aboutsummaryrefslogtreecommitdiff
path: root/src/chips/dosbox/dbopl.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/chips/dosbox/dbopl.cpp')
-rw-r--r--src/chips/dosbox/dbopl.cpp2045
1 files changed, 2045 insertions, 0 deletions
diff --git a/src/chips/dosbox/dbopl.cpp b/src/chips/dosbox/dbopl.cpp
new file mode 100644
index 0000000..8834524
--- /dev/null
+++ b/src/chips/dosbox/dbopl.cpp
@@ -0,0 +1,2045 @@
+//#ifdef ADLMIDI_USE_DOSBOX_OPL
+
+#ifdef __MINGW32__
+typedef struct vswprintf {} swprintf;
+#endif
+/*
+ * Copyright (C) 2002-2010 The DOSBox Team
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
+ */
+
+/*
+ DOSBox implementation of a combined Yamaha YMF262 and Yamaha YM3812 emulator.
+ Enabling the opl3 bit will switch the emulator to stereo opl3 output instead of regular mono opl2
+ Except for the table generation it's all integer math
+ Can choose different types of generators, using muls and bigger tables, try different ones for slower platforms
+ The generation was based on the MAME implementation but tried to have it use less memory and be faster in general
+ MAME uses much bigger envelope tables and this will be the biggest cause of it sounding different at times
+
+ //TODO Don't delay first operator 1 sample in opl3 mode
+ //TODO Maybe not use class method pointers but a regular function pointers with operator as first parameter
+ //TODO Fix panning for the Percussion channels, would any opl3 player use it and actually really change it though?
+ //TODO Check if having the same accuracy in all frequency multipliers sounds better or not
+
+ //DUNNO Keyon in 4op, switch to 2op without keyoff.
+*/
+
+/* $Id: dbopl.cpp,v 1.10 2009-06-10 19:54:51 harekiet Exp $ */
+
+
+#include <math.h>
+#include <stdlib.h>
+#include <string.h>
+#include "dbopl.h"
+
+#define DB_MAX(x, y) ((x) > (y) ? (x) : (y))
+#define DB_MIN(x, y) ((x) < (y) ? (x) : (y))
+
+#define DBOPL_CLAMP(V, MIN, MAX) DB_MAX(DB_MIN(V, (MAX)), (MIN))
+
+#ifndef PI
+#define PI 3.14159265358979323846
+#endif
+
+namespace DBOPL
+{
+
+#define OPLRATE ((double)(14318180.0 / 288.0))
+#define TREMOLO_TABLE 52
+
+ //Try to use most precision for frequencies
+ //Else try to keep different waves in synch
+ //#define WAVE_PRECISION 1
+ #ifndef WAVE_PRECISION
+ //Wave bits available in the top of the 32bit range
+ //Original adlib uses 10.10, we use 10.22
+#define WAVE_BITS 10
+ #else
+ //Need some extra bits at the top to have room for octaves and frequency multiplier
+ //We support to 8 times lower rate
+ //128 * 15 * 8 = 15350, 2^13.9, so need 14 bits
+#define WAVE_BITS 14
+ #endif
+#define WAVE_SH ( 32 - WAVE_BITS )
+#define WAVE_MASK ( ( 1 << WAVE_SH ) - 1 )
+
+ //Use the same accuracy as the waves
+#define LFO_SH ( WAVE_SH - 10 )
+ //LFO is controlled by our tremolo 256 sample limit
+#define LFO_MAX ( 256 << ( LFO_SH ) )
+
+
+ //Maximum amount of attenuation bits
+ //Envelope goes to 511, 9 bits
+ #if (DBOPL_WAVE == WAVE_TABLEMUL )
+ //Uses the value directly
+#define ENV_BITS ( 9 )
+ #else
+ //Add 3 bits here for more accuracy and would have to be shifted up either way
+#define ENV_BITS ( 9 )
+ #endif
+ //Limits of the envelope with those bits and when the envelope goes silent
+#define ENV_MIN 0
+#define ENV_EXTRA ( ENV_BITS - 9 )
+#define ENV_MAX ( 511 << ENV_EXTRA )
+#define ENV_LIMIT ( ( 12 * 256) >> ( 3 - ENV_EXTRA ) )
+#define ENV_SILENT( _X_ ) ( (_X_) >= ENV_LIMIT )
+
+ //Attack/decay/release rate counter shift
+#define RATE_SH 24
+#define RATE_MASK ( ( 1 << RATE_SH ) - 1 )
+ //Has to fit within 16bit lookuptable
+#define MUL_SH 16
+
+ //Check some ranges
+ #if ENV_EXTRA > 3
+#error Too many envelope bits
+ #endif
+
+
+ //How much to substract from the base value for the final attenuation
+ static const Bit8u KslCreateTable[16] =
+ {
+ //0 will always be be lower than 7 * 8
+ 64, 32, 24, 19,
+ 16, 12, 11, 10,
+ 8, 6, 5, 4,
+ 3, 2, 1, 0,
+ };
+
+#define M(_X_) ((Bit8u)( (_X_) * 2))
+ static const Bit8u FreqCreateTable[16] =
+ {
+ M(0.5), M(1), M(2), M(3), M(4), M(5), M(6), M(7),
+ M(8), M(9), M(10), M(10), M(12), M(12), M(15), M(15)
+ };
+#undef M
+
+ //We're not including the highest attack rate, that gets a special value
+ static const Bit8u AttackSamplesTable[13] =
+ {
+ 69, 55, 46, 40,
+ 35, 29, 23, 20,
+ 19, 15, 11, 10,
+ 9
+ };
+ //On a real opl these values take 8 samples to reach and are based upon larger tables
+ static const Bit8u EnvelopeIncreaseTable[13] =
+ {
+ 4, 5, 6, 7,
+ 8, 10, 12, 14,
+ 16, 20, 24, 28,
+ 32,
+ };
+
+ #if ( DBOPL_WAVE == WAVE_HANDLER ) || ( DBOPL_WAVE == WAVE_TABLELOG )
+ static Bit16u ExpTable[ 256 ];
+ #endif
+
+ #if ( DBOPL_WAVE == WAVE_HANDLER )
+ //PI table used by WAVEHANDLER
+ static Bit16u SinTable[ 512 ];
+ #endif
+
+ #if ( DBOPL_WAVE > WAVE_HANDLER )
+ //Layout of the waveform table in 512 entry intervals
+ //With overlapping waves we reduce the table to half it's size
+
+ // | |//\\|____|WAV7|//__|/\ |____|/\/\|
+ // |\\//| | |WAV7| | \/| | |
+ // |06 |0126|17 |7 |3 |4 |4 5 |5 |
+
+ //6 is just 0 shifted and masked
+
+ static Bit16s WaveTable[ 8 * 512 ];
+ //Distance into WaveTable the wave starts
+ static const Bit16u WaveBaseTable[8] =
+ {
+ 0x000, 0x200, 0x200, 0x800,
+ 0xa00, 0xc00, 0x100, 0x400,
+
+ };
+ //Mask the counter with this
+ static const Bit16u WaveMaskTable[8] =
+ {
+ 1023, 1023, 511, 511,
+ 1023, 1023, 512, 1023,
+ };
+
+ //Where to start the counter on at keyon
+ static const Bit16u WaveStartTable[8] =
+ {
+ 512, 0, 0, 0,
+ 0, 512, 512, 256,
+ };
+ #endif
+
