal::Channel::SetKeyOn(bool on) { - - Op[0]->SetKeyOn(on); - Op[1]->SetKeyOn(on); -} - - - -//================================================================================================== -// Enable left stereo channel. -//================================================================================================== -void Opal::Channel::SetLeftEnable(bool on) { - - LeftEnable = on; -} - - - -//================================================================================================== -// Enable right stereo channel. -//================================================================================================== -void Opal::Channel::SetRightEnable(bool on) { - - RightEnable = on; -} - - - -//================================================================================================== -// Pan the channel to the position given. -//================================================================================================== -void Opal::Channel::SetPan(uint8_t pan) -{ - pan &= 127; - LeftPan = PanLawTable[pan]; - RightPan = PanLawTable[127 - pan]; -} - - - -//================================================================================================== -// Set the channel feedback amount. -//================================================================================================== -void Opal::Channel::SetFeedback(uint16_t val) { - - FeedbackShift = val ? 9 - val : 0; -} - - - -//================================================================================================== -// Set frequency modulation/additive modulation -//================================================================================================== -void Opal::Channel::SetModulationType(uint16_t type) { - - ModulationType = type; -} - - - -//================================================================================================== -// Compute the stepping factor for the operator waveform phase based on the frequency and octave -// values of the channel. -//================================================================================================== -void Opal::Channel::ComputePhaseStep() { - - PhaseStep = uint32_t(Freq) << Octave; -} - - - -//================================================================================================== -// Compute the key scale number and key scale levels. -// -// From the Yamaha data sheet this is the block/octave number as bits 3-1, with bit 0 coming from -// the MSB of the frequency if NoteSel is 1, and the 2nd MSB if NoteSel is 0. -//================================================================================================== -void Opal::Channel::ComputeKeyScaleNumber() { - - uint16_t lsb = Master->NoteSel ? Freq >> 9 : (Freq >> 8) & 1; - KeyScaleNumber = Octave << 1 | lsb; - - // Get the channel operators to recompute their rates as they're dependent on this number. They - // also need to recompute their key scale level - for (int i = 0; i < 4; i++) { - - if (!Op[i]) - continue; - - Op[i]->ComputeRates(); - Op[i]->ComputeKeyScaleLevel(); - } -} - - - -//================================================================================================== -// Operator constructor. -//================================================================================================== -Opal::Operator::Operator() { - - Master = 0; - Chan = 0; - Phase = 0; - Waveform = 0; - FreqMultTimes2 = 1; - EnvelopeStage = EnvOff; - EnvelopeLevel = 0x1FF; - AttackRate = 0; - DecayRate = 0; - SustainLevel = 0; - ReleaseRate = 0; - KeyScaleShift = 0; - KeyScaleLevel = 0; - Out[0] = Out[1] = 0; - KeyOn = false; - KeyScaleRate = false; - SustainMode = false; - TremoloEnable = false; - VibratoEnable = false; -} - - - -//================================================================================================== -// Produce output from operator. -//================================================================================================== -int16_t Opal::Operator::Output(uint16_t /*keyscalenum*/, uint32_t phase_step, int16_t vibrato, int16_t mod, int16_t fbshift) { - - // Advance wave phase - if (VibratoEnable) - phase_step += vibrato; - Phase += (phase_step * FreqMultTimes2) / 2; - - uint16_t level = (EnvelopeLevel + OutputLevel + KeyScaleLevel + (TremoloEnable ? Master->TremoloLevel : 0)) << 3; - - switch (EnvelopeStage) { - - // Attack stage - case EnvAtt: { - uint16_t add = ((AttackAdd >> AttackTab[Master->Clock >> AttackShift & 7]) * ~EnvelopeLevel) >> 3; - if (AttackRate == 0) - add = 0; - if (AttackMask && (Master->Clock & AttackMask)) - add = 0; - EnvelopeLevel += add; - if (EnvelopeLevel <= 0) { - EnvelopeLevel = 0; - EnvelopeStage = EnvDec; - } - break; - } - - // Decay stage - case EnvDec: { - uint16_t add = DecayAdd >> DecayTab[Master->Clock >> DecayShift & 7]; - if (DecayRate == 0) - add = 0; - if (DecayMask && (Master->Clock & DecayMask)) - add = 0; - EnvelopeLevel += add; - if (EnvelopeLevel >= SustainLevel) { - EnvelopeLevel = SustainLevel; - EnvelopeStage = EnvSus; - } - break; - } - - // Sustain stage - case EnvSus: { - if (SustainMode) - break; - // Note: fall-through! - - }//fallthrough - - // Release stage - case EnvRel: { - uint16_t add = ReleaseAdd >> ReleaseTab[Master->Clock >> ReleaseShift & 7]; - if (ReleaseRate == 0) - add = 0; - if (ReleaseMask && (Master->Clock & ReleaseMask)) - add = 0; - EnvelopeLevel += add; - if (EnvelopeLevel >= 0x1FF) { - EnvelopeLevel = 0x1FF; - EnvelopeStage = EnvOff; - Out[0] = Out[1] = 0; - return 0; - } - break; - } - - // Envelope, and therefore the operator, is not running - default: - Out[0] = Out[1] = 0; - return 0; - } - - // Feedback? In that case we modulate by a blend of the last two samples - if (fbshift) - mod += (Out[0] + Out[1]) >> fbshift; - - uint16_t phase = (Phase >> 10) + mod; - uint16_t offset = phase & 0xFF; - uint16_t logsin; - bool negate = false; - - switch (Waveform) { - - //------------------------------------ - // Standard sine wave - //------------------------------------ - case 0: - if (phase & 0x100) - offset ^= 0xFF; - logsin = Master->LogSinTable[offset]; - negate = (phase & 0x200) != 0; - break; - - //------------------------------------ - // Half sine wave - //------------------------------------ - case 1: - if (phase & 0x200) - offset = 0; - else if (phase & 0x100) - offset ^= 0xFF; - logsin = Master->LogSinTable[offset]; - break; - - //------------------------------------ - // Positive sine wave - //------------------------------------ - case 2: - if (phase & 0x100) - offset ^= 0xFF; - logsin = Master->LogSinTable[offset]; - break; - - //------------------------------------ - // Quarter positive sine wave - //------------------------------------ - case 3: - if (phase & 0x100) - offset = 0; - logsin = Master->LogSinTable[offset]; - break; - - //------------------------------------ - // Double-speed sine wave - //------------------------------------ - case 4: - if (phase & 0x200) - offset = 0; - - else { - - if (phase & 0x80) - offset ^= 0xFF; - - offset = (offset + offset) & 0xFF; - negate = (phase & 0x100) != 0; - } - - logsin = Master->LogSinTable[offset]; - break; - - //------------------------------------ - // Double-speed positive sine wave - //------------------------------------ - case 5: - if (phase & 0x200) - offset = 0; - - else { - - offset = (offset + offset) & 0xFF; - if (phase & 0x80) - offset ^= 0xFF; - } - - logsin = Master->LogSinTable[offset]; - break; - - //------------------------------------ - // Square wave - //------------------------------------ - case 6: - logsin = 0; - negate = (phase & 0x200) != 0; - break; - - //------------------------------------ - // Exponentiation wave - //------------------------------------ - default: - logsin = phase & 0x1FF; - if (phase & 0x200) { - logsin ^= 0x1FF; - negate = true; - } - logsin <<= 3; - break; - } - - uint16_t mix = logsin + level; - if (mix > 0x1FFF) - mix = 0x1FFF; - - // From the OPLx decapsulated docs: - // "When such a table is used for calculation of the exponential, the table is read at the - // position given by the 8 LSB's of the input. The value + 1024 (the hidden bit) is then the - // significand of the floating point output and the yet unused MSB's of the input are the - // exponent of the floating point output." - int16_t v = Master->ExpTable[mix & 0xFF] + 1024; - v >>= mix >> 8; - v += v; - if (negate) - v = ~v; - - // Keep last two results for feedback calculation - Out[1] = Out[0]; - Out[0] = v; - - return v; -} - - - -//================================================================================================== -// Trigger operator. -//================================================================================================== -void Opal::Operator::SetKeyOn(bool on) { - - // Already on/off? - if (KeyOn == on) - return; - KeyOn = on; - - if (on) { - - // The highest attack rate is instant; it bypasses the attack phase - if (AttackRate == 15) { - EnvelopeStage = EnvDec; - EnvelopeLevel = 0; - } else - EnvelopeStage = EnvAtt; - - Phase = 0; - - } else { - - // Stopping current sound? - if (EnvelopeStage != EnvOff && EnvelopeStage != EnvRel) - EnvelopeStage = EnvRel; - } -} - - - -//================================================================================================== -// Enable amplitude vibrato. -//================================================================================================== -void Opal::Operator::SetTremoloEnable(bool on) { - - TremoloEnable = on; -} - - - -//================================================================================================== -// Enable frequency vibrato. -//================================================================================================== -void Opal::Operator::SetVibratoEnable(bool on) { - - VibratoEnable = on; -} - - - -//================================================================================================== -// Sets whether we release or sustain during the sustain phase of the envelope. 'true' is to -// sustain, otherwise release. -//================================================================================================== -void Opal::Operator::SetSustainMode(bool on) { - - SustainMode = on; -} - - - -//================================================================================================== -// Key scale rate. Sets how much the Key Scaling Number affects the envelope rates. -//================================================================================================== -void Opal::Operator::SetEnvelopeScaling(bool on) { - - KeyScaleRate = on; - ComputeRates(); -} - - - -//================================================================================================== -// Multiplies the phase frequency. -//================================================================================================== -void Opal::Operator::SetFrequencyMultiplier(uint16_t scale) { - - // Needs to be multiplied by two (and divided by two later when we use it) because the first - // entry is actually .5 - const uint16_t mul_times_2[] = { - 1, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 20, 24, 24, 30, 30, - }; - - FreqMultTimes2 = mul_times_2[scale & 15]; -} - - - -//================================================================================================== -// Attenuates output level towards higher pitch. -//================================================================================================== -void Opal::Operator::SetKeyScale(uint16_t scale) { - - /* libADLMIDI: KSL computation fix */ - const unsigned KeyScaleShiftTable[4] = {8, 1, 2, 0}; - KeyScaleShift = KeyScaleShiftTable[scale]; - - ComputeKeyScaleLevel(); -} - - - -//================================================================================================== -// Sets the output level (volume) of the operator. -//================================================================================================== -void Opal::Operator::SetOutputLevel(uint16_t level) { - - OutputLevel = level * 4; -} - - - -//================================================================================================== -// Operator attack rate. -//================================================================================================== -void Opal::Operator::SetAttackRate(uint16_t rate) { - - AttackRate = rate; - - ComputeRates(); -} - - - -//================================================================================================== -// Operator decay rate. -//================================================================================================== -void Opal::Operator::SetDecayRate(uint16_t rate) { - - DecayRate = rate; - - ComputeRates(); -} - - - -//================================================================================================== -// Operator sustain level. -//================================================================================================== -void Opal::Operator::SetSustainLevel(uint16_t level) { - - SustainLevel = level < 15 ? level : 31; - SustainLevel *= 16; -} - - - -//================================================================================================== -// Operator release rate. -//================================================================================================== -void Opal::Operator::SetReleaseRate(uint16_t rate) { - - ReleaseRate = rate; - - ComputeRates(); -} - - - -//================================================================================================== -// Assign the waveform this operator will use. -//================================================================================================== -void Opal::Operator::SetWaveform(uint16_t wave) { - - Waveform = wave & 7; -} - - - -//================================================================================================== -// Compute actual rate from register rate. From the Yamaha data sheet: -// -// Actual rate = Rate value * 4 + Rof, if Rate value = 0, actual rate = 0 -// -// Rof is set as follows depending on the KSR setting: -// -// Key scale 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 -// KSR = 0 0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3 -// KSR = 1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 -// -// Note: zero rates are infinite, and are treated separately elsewhere -//================================================================================================== -void Opal::Operator::ComputeRates() { - - int combined_rate = AttackRate * 4 + (Chan->GetKeyScaleNumber() >> (KeyScaleRate ? 0 : 2)); - int rate_high = combined_rate >> 2; - int rate_low = combined_rate & 3; - - AttackShift = rate_high < 12 ? 12 - rate_high : 0; - AttackMask = (1 << AttackShift) - 1; - AttackAdd = (rate_high < 12) ? 1 : 1 << (rate_high - 12); - AttackTab = Master->RateTables[rate_low]; - - // Attack rate of 15 is always instant - if (AttackRate == 15) - AttackAdd = 0xFFF; - - combined_rate = DecayRate * 4 + (Chan->GetKeyScaleNumber() >> (KeyScaleRate ? 0 : 2)); - rate_high = combined_rate >> 2; - rate_low = combined_rate & 3; - - DecayShift = rate_high < 12 ? 12 - rate_high : 0; - DecayMask = (1 << DecayShift) - 1; - DecayAdd = (rate_high < 12) ? 1 : 1 << (rate_high - 12); - DecayTab = Master->RateTables[rate_low]; - - combined_rate = ReleaseRate * 4 + (Chan->GetKeyScaleNumber() >> (KeyScaleRate ? 0 : 2)); - rate_high = combined_rate >> 2; - rate_low = combined_rate & 3; - - ReleaseShift = rate_high < 12 ? 12 - rate_high : 0; - ReleaseMask = (1 << ReleaseShift) - 1; - ReleaseAdd = (rate_high < 12) ? 1 : 1 << (rate_high - 12); - ReleaseTab = Master->RateTables[rate_low]; -} - - - -//================================================================================================== -// Compute the operator's key scale level. This changes based on the channel frequency/octave and -// operator key scale value. -//================================================================================================== -void Opal::Operator::ComputeKeyScaleLevel() { - - static const uint16_t levtab[] = { - 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 12, 16, 20, 24, 28, 32, - 0, 0, 0, 0, 0, 12, 20, 28, 32, 40, 44, 48, 52, 56, 60, 64, - 0, 0, 0, 20, 32, 44, 52, 60, 64, 72, 76, 80, 84, 88, 92, 96, - 0, 0, 32, 52, 64, 76, 84, 92, 96, 104, 108, 112, 116, 120, 124, 128, - 0, 32, 64, 84, 96, 108, 116, 124, 128, 136, 140, 144, 148, 152, 156, 160, - 0, 64, 96, 116, 128, 140, 148, 156, 160, 168, 172, 176, 180, 184, 188, 192, - 0, 96, 128, 148, 160, 172, 180, 188, 192, 200, 204, 208, 212, 216, 220, 224, - }; - - // This uses a combined value of the top four bits of frequency with the octave/block - uint16_t i = (Chan->GetOctave() << 4) | (Chan->GetFreq() >> 6); - KeyScaleLevel = levtab[i] >> KeyScaleShift; -} |