+ #if ( DBOPL_WAVE == WAVE_TABLEMUL )
+ static Bit16u MulTable[ 384 ];
+ #endif
+
+ static Bit8u KslTable[ 8 * 16 ];
+ static Bit8u TremoloTable[ TREMOLO_TABLE ];
+ //Start of a channel behind the chip struct start
+ static Bit16u ChanOffsetTable[32];
+ //Start of an operator behind the chip struct start
+ static Bit16u OpOffsetTable[64];
+
+ //The lower bits are the shift of the operator vibrato value
+ //The highest bit is right shifted to generate -1 or 0 for negation
+ //So taking the highest input value of 7 this gives 3, 7, 3, 0, -3, -7, -3, 0
+ static const Bit8s VibratoTable[ 8 ] =
+ {
+ 1 - 0x00, 0 - 0x00, 1 - 0x00, 30 - 0x00,
+ 1 - 0x80, 0 - 0x80, 1 - 0x80, 30 - 0x80
+ };
+
+ //Shift strength for the ksl value determined by ksl strength
+ static const Bit8u KslShiftTable[4] =
+ {
+ 31, 1, 2, 0
+ };
+
+ //Generate a table index and table shift value using input value from a selected rate
+ static void EnvelopeSelect(Bit8u val, Bit8u &index, Bit8u &shift)
+ {
+ if(val < 13 * 4) //Rate 0 - 12
+ {
+ shift = 12 - (val >> 2);
+ index = val & 3;
+ }
+ else if(val < 15 * 4) //rate 13 - 14
+ {
+ shift = 0;
+ index = val - 12 * 4;
+ }
+ else //rate 15 and up
+ {
+ shift = 0;
+ index = 12;
+ }
+ }
+
+ #if ( DBOPL_WAVE == WAVE_HANDLER )
+ /*
+ Generate the different waveforms out of the sine/exponetial table using handlers
+ */
+ static inline Bits MakeVolume(Bitu wave, Bitu volume)
+ {
+ Bitu total = wave + volume;
+ Bitu index = total & 0xff;
+ Bitu sig = ExpTable[ index ];
+ Bitu exp = total >> 8;
+ #if 0
+
+ //Check if we overflow the 31 shift limit
+ if(exp >= 32)
+ LOG_MSG("WTF %d %d", total, exp);
+
+ #endif
+ return (sig >> exp);
+ };
+
+ static Bits DB_FASTCALL WaveForm0(Bitu i, Bitu volume)
+ {
+ Bits neg = 0 - ((i >> 9) & 1); //Create ~0 or 0
+ Bitu wave = SinTable[i & 511];
+ return (MakeVolume(wave, volume) ^ neg) - neg;
+ }
+ static Bits DB_FASTCALL WaveForm1(Bitu i, Bitu volume)
+ {
+ Bit32u wave = SinTable[i & 511];
+ wave |= (((i ^ 512) & 512) - 1) >> (32 - 12);
+ return MakeVolume(wave, volume);
+ }
+ static Bits DB_FASTCALL WaveForm2(Bitu i, Bitu volume)
+ {
+ Bitu wave = SinTable[i & 511];
+ return MakeVolume(wave, volume);
+ }
+ static Bits DB_FASTCALL WaveForm3(Bitu i, Bitu volume)
+ {
+ Bitu wave = SinTable[i & 255];
+ wave |= (((i ^ 256) & 256) - 1) >> (32 - 12);
+ return MakeVolume(wave, volume);
+ }
+ static Bits DB_FASTCALL WaveForm4(Bitu i, Bitu volume)
+ {
+ //Twice as fast
+ i <<= 1;
+ Bits neg = 0 - ((i >> 9) & 1); //Create ~0 or 0
+ Bitu wave = SinTable[i & 511];
+ wave |= (((i ^ 512) & 512) - 1) >> (32 - 12);
+ return (MakeVolume(wave, volume) ^ neg) - neg;
+ }
+ static Bits DB_FASTCALL WaveForm5(Bitu i, Bitu volume)
+ {
+ //Twice as fast
+ i <<= 1;
+ Bitu wave = SinTable[i & 511];
+ wave |= (((i ^ 512) & 512) - 1) >> (32 - 12);
+ return MakeVolume(wave, volume);
+ }
+ static Bits DB_FASTCALL WaveForm6(Bitu i, Bitu volume)
+ {
+ Bits neg = 0 - ((i >> 9) & 1); //Create ~0 or 0
+ return (MakeVolume(0, volume) ^ neg) - neg;
+ }
+ static Bits DB_FASTCALL WaveForm7(Bitu i, Bitu volume)
+ {
+ //Negative is reversed here
+ Bits neg = ((i >> 9) & 1) - 1;
+ Bitu wave = (i << 3);
+ //When negative the volume also runs backwards
+ wave = ((wave ^ neg) - neg) & 4095;
+ return (MakeVolume(wave, volume) ^ neg) - neg;
+ }
+
+ static const WaveHandler WaveHandlerTable[8] =
+ {
+ WaveForm0, WaveForm1, WaveForm2, WaveForm3,
+ WaveForm4, WaveForm5, WaveForm6, WaveForm7
+ };
+
+ #endif
+
+ /*
+ Operator
+ */
+
+ //We zero out when rate == 0
+ inline void Operator::UpdateAttack(const Chip *chip)
+ {
+ Bit8u rate = reg60 >> 4;
+
+ if(rate)
+ {
+ Bit8u val = (rate << 2) + ksr;
+ attackAdd = chip->attackRates[ val ];
+ rateZero &= ~(1 << ATTACK);
+ }
+ else
+ {
+ attackAdd = 0;
+ rateZero |= (1 << ATTACK);
+ }
+ }
+ inline void Operator::UpdateDecay(const Chip *chip)
+ {
+ Bit8u rate = reg60 & 0xf;
+
+ if(rate)
+ {
+ Bit8u val = (rate << 2) + ksr;
+ decayAdd = chip->linearRates[ val ];
+ rateZero &= ~(1 << DECAY);
+ }
+ else
+ {
+ decayAdd = 0;
+ rateZero |= (1 << DECAY);
+ }
+ }
+ inline void Operator::UpdateRelease(const Chip *chip)
+ {
+ Bit8u rate = reg80 & 0xf;
+
+ if(rate)
+ {
+ Bit8u val = (rate << 2) + ksr;
+ releaseAdd = chip->linearRates[ val ];
+ rateZero &= ~(1 << RELEASE);
+
+ if(!(reg20 & MASK_SUSTAIN))
+ rateZero &= ~(1 << SUSTAIN);
+ }
+ else
+ {
+ rateZero |= (1 << RELEASE);
+ releaseAdd = 0;
+
+ if(!(reg20 & MASK_SUSTAIN))
+ rateZero |= (1 << SUSTAIN);
+ }
+ }
+
+ inline void Operator::UpdateAttenuation()
+ {
+ Bit8u kslBase = (Bit8u)((chanData >> SHIFT_KSLBASE) & 0xff);
+ Bit32u tl = reg40 & 0x3f;
+ Bit8u kslShift = KslShiftTable[ reg40 >> 6 ];
+ //Make sure the attenuation goes to the right bits
+ totalLevel = tl << (ENV_BITS - 7); //Total level goes 2 bits below max
+ totalLevel += (kslBase << ENV_EXTRA) >> kslShift;
+ }
+
+ void Operator::UpdateFrequency()
+ {
+ Bit32u freq = chanData & ((1 << 10) - 1);
+ Bit32u block = (chanData >> 10) & 0xff;
+ #ifdef WAVE_PRECISION
+ block = 7 - block;
+ waveAdd = (freq * freqMul) >> block;
+ #else
+ waveAdd = (freq << block) * freqMul;
+ #endif
+
+ if(reg20 & MASK_VIBRATO)
+ {
+ vibStrength = (Bit8u)(freq >> 7);
+ #ifdef WAVE_PRECISION
+ vibrato = (vibStrength * freqMul) >> block;
+ #else
+ vibrato = (vibStrength << block) * freqMul;
+ #endif
+ }
+ else
+ {
+ vibStrength = 0;
+ vibrato = 0;
+ }
+ }
+
+ void Operator::UpdateRates(const Chip *chip)
+ {
+ //Mame seems to reverse this where enabling ksr actually lowers
+ //the rate, but pdf manuals says otherwise?
+ Bit8u newKsr = (Bit8u)((chanData >> SHIFT_KEYCODE) & 0xff);
+
+ if(!(reg20 & MASK_KSR))
+ newKsr >>= 2;
+
+ if(ksr == newKsr)
+ return;
+
+ ksr = newKsr;
+ UpdateAttack(chip);
+ UpdateDecay(chip);
+ UpdateRelease(chip);
+ }
+
+ INLINE Bit32s Operator::RateForward(Bit32u add)
+ {
+ rateIndex += add;
+ Bit32s ret = rateIndex >> RATE_SH;
+ rateIndex = rateIndex & RATE_MASK;
+ return ret;
+ }
+
+ template< Operator::State yes>
+ Bits Operator::TemplateVolume()
+ {
+ Bit32s vol = volume;
+ Bit32s change;
+
+ switch(yes)
+ {
+ case OFF:
+ return ENV_MAX;
+
+ case ATTACK:
+ change = RateForward(attackAdd);
+
+ if(!change)
+ return vol;
+
+ vol += ((~vol) * change) >> 3;
+
+ if(vol < ENV_MIN)
+ {
+ volume = ENV_MIN;
+ rateIndex = 0;
+ SetState(DECAY);
+ return ENV_MIN;
+ }
+
+ break;
+
+ case DECAY:
+ vol += RateForward(decayAdd);
+
+ if(GCC_UNLIKELY(vol >= sustainLevel))
+ {
+ //Check if we didn't overshoot max attenuation, then just go off
+ if(GCC_UNLIKELY(vol >= ENV_MAX))
+ {
+ volume = ENV_MAX;
+ SetState(OFF);
+ return ENV_MAX;
+ }
+
+ //Continue as sustain
+ rateIndex = 0;
+ SetState(SUSTAIN);
+ }
+
+ break;
+
+ case SUSTAIN:
+ if(reg20 & MASK_SUSTAIN)
+ return vol;
+
+ //In sustain phase, but not sustaining, do regular release
+ case RELEASE:
+ vol += RateForward(releaseAdd);;
+
+ if(GCC_UNLIKELY(vol >= ENV_MAX))
+ {
+ volume = ENV_MAX;
+ SetState(OFF);
+ return ENV_MAX;
+ }
+
+ break;
+ }
+
+ volume = vol;
+ return vol;
+ }
+
+ static const VolumeHandler VolumeHandlerTable[5] =
+ {
+ &Operator::TemplateVolume< Operator::OFF >,
+ &Operator::TemplateVolume< Operator::RELEASE >,
+ &Operator::TemplateVolume< Operator::SUSTAIN >,
+ &Operator::TemplateVolume< Operator::DECAY >,
+ &Operator::TemplateVolume< Operator::ATTACK >
+ };
+
+ INLINE Bitu Operator::ForwardVolume()
+ {
+ return currentLevel + (this->*volHandler)();
+ }
+
+
+ INLINE Bitu Operator::ForwardWave()
+ {
+ waveIndex += waveCurrent;
+ return waveIndex >> WAVE_SH;
+ }
+
+ void Operator::Write20(const Chip *chip, Bit8u val)
+ {
+ Bit8u change = (reg20 ^ val);
+
+ if(!change)
+ return;
+
+ reg20 = val;
+ //Shift the tremolo bit over the entire register, saved a branch, YES!
+ tremoloMask = (Bit8s)(val) >> 7;
+ tremoloMask &= ~((1 << ENV_EXTRA) - 1);
+
+ //Update specific features based on changes
+ if(change & MASK_KSR)
+ UpdateRates(chip);
+
+ //With sustain enable the volume doesn't change
+ if(reg20 & MASK_SUSTAIN || (!releaseAdd))
+ rateZero |= (1 << SUSTAIN);
+ else
+ rateZero &= ~(1 << SUSTAIN);
+
+ //Frequency multiplier or vibrato changed
+ if(change & (0xf | MASK_VIBRATO))
+ {
+ freqMul = chip->freqMul[ val & 0xf ];
+ UpdateFrequency();
+ }
+ }
+
+ void Operator::Write40(const Chip * /*chip*/, Bit8u val)
+ {
+ if(!(reg40 ^ val))
+ return;
+
+ reg40 = val;
+ UpdateAttenuation();
+ }
+
+ void Operator::Write60(const Chip *chip, Bit8u val)
+ {
+ Bit8u change = reg60 ^ val;
+ reg60 = val;
+
+ if(change & 0x0f)
+ UpdateDecay(chip);
+
+ if(change & 0xf0)
+ UpdateAttack(chip);
+ }
+
+ void Operator::Write80(const Chip *chip, Bit8u val)
+ {
+ Bit8u change = (reg80 ^ val);
+
+ if(!change)
+ return;
+
+ reg80 = val;
+ Bit8u sustain = val >> 4;
+ //Turn 0xf into 0x1f
+ sustain |= (sustain + 1) & 0x10;
+ sustainLevel = sustain << (ENV_BITS - 5);
+
+ if(change & 0x0f)
+ UpdateRelease(chip);
+ }
+
+ void Operator::WriteE0(const Chip *chip, Bit8u val)
+ {
+ if(!(regE0 ^ val))
+ return;
+
+ //in opl3 mode you can always selet 7 waveforms regardless of waveformselect
+ Bit8u waveForm = val & ((0x3 & chip->waveFormMask) | (0x7 & chip->opl3Active));
+ regE0 = val;
+ #if ( DBOPL_WAVE == WAVE_HANDLER )
+ waveHandler = WaveHandlerTable[ waveForm ];
+ #else
+ waveBase = WaveTable + WaveBaseTable[ waveForm ];
+ waveStart = WaveStartTable[ waveForm ] << WAVE_SH;
+ waveMask = WaveMaskTable[ waveForm ];
+ #endif
+ }
+
+ INLINE void Operator::SetState(Bit8u s)
+ {
+ state = s;
+ volHandler = VolumeHandlerTable[ s ];
+ }
+
+ INLINE bool Operator::Silent() const
+ {
+ if(!ENV_SILENT(totalLevel + volume))
+ return false;
+
+ if(!(rateZero & (1 << state)))
+ return false;
+
+ return true;
+ }
+
+ INLINE void Operator::Prepare(const Chip *chip)
+ {
+ currentLevel = totalLevel + (chip->tremoloValue & tremoloMask);
+ waveCurrent = waveAdd;
+
+ if(vibStrength >> chip->vibratoShift)
+ {
+ Bit32s add = vibrato >> chip->vibratoShift;
+ //Sign extend over the shift value
+ Bit32s neg = chip->vibratoSign;
+ //Negate the add with -1 or 0
+ add = (add ^ neg) - neg;
+ waveCurrent += add;
+ }
+ }
+
+ void Operator::KeyOn(Bit8u mask)
+ {
+ if(!keyOn)
+ {
+ //Restart the frequency generator
+ #if ( DBOPL_WAVE > WAVE_HANDLER )
+ waveIndex = waveStart;
+ #else
+ waveIndex = 0;
+ #endif
+ rateIndex = 0;
+ SetState(ATTACK);
+ }
+
+ keyOn |= mask;
+ }
+
+ void Operator::KeyOff(Bit8u mask)
+ {
+ keyOn &= ~mask;
+
+ if(!keyOn)
+ {
+ if(state != OFF)
+ SetState(RELEASE);
+ }
+ }
+
+ INLINE Bits Operator::GetWave(Bitu index, Bitu vol)
+ {
+ #if ( DBOPL_WAVE == WAVE_HANDLER )
+ return waveHandler(index, vol << (3 - ENV_EXTRA));
+ #elif ( DBOPL_WAVE == WAVE_TABLEMUL )
+ return (waveBase[ index & waveMask ] * MulTable[ vol >> ENV_EXTRA ]) >> MUL_SH;
+ #elif ( DBOPL_WAVE == WAVE_TABLELOG )
+ Bit32s wave = waveBase[ index & waveMask ];
+ Bit32u total = (wave & 0x7fff) + vol << (3 - ENV_EXTRA);
+ Bit32s sig = ExpTable[ total & 0xff ];
+ Bit32u exp = total >> 8;
+ Bit32s neg = wave >> 16;
+ return ((sig ^ neg) - neg) >> exp;
+ #else
+#error "No valid wave routine"
+ #endif
+ }
+
+ Bits INLINE Operator::GetSample(Bits modulation)
+ {
+ Bitu vol = ForwardVolume();
+
+ if(ENV_SILENT(vol))
+ {
+ //Simply forward the wave
+ waveIndex += waveCurrent;
+ return 0;
+ }
+ else
+ {
+ Bitu index = ForwardWave();
+ index += modulation;
+ return GetWave(index, vol);
+ }
+ }
+
+ Operator::Operator()
+ {
+ chanData = 0;
+ freqMul = 0;
+ waveIndex = 0;
+ waveAdd = 0;
+ waveCurrent = 0;
+ keyOn = 0;
+ ksr = 0;
+ reg20 = 0;
+ reg40 = 0;
+ reg60 = 0;
+ reg80 = 0;
+ regE0 = 0;
+ SetState(OFF);
+ rateZero = (1 << OFF);
+ sustainLevel = ENV_MAX;
+ currentLevel = ENV_MAX;
+ totalLevel = ENV_MAX;
+ volume = ENV_MAX;
+ releaseAdd = 0;
+ }
+
+ /*
+ Channel
+ */
+
+ Channel::Channel()
+ {
+ old[0] = old[1] = 0;
+ chanData = 0;
+ regB0 = 0;
+ regC0 = 0;
+ maskLeft = -1;
+ maskRight = -1;
+ feedback = 31;
+ fourMask = 0;
+ synthHandler = &Channel::BlockTemplate< sm2FM >;
+ }
+
+ void Channel::SetChanData(const Chip *chip, Bit32u data)
+ {
+ Bit32u change = chanData ^ data;
+ chanData = data;
+ Op(0)->chanData = data;
+ Op(1)->chanData = data;
+ //Since a frequency update triggered this, always update frequency
+ Op(0)->UpdateFrequency();
+ Op(1)->UpdateFrequency();
+
+ if(change & (0xff << SHIFT_KSLBASE))
+ {
+ Op(0)->UpdateAttenuation();
+ Op(1)->UpdateAttenuation();
+ }
+
+ if(change & (0xff << SHIFT_KEYCODE))
+ {
+ Op(0)->UpdateRates(chip);
+ Op(1)->UpdateRates(chip);
+ }
+ }
+
+ void Channel::UpdateFrequency(const Chip *chip, Bit8u fourOp)
+ {
+ //Extrace the frequency bits
+ Bit32u data = chanData & 0xffff;
+ Bit32u kslBase = KslTable[ data >> 6 ];
+ Bit32u keyCode = (data & 0x1c00) >> 9;
+
+ if(chip->reg08 & 0x40)
+ {
+ keyCode |= (data & 0x100) >> 8; /* notesel == 1 */
+ }
+ else
+ {
+ keyCode |= (data & 0x200) >> 9; /* notesel == 0 */
+ }
+
+ //Add the keycode and ksl into the highest bits of chanData
+ data |= (keyCode << SHIFT_KEYCODE) | (kslBase << SHIFT_KSLBASE);
+ (this + 0)->SetChanData(chip, data);
+
+ if(fourOp & 0x3f)
+ (this + 1)->SetChanData(chip, data);
+ }
+
+ void Channel::WriteA0(const Chip *chip, Bit8u val)
+ {
+ Bit8u fourOp = chip->reg104 & chip->opl3Active & fourMask;
+
+ //Don't handle writes to silent fourop channels
+ if(fourOp > 0x80)
+ return;
+
+ Bit32u change = (chanData ^ val) & 0xff;
+
+ if(change)
+ {
+ chanData ^= change;
+ UpdateFrequency(chip, fourOp);
+ }
+ }
+
+ void Channel::WriteB0(const Chip *chip, Bit8u val)
+ {
+ Bit8u fourOp = chip->reg104 & chip->opl3Active & fourMask;
+
+ //Don't handle writes to silent fourop channels
+ if(fourOp > 0x80)
+ return;
+
+ Bitu change = (chanData ^ (val << 8)) & 0x1f00;
+
+ if(change)
+ {
+ chanData ^= change;
+ UpdateFrequency(chip, fourOp);
+ }
+
+ //Check for a change in the keyon/off state
+ if(!((val ^ regB0) & 0x20))
+ return;
+
+ regB0 = val;
+
+ if(val & 0x20)
+ {
+ Op(0)->KeyOn(0x1);
+ Op(1)->KeyOn(0x1);
+
+ if(fourOp & 0x3f)
+ {
+ (this + 1)->Op(0)->KeyOn(1);
+ (this + 1)->Op(1)->KeyOn(1);
+ }
+ }
+ else
+ {
+ Op(0)->KeyOff(0x1);
+ Op(1)->KeyOff(0x1);
+
+ if(fourOp & 0x3f)
+ {
+ (this + 1)->Op(0)->KeyOff(1);
+ (this + 1)->Op(1)->KeyOff(1);
+ }
+ }
+ }
+
+ void Channel::WriteC0(const Chip *chip, Bit8u val)
+ {
+ Bit8u change = val ^ regC0;
+
+ if(!change)
+ return;
+
+ regC0 = val;
+ feedback = (val >> 1) & 7;
+
+ if(feedback)
+ {
+ //We shift the input to the right 10 bit wave index value
+ feedback = 9 - feedback;
+ }
+ else
+ feedback = 31;
+
+ //Select the new synth mode
+ if(chip->opl3Active)
+ {
+ //4-op mode enabled for this channel
+ if((chip->reg104 & fourMask) & 0x3f)
+ {
+ Channel *chan0, *chan1;
+
+ //Check if it's the 2nd channel in a 4-op
+ if(!(fourMask & 0x80))
+ {
+ chan0 = this;
+ chan1 = this + 1;
+ }
+ else
+ {
+ chan0 = this - 1;
+ chan1 = this;
+ }
+
+ Bit8u synth = ((chan0->regC0 & 1) << 0) | ((chan1->regC0 & 1) << 1);
+
+ switch(synth)
+ {
+ case 0:
+ chan0->synthHandler = &Channel::BlockTemplate< sm3FMFM >;
+ break;
+
+ case 1:
+ chan0->synthHandler = &Channel::BlockTemplate< sm3AMFM >;
+ break;
+
+ case 2:
+ chan0->synthHandler = &Channel::BlockTemplate< sm3FMAM >;
+ break;
+
+ case 3:
+ chan0->synthHandler = &Channel::BlockTemplate< sm3AMAM >;
+ break;
+ }
+
+ //Disable updating percussion channels
+ }
+ else if((fourMask & 0x40) && (chip->regBD & 0x20))
+ {
+ //Regular dual op, am or fm
+ }
+ else if(val & 1)
+ synthHandler = &Channel::BlockTemplate< sm3AM >;
+ else
+ synthHandler = &Channel::BlockTemplate< sm3FM >;
+
+ maskLeft = (val & 0x10) ? -1 : 0;
+ maskRight = (val & 0x20) ? -1 : 0;
+ //opl2 active
+ }
+ else
+ {
+ //Disable updating percussion channels
+ if((fourMask & 0x40) && (chip->regBD & 0x20))
+ {
+ //Regular dual op, am or fm
+ }
+ else if(val & 1)
+ synthHandler = &Channel::BlockTemplate< sm2AM >;
+ else
+ synthHandler = &Channel::BlockTemplate< sm2FM >;
+ }
+ }
+
+ void Channel::ResetC0(const Chip *chip)
+ {
+ Bit8u val = regC0;
+ regC0 ^= 0xff;
+ WriteC0(chip, val);
+ }
+
+ template< bool opl3Mode>
+ INLINE void Channel::GeneratePercussion(Chip *chip, Bit32s *output)
+ {
+ Channel *chan = this;
+ //BassDrum
+ Bit32s mod = (Bit32u)((old[0] + old[1])) >> feedback;
+ old[0] = old[1];
+ old[1] = Op(0)->GetSample(mod);
+
+ //When bassdrum is in AM mode first operator is ignoed
+ if(chan->regC0 & 1)
+ mod = 0;
+ else
+ mod = old[0];
+
+ Bit32s sample = Op(1)->GetSample(mod);
+ //Precalculate stuff used by other outputs
+ Bit32u noiseBit = chip->ForwardNoise() & 0x1;
+ Bit32u c2 = Op(2)->ForwardWave();
+ Bit32u c5 = Op(5)->ForwardWave();
+ Bit32u phaseBit = (((c2 & 0x88) ^ ((c2 << 5) & 0x80)) | ((c5 ^ (c5 << 2)) & 0x20)) ? 0x02 : 0x00;
+ //Hi-Hat
+ Bit32u hhVol = Op(2)->ForwardVolume();
+
+ if(!ENV_SILENT(hhVol))
+ {
+ Bit32u hhIndex = (phaseBit << 8) | (0x34 << (phaseBit ^ (noiseBit << 1)));
+ sample += Op(2)->GetWave(hhIndex, hhVol);
+ }
+
+ //Snare Drum
+ Bit32u sdVol = Op(3)->ForwardVolume();
+
+ if(!ENV_SILENT(sdVol))
+ {
+ Bit32u sdIndex = (0x100 + (c2 & 0x100)) ^ (noiseBit << 8);
+ sample += Op(3)->GetWave(sdIndex, sdVol);
+ }
+
+ //Tom-tom
+ sample += Op(4)->GetSample(0);
+ //Top-Cymbal
+ Bit32u tcVol = Op(5)->ForwardVolume();
+
+ if(!ENV_SILENT(tcVol))
+ {
+ Bit32u tcIndex = (1 + phaseBit) << 8;
+ sample += Op(5)->GetWave(tcIndex, tcVol);
+ }
+
+ sample <<= 1;
+
+ if(opl3Mode)
+ {
+ output[0] += sample;
+ output[1] += sample;
+ }
+ else
+ output[0] += sample;
+ }
+
+ template<SynthMode mode>
+ Channel *Channel::BlockTemplate(Chip *chip, Bit32u samples, Bit32s *output)
+ {
+ switch(mode)
+ {
+ case sm2AM:
+ case sm3AM:
+ if(Op(0)->Silent() && Op(1)->Silent())
+ {
+ old[0] = old[1] = 0;
+ return (this + 1);
+ }
+
+ break;
+
+ case sm2FM:
+ case sm3FM:
+ if(Op(1)->Silent())
+ {
+ old[0] = old[1] = 0;
+ return (this + 1);
+ }
+
+ break;
+
+ case sm3FMFM:
+ if(Op(3)->Silent())
+ {
+ old[0] = old[1] = 0;
+ return (this + 2);
+ }
+
+ break;
+
+ case sm3AMFM:
+ if(Op(0)->Silent() && Op(3)->Silent())
+ {
+ old[0] = old[1] = 0;
+ return (this + 2);
+ }
+
+ break;
+
+ case sm3FMAM:
+ if(Op(1)->Silent() && Op(3)->Silent())
+ {
+ old[0] = old[1] = 0;
+ return (this + 2);
+ }
+
+ break;
+
+ case sm3AMAM:
+ if(Op(0)->Silent() && Op(2)->Silent() && Op(3)->Silent())
+ {
+ old[0] = old[1] = 0;
+ return (this + 2);
+ }
+
+ break;
+
+ default:
+ break;
+ }
+
+ //Init the operators with the the current vibrato and tremolo values
+ Op(0)->Prepare(chip);
+ Op(1)->Prepare(chip);
+
+ if(mode > sm4Start)
+ {
+ Op(2)->Prepare(chip);
+ Op(3)->Prepare(chip);
+ }
+
+ if(mode > sm6Start)
+ {
+ Op(4)->Prepare(chip);
+ Op(5)->Prepare(chip);
+ }
+
+ for(Bitu i = 0; i < samples; i++)
+ {
+ //Early out for percussion handlers
+ if(mode == sm2Percussion)
+ {
+ GeneratePercussion<false>(chip, output + i);
+ continue; //Prevent some unitialized value bitching
+ }
+ else if(mode == sm3Percussion)
+ {
+ GeneratePercussion<true>(chip, output + i * 2);
+ continue; //Prevent some unitialized value bitching
+ }
+
+ //Do unsigned shift so we can shift out all bits but still stay in 10 bit range otherwise
+ Bit32s mod = (Bit32u)((old[0] + old[1])) >> feedback;
+ old[0] = old[1];
+ old[1] = Op(0)->GetSample(mod);
+ Bit32s sample;
+ Bit32s out0 = old[0];
+
+ if(mode == sm2AM || mode == sm3AM)
+ sample = out0 + Op(1)->GetSample(0);
+ else if(mode == sm2FM || mode == sm3FM)
+ sample = Op(1)->GetSample(out0);
+ else if(mode == sm3FMFM)
+ {
+ Bits next = Op(1)->GetSample(out0);
+ next = Op(2)->GetSample(next);
+ sample = Op(3)->GetSample(next);
+ }
+ else if(mode == sm3AMFM)
+ {
+ sample = out0;
+ Bits next = Op(1)->GetSample(0);
+ next = Op(2)->GetSample(next);
+ sample += Op(3)->GetSample(next);
+ }
+ else if(mode == sm3FMAM)
+ {
+ sample = Op(1)->GetSample(out0);
+ Bits next = Op(2)->GetSample(0);
+ sample += Op(3)->GetSample(next);
+ }
+ else if(mode == sm3AMAM)
+ {
+ sample = out0;
+ Bits next = Op(1)->GetSample(0);
+ sample += Op(2)->GetSample(next);
+ sample += Op(3)->GetSample(0);
+ }
+
+ switch(mode)
+ {
+ case sm2AM:
+ case sm2FM:
+ output[ i ] += sample;
+ break;
+
+ case sm3AM:
+ case sm3FM:
+ case sm3FMFM:
+ case sm3AMFM:
+ case sm3FMAM:
+ case sm3AMAM:
+ output[ i * 2 + 0 ] += sample & maskLeft;
+ output[ i * 2 + 1 ] += sample & maskRight;
+ break;
+
+ default:
+ break;
+ }
+ }
+
+ switch(mode)
+ {
+ case sm2AM:
+ case sm2FM:
+ case sm3AM:
+ case sm3FM:
+ return (this + 1);
+
+ case sm3FMFM:
+ case sm3AMFM:
+ case sm3FMAM:
+ case sm3AMAM:
+ return(this + 2);
+
+ case sm2Percussion:
+ case sm3Percussion:
+ return(this + 3);
+ }
+
+ return 0;
+ }
+
+ /*
+ Chip
+ */
+
+ Chip::Chip()
+ {
+ reg08 = 0;
+ reg04 = 0;
+ regBD = 0;
+ reg104 = 0;
+ opl3Active = 0;
+ //Extra zeros!
+ vibratoIndex = 0;
+ tremoloIndex = 0;
+ vibratoSign = 0;
+ vibratoShift = 0;
+ tremoloValue = 0;
+ vibratoStrength = 0;
+ tremoloStrength = 0;
+ waveFormMask = 0;
+ lfoCounter = 0;
+ lfoAdd = 0;
+ noiseCounter = 0;
+ noiseAdd = 0;
+ noiseValue = 0;
+ memset(freqMul, 0, sizeof(Bit32u) * 16);
+ memset(linearRates, 0, sizeof(Bit32u) * 76);
+ memset(attackRates, 0, sizeof(Bit32u) * 76);
+ }
+
+ INLINE Bit32u Chip::ForwardNoise()
+ {
+ noiseCounter += noiseAdd;
+ Bitu count = noiseCounter >> LFO_SH;
+ noiseCounter &= WAVE_MASK;
+
+ for(; count > 0; --count)
+ {
+ //Noise calculation from mame
+ noiseValue ^= (0x800302) & (0 - (noiseValue & 1));
+ noiseValue >>= 1;
+ }
+
+ return noiseValue;
+ }
+
+ INLINE Bit32u Chip::ForwardLFO(Bit32u samples)
+ {
+ //Current vibrato value, runs 4x slower than tremolo
+ vibratoSign = (VibratoTable[ vibratoIndex >> 2]) >> 7;
+ vibratoShift = (VibratoTable[ vibratoIndex >> 2] & 7) + vibratoStrength;
+ tremoloValue = TremoloTable[ tremoloIndex ] >> tremoloStrength;
+ //Check hom many samples there can be done before the value changes
+ Bit32u todo = LFO_MAX - lfoCounter;
+ Bit32u count = (todo + lfoAdd - 1) / lfoAdd;
+
+ if(count > samples)
+ {
+ count = samples;
+ lfoCounter += count * lfoAdd;
+ }
+ else
+ {
+ lfoCounter += count * lfoAdd;
+ lfoCounter &= (LFO_MAX - 1);
+ //Maximum of 7 vibrato value * 4
+ vibratoIndex = (vibratoIndex + 1) & 31;
+
+ //Clip tremolo to the the table size
+ if(tremoloIndex + 1 < TREMOLO_TABLE)
+ ++tremoloIndex;
+ else
+ tremoloIndex = 0;
+ }
+
+ return count;
+ }
+
+
+ void Chip::WriteBD(Bit8u val)
+ {
+ Bit8u change = regBD ^ val;
+
+ if(!change)
+ return;
+
+ regBD = val;
+ //TODO could do this with shift and xor?
+ vibratoStrength = (val & 0x40) ? 0x00 : 0x01;
+ tremoloStrength = (val & 0x80) ? 0x00 : 0x02;
+
+ if(val & 0x20)
+ {
+ //Drum was just enabled, make sure channel 6 has the right synth
+ if(change & 0x20)
+ {
+ if(opl3Active)
+ chan[6].synthHandler = &Channel::BlockTemplate< sm3Percussion >;
+ else
+ chan[6].synthHandler = &Channel::BlockTemplate< sm2Percussion >;
+ }
+
+ //Bass Drum
+ if(val & 0x10)
+ {
+ chan[6].op[0].KeyOn(0x2);
+ chan[6].op[1].KeyOn(0x2);
+ }
+ else
+ {
+ chan[6].op[0].KeyOff(0x2);
+ chan[6].op[1].KeyOff(0x2);
+ }
+
+ //Hi-Hat
+ if(val & 0x1)
+ chan[7].op[0].KeyOn(0x2);
+ else
+ chan[7].op[0].KeyOff(0x2);
+
+ //Snare
+ if(val & 0x8)
+ chan[7].op[1].KeyOn(0x2);
+ else
+ chan[7].op[1].KeyOff(0x2);
+
+ //Tom-Tom
+ if(val & 0x4)
+ chan[8].op[0].KeyOn(0x2);
+ else
+ chan[8].op[0].KeyOff(0x2);
+
+ //Top Cymbal
+ if(val & 0x2)
+ chan[8].op[1].KeyOn(0x2);
+ else
+ chan[8].op[1].KeyOff(0x2);
+
+ //Toggle keyoffs when we turn off the percussion
+ }
+ else if(change & 0x20)
+ {
+ //Trigger a reset to setup the original synth handler
+ chan[6].ResetC0(this);
+ chan[6].op[0].KeyOff(0x2);
+ chan[6].op[1].KeyOff(0x2);
+ chan[7].op[0].KeyOff(0x2);
+ chan[7].op[1].KeyOff(0x2);
+ chan[8].op[0].KeyOff(0x2);
+ chan[8].op[1].KeyOff(0x2);
+ }
+ }
+
+
+#define REGOP( _FUNC_ ) \
+ index = ( ( reg >> 3) & 0x20 ) | ( reg & 0x1f ); \
+ if ( OpOffsetTable[ index ] ) { \
+ Operator* regOp = (Operator*)( ((char *)this ) + OpOffsetTable[ index ] ); \
+ regOp->_FUNC_( this, val ); \
+ }
+
+#define REGCHAN( _FUNC_ ) \
+ index = ( ( reg >> 4) & 0x10 ) | ( reg & 0xf ); \
+ if ( ChanOffsetTable[ index ] ) { \
+ Channel* regChan = (Channel*)( ((char *)this ) + ChanOffsetTable[ index ] ); \
+ regChan->_FUNC_( this, val ); \
+ }
+
+ void Chip::WriteReg(Bit32u reg, Bit8u val)
+ {
+ Bitu index = 0;
+
+ switch((reg & 0xf0) >> 4)
+ {
+ case 0x00 >> 4:
+ if(reg == 0x01)
+ waveFormMask = (val & 0x20) ? 0x7 : 0x0;
+ else if(reg == 0x104)
+ {
+ //Only detect changes in lowest 6 bits
+ if(!((reg104 ^ val) & 0x3f))
+ return;
+
+ //Always keep the highest bit enabled, for checking > 0x80
+ reg104 = 0x80 | (val & 0x3f);
+ }
+ else if(reg == 0x105)
+ {
+ //MAME says the real opl3 doesn't reset anything on opl3 disable/enable till the next write in another register
+ if(!((opl3Active ^ val) & 1))
+ return;
+
+ opl3Active = (val & 1) ? 0xff : 0;
+
+ //Update the 0xc0 register for all channels to signal the switch to mono/stereo handlers
+ for(int i = 0; i < 18; i++)
+ chan[i].ResetC0(this);
+ }
+ else if(reg == 0x08)
+ reg08 = val;
+
+ case 0x10 >> 4:
+ break;
+
+ case 0x20 >> 4:
+ case 0x30 >> 4:
+ REGOP(Write20);
+ break;
+
+ case 0x40 >> 4:
+ case 0x50 >> 4:
+ REGOP(Write40);
+ break;
+
+ case 0x60 >> 4:
+ case 0x70 >> 4:
+ REGOP(Write60);
+ break;
+
+ case 0x80 >> 4:
+ case 0x90 >> 4:
+ REGOP(Write80);
+ break;
+
+ case 0xa0 >> 4:
+ REGCHAN(WriteA0);
+ break;
+
+ case 0xb0 >> 4:
+ if(reg == 0xbd)
+ WriteBD(val);
+ else
+ REGCHAN(WriteB0);
+
+ break;
+
+ case 0xc0 >> 4:
+ REGCHAN(WriteC0);
+
+ case 0xd0 >> 4:
+ break;
+
+ case 0xe0 >> 4:
+ case 0xf0 >> 4:
+ REGOP(WriteE0);
+ break;
+ }
+ }
+
+
+ Bit32u Chip::WriteAddr(Bit32u port, Bit8u val)
+ {
+ switch(port & 3)
+ {
+ case 0:
+ return val;
+
+ case 2:
+ if(opl3Active || (val == 0x05))
+ return 0x100 | val;
+ else
+ return val;
+ }
+
+ return 0;
+ }
+
+ void Chip::GenerateBlock2(Bitu total, Bit32s *output)
+ {
+ while(total > 0)
+ {
+ Bit32u samples = ForwardLFO(total);
+ memset(output, 0, sizeof(Bit32s) * samples);
+ int count = 0;
+
+ for(Channel *ch = chan; ch < chan + 9;)
+ {
+ count++;
+ ch = (ch->*(ch->synthHandler))(this, samples, output);
+ }
+
+ total -= samples;
+ output += samples;
+ }
+ }
+
+ void Chip::GenerateBlock3(Bitu total, Bit32s *output)
+ {
+ while(total > 0)
+ {
+ Bit32u samples = ForwardLFO((Bit32u)total);
+ memset(output, 0, sizeof(Bit32s) * samples * 2);
+ int count = 0;
+
+ for(Channel *ch = chan; ch < chan + 18;)
+ {
+ count++;
+ ch = (ch->*(ch->synthHandler))(this, samples, output);
+ }
+
+ total -= samples;
+ output += samples * 2;
+ }
+ }
+
+ void Chip::GenerateBlock2_Mix(Bitu total, Bit32s *output)
+ {
+ while(total > 0)
+ {
+ Bit32u samples = ForwardLFO((Bit32u)total);
+ int count = 0;
+ for(Channel *ch = chan; ch < chan + 9;)
+ {
+ count++;
+ ch = (ch->*(ch->synthHandler))(this, samples, output);
+ }
+
+ total -= samples;
+ output += samples;
+ }
+ }
+
+ void Chip::GenerateBlock3_Mix(Bitu total, Bit32s *output)
+ {
+ while(total > 0)
+ {
+ Bit32u samples = ForwardLFO(total);
+ int count = 0;
+ for(Channel *ch = chan; ch < chan + 18;)
+ {
+ count++;
+ ch = (ch->*(ch->synthHandler))(this, samples, output);
+ }
+ total -= samples;
+ output += samples * 2;
+ }
+ }
+
+ void Chip::Setup(Bit32u rate)
+ {
+ double original = OPLRATE;
+ // double original = rate;
+ double scale = original / (double)rate;
+ //Noise counter is run at the same precision as general waves
+ noiseAdd = (Bit32u)(0.5 + scale * (1 << LFO_SH));
+ noiseCounter = 0;
+ noiseValue = 1; //Make sure it triggers the noise xor the first time
+ //The low frequency oscillation counter
+ //Every time his overflows vibrato and tremoloindex are increased
+ lfoAdd = (Bit32u)(0.5 + scale * (1 << LFO_SH));
+ lfoCounter = 0;
+ vibratoIndex = 0;
+ tremoloIndex = 0;
+ //With higher octave this gets shifted up
+ //-1 since the freqCreateTable = *2
+ #ifdef WAVE_PRECISION
+ double freqScale = (1 << 7) * scale * (1 << (WAVE_SH - 1 - 10));
+
+ for(int i = 0; i < 16; i++)
+ freqMul[i] = (Bit32u)(0.5 + freqScale * FreqCreateTable[ i ]);
+
+ #else
+ Bit32u freqScale = (Bit32u)(0.5 + scale * (1 << (WAVE_SH - 1 - 10)));
+
+ for(int i = 0; i < 16; i++)
+ freqMul[i] = freqScale * FreqCreateTable[ i ];
+
+ #endif
+
+ //-3 since the real envelope takes 8 steps to reach the single value we supply
+ for(Bit8u i = 0; i < 76; i++)
+ {
+ Bit8u index, shift;
+ EnvelopeSelect(i, index, shift);
+ linearRates[i] = (Bit32u)(scale * (EnvelopeIncreaseTable[ index ] << (RATE_SH + ENV_EXTRA - shift - 3)));
+ }
+
+ if(rate == 48000)
+ {
+ /* BISQWIT ADD: Use precalculated table for this common sample-rate.
+ * Because the actual generation code, below, is MOLASSES SLOW on DOS.
+ */
+ static const Bit32u precalculated_table[62] =
+ {
+ 2152, 2700, 3228, 3712, 4304, 5399, 6456, 7424, 8608, 10799, 12912, 14849, 17216, 21598,
+ 25824, 29698, 34432, 43196, 51650, 59398, 68864, 86392, 103310, 118795, 137746, 172847,
+ 206619, 237693, 275559, 345774, 413238, 475500, 543030, 678787, 814545, 950302, 1086060,
+ 1357575, 1629090, 1900605, 2172120, 2715151, 3258181, 3801211, 4344241, 5430302,
+ 6516362, 7602423, 8688483, 10860604, 13032725, 15204846, 17376967, 21721209, 26065451,
+ 30409693, 34753934, 43442418, 52130902, 60819386, 69507869, 69507869
+ };
+
+ for(Bit8u i = 0; i < 62; i++)
+ attackRates[i] = precalculated_table[i];
+ }
+ else if(rate == 44100)
+ {
+ static const Bit32u precalculated_table[62] =
+ {
+ 2342, 2939, 3513, 4040, 4685, 5877, 7027, 8081, 9369, 11754, 14054, 16162, 18738, 23508,
+ 28108, 32325, 37478, 47018, 56219, 64649, 74965, 94044, 112448, 129292, 149929, 188132,
+ 224945, 258713, 300002, 376263, 449999, 517550, 591053, 738816, 886579, 1034343, 1182106,
+ 1477633, 1773159, 2068686, 2364213, 2955266, 3546319, 4137373, 4728426, 5910533,
+ 7092639, 8274746, 9456853, 11821066, 14185279, 16549492, 18913706, 23642132, 28370559,
+ 33098985, 37827412, 47284265, 56741118, 66197971, 75654824, 75654824
+ };
+
+ for(Bit8u i = 0; i < 62; i++)
+ attackRates[i] = precalculated_table[i];
+ }
+ else if(rate == 22050)
+ {
+ static const Bit32u precalculated_table[62] =
+ {
+ 4685, 5877, 7027, 8081, 9369, 11754, 14054, 16162, 18738, 23508, 28108, 32325, 37478,
+ 47018, 56219, 64649, 74965, 94044, 112448, 129292, 149929, 188132, 224945, 258713, 300002,
+ 376263, 449999, 517550, 591053, 738816, 886579, 1034343, 1182106, 1477633, 1773159,
+ 2068686, 2364213, 2955266, 3546319, 4137373, 4728426, 5910533, 7092639, 8274746,
+ 9456853, 11821066, 14185279, 16549492, 18913706, 23642132, 28370559, 33098985,
+ 37827412, 47284265, 56741118, 66197971, 75654824, 94568530, 113482236, 132395942,
+ 151309648, 151309648
+ };
+
+ for(Bit8u i = 0; i < 62; i++)
+ attackRates[i] = precalculated_table[i];
+ }
+ //Generate the best matching attack rate
+ else for(Bit8u i = 0; i < 62; i++)
+ {
+ Bit8u index, shift;
+ EnvelopeSelect(i, index, shift);
+ //Original amount of samples the attack would take
+ Bit32s original = (Bit32u)((AttackSamplesTable[ index ] << shift) / scale);
+ Bit32s guessAdd = (Bit32u)(scale * (EnvelopeIncreaseTable[ index ] << (RATE_SH - shift - 3)));
+ Bit32s bestAdd = guessAdd;
+ Bit32u bestDiff = 1 << 30;
+
+ for(Bit32u passes = 0; passes < 16; passes ++)
+ {
+ Bit32s volume = ENV_MAX;
+ Bit32s samples = 0;
+ Bit32u count = 0;
+
+ while(volume > 0 && samples < original * 2)
+ {
+ count += guessAdd;
+ Bit32s change = count >> RATE_SH;
+ count &= RATE_MASK;
+
+ if(GCC_UNLIKELY(change)) // less than 1 %
+ volume += (~volume * change) >> 3;
+
+ samples++;
+ }
+
+ Bit32s diff = original - samples;
+ Bit32u lDiff = labs(diff);
+
+ //Init last on first pass
+ if(lDiff < bestDiff)
+ {
+ bestDiff = lDiff;
+ bestAdd = guessAdd;
+
+ if(!bestDiff)
+ break;
+ }
+
+ //Below our target
+ if(diff < 0)
+ {
+ //Better than the last time
+ Bit32s mul = ((original - diff) << 12) / original;
+ guessAdd = ((guessAdd * mul) >> 12);
+ guessAdd++;
+ }
+ else if(diff > 0)
+ {
+ Bit32s mul = ((original - diff) << 12) / original;
+ guessAdd = (guessAdd * mul) >> 12;
+ guessAdd--;
+ }
+ }
+
+ attackRates[i] = bestAdd;
+ }
+
+ /*fprintf(stderr, "attack rate table: ");
+ for ( Bit8u i = 0; i < 62; i++ )
+ fprintf(stderr, ",%u", attackRates[i]);
+ fprintf(stderr, "\n");*/
+
+ for(Bit8u i = 62; i < 76; i++)
+ {
+ //This should provide instant volume maximizing
+ attackRates[i] = 8 << RATE_SH;
+ }
+
+ //Setup the channels with the correct four op flags
+ //Channels are accessed through a table so they appear linear here
+ chan[ 0].fourMask = 0x00 | (1 << 0);
+ chan[ 1].fourMask = 0x80 | (1 << 0);
+ chan[ 2].fourMask = 0x00 | (1 << 1);
+ chan[ 3].fourMask = 0x80 | (1 << 1);
+ chan[ 4].fourMask = 0x00 | (1 << 2);
+ chan[ 5].fourMask = 0x80 | (1 << 2);
+ chan[ 9].fourMask = 0x00 | (1 << 3);
+ chan[10].fourMask = 0x80 | (1 << 3);
+ chan[11].fourMask = 0x00 | (1 << 4);
+ chan[12].fourMask = 0x80 | (1 << 4);
+ chan[13].fourMask = 0x00 | (1 << 5);
+ chan[14].fourMask = 0x80 | (1 << 5);
+ //mark the percussion channels
+ chan[ 6].fourMask = 0x40;
+ chan[ 7].fourMask = 0x40;
+ chan[ 8].fourMask = 0x40;
+ //Clear Everything in opl3 mode
+ WriteReg(0x105, 0x1);
+
+ for(int i = 0; i < 512; i++)
+ {
+ if(i == 0x105)
+ continue;
+
+ WriteReg(i, 0xff);
+ WriteReg(i, 0x0);
+ }
+
+ WriteReg(0x105, 0x0);
+
+ //Clear everything in opl2 mode
+ for(int i = 0; i < 255; i++)
+ {
+ WriteReg(i, 0xff);
+ WriteReg(i, 0x0);
+ }
+ }
+
+ static bool doneTables = false;
+ void InitTables(void)
+ {
+ if(doneTables)
+ return;
+
+ doneTables = true;
+ #if ( DBOPL_WAVE == WAVE_HANDLER ) || ( DBOPL_WAVE == WAVE_TABLELOG )
+
+ //Exponential volume table, same as the real adlib
+ for(int i = 0; i < 256; i++)
+ {
+ //Save them in reverse
+ ExpTable[i] = (int)(0.5 + (pow(2.0, (255 - i) * (1.0 / 256)) - 1) * 1024);
+ ExpTable[i] += 1024; //or remove the -1 oh well :)
+ //Preshift to the left once so the final volume can shift to the right
+ ExpTable[i] *= 2;
+ }
+
+ #endif
+ #if ( DBOPL_WAVE == WAVE_HANDLER )
+
+ //Add 0.5 for the trunc rounding of the integer cast
+ //Do a PI sinetable instead of the original 0.5 PI
+ for(int i = 0; i < 512; i++)
+ SinTable[i] = (Bit16s)(0.5 - log10(sin((i + 0.5) * (PI / 512.0))) / log10(2.0) * 256);
+
+ #endif
+ #if ( DBOPL_WAVE == WAVE_TABLEMUL )
+
+ //Multiplication based tables
+ for(int i = 0; i < 384; i++)
+ {
+ int s = i * 8;
+ //TODO maybe keep some of the precision errors of the original table?
+ double val = (0.5 + (pow(2.0, -1.0 + (255 - s) * (1.0 / 256))) * (1 << MUL_SH));
+ MulTable[i] = (Bit16u)(val);
+ }
+
+ //Sine Wave Base
+ for(int i = 0; i < 512; i++)
+ {
+ WaveTable[ 0x0200 + i ] = (Bit16s)(sin((i + 0.5) * (PI / 512.0)) * 4084);
+ WaveTable[ 0x0000 + i ] = -WaveTable[ 0x200 + i ];
+ }
+
+ //Exponential wave
+ for(int i = 0; i < 256; i++)
+ {
+ WaveTable[ 0x700 + i ] = (Bit16s)(0.5 + (pow(2.0, -1.0 + (255 - i * 8) * (1.0 / 256))) * 4085);
+ WaveTable[ 0x6ff - i ] = -WaveTable[ 0x700 + i ];
+ }
+
+ #endif
+ #if ( DBOPL_WAVE == WAVE_TABLELOG )
+
+ //Sine Wave Base
+ for(int i = 0; i < 512; i++)
+ {
+ WaveTable[ 0x0200 + i ] = (Bit16s)(0.5 - log10(sin((i + 0.5) * (PI / 512.0))) / log10(2.0) * 256);
+ WaveTable[ 0x0000 + i ] = ((Bit16s)0x8000) | WaveTable[ 0x200 + i];
+ }
+
+ //Exponential wave
+ for(int i = 0; i < 256; i++)
+ {
+ WaveTable[ 0x700 + i ] = i * 8;
+ WaveTable[ 0x6ff - i ] = ((Bit16s)0x8000) | i * 8;
+ }
+
+ #endif
+ // | |//\\|____|WAV7|//__|/\ |____|/\/\|
+ // |\\//| | |WAV7| | \/| | |
+ // |06 |0126|27 |7 |3 |4 |4 5 |5 |
+ #if (( DBOPL_WAVE == WAVE_TABLELOG ) || ( DBOPL_WAVE == WAVE_TABLEMUL ))
+
+ for(int i = 0; i < 256; i++)
+ {
+ //Fill silence gaps
+ WaveTable[ 0x400 + i ] = WaveTable[0];
+ WaveTable[ 0x500 + i ] = WaveTable[0];
+ WaveTable[ 0x900 + i ] = WaveTable[0];
+ WaveTable[ 0xc00 + i ] = WaveTable[0];
+ WaveTable[ 0xd00 + i ] = WaveTable[0];
+ //Replicate sines in other pieces
+ WaveTable[ 0x800 + i ] = WaveTable[ 0x200 + i ];
+ //double speed sines
+ WaveTable[ 0xa00 + i ] = WaveTable[ 0x200 + i * 2 ];
+ WaveTable[ 0xb00 + i ] = WaveTable[ 0x000 + i * 2 ];
+ WaveTable[ 0xe00 + i ] = WaveTable[ 0x200 + i * 2 ];
+ WaveTable[ 0xf00 + i ] = WaveTable[ 0x200 + i * 2 ];
+ }
+
+ #endif
+
+ //Create the ksl table
+ for(int oct = 0; oct < 8; oct++)
+ {
+ int base = oct * 8;
+
+ for(int i = 0; i < 16; i++)
+ {
+ int val = base - KslCreateTable[i];
+
+ if(val < 0)
+ val = 0;
+
+ //*4 for the final range to match attenuation range
+ KslTable[ oct * 16 + i ] = val * 4;
+ }
+ }
+
+ //Create the Tremolo table, just increase and decrease a triangle wave
+ for(Bit8u i = 0; i < TREMOLO_TABLE / 2; i++)
+ {
+ Bit8u val = i << ENV_EXTRA;
+ TremoloTable[i] = val;
+ TremoloTable[TREMOLO_TABLE - 1 - i] = val;
+ }
+
+ //Create a table with offsets of the channels from the start of the chip
+ DBOPL::Chip *chip = 0;
+
+ for(Bitu i = 0; i < 32; i++)
+ {
+ Bitu index = i & 0xf;
+
+ if(index >= 9)
+ {
+ ChanOffsetTable[i] = 0;
+ continue;
+ }
+
+ //Make sure the four op channels follow eachother
+ if(index < 6)
+ index = (index % 3) * 2 + (index / 3);
+
+ //Add back the bits for highest ones
+ if(i >= 16)
+ index += 9;
+
+ Bitu blah = reinterpret_cast<Bitu>(&(chip->chan[ index ]));
+ ChanOffsetTable[i] = blah;
+ }
+
+ //Same for operators
+ for(Bitu i = 0; i < 64; i++)
+ {
+ if(i % 8 >= 6 || ((i / 8) % 4 == 3))
+ {
+ OpOffsetTable[i] = 0;
+ continue;
+ }
+
+ Bitu chNum = (i / 8) * 3 + (i % 8) % 3;
+
+ //Make sure we use 16 and up for the 2nd range to match the chanoffset gap
+ if(chNum >= 12)
+ chNum += 16 - 12;
+
+ Bitu opNum = (i % 8) / 3;
+ DBOPL::Channel *chan = 0;
+ Bitu blah = reinterpret_cast<Bitu>(&(chan->op[opNum]));
+ OpOffsetTable[i] = ChanOffsetTable[ chNum ] + blah;
+ }
+
+ #if 0
+
+ //Stupid checks if table's are correct
+ for(Bitu i = 0; i < 18; i++)
+ {
+ Bit32u find = (Bit16u)(&(chip->chan[ i ]));
+
+ for(Bitu c = 0; c < 32; c++)
+ {
+ if(ChanOffsetTable[c] == find)
+ {
+ find = 0;
+ break;
+ }
+ }
+
+ if(find)
+ find = find;
+ }
+
+ for(Bitu i = 0; i < 36; i++)
+ {
+ Bit32u find = (Bit16u)(&(chip->chan[ i / 2 ].op[i % 2]));
+
+ for(Bitu c = 0; c < 64; c++)
+ {
+ if(OpOffsetTable[c] == find)
+ {
+ find = 0;
+ break;
+ }
+ }
+
+ if(find)
+ find = find;
+ }
+
+ #endif
+ }
+
+ Bit32u Handler::WriteAddr(Bit32u port, Bit8u val)
+ {
+ return chip.WriteAddr(port, val);
+ }
+ void Handler::WriteReg(Bit32u addr, Bit8u val)
+ {
+ chip.WriteReg(addr, val);
+ }
+
+ void Handler::Generate(void(*AddSamples_m32)(Bitu, Bit32s *),
+ void(*AddSamples_s32)(Bitu, Bit32s *),
+ Bitu samples)
+ {
+ Bit32s buffer[ 512 * 2 ];
+
+ if(GCC_UNLIKELY(samples > 512))
+ samples = 512;
+
+ if(!chip.opl3Active)
+ {
+ chip.GenerateBlock2(samples, buffer);
+ AddSamples_m32(samples, buffer);
+ }
+ else
+ {
+ chip.GenerateBlock3(samples, buffer);
+ AddSamples_s32(samples, buffer);
+ }
+ }
+
+ void Handler::GenerateArr(Bit32s *out, Bitu *samples)
+ {
+ if(GCC_UNLIKELY(*samples > 512))
+ *samples = 512;
+
+ if(!chip.opl3Active)
+ chip.GenerateBlock2(*samples, out);
+ else
+ chip.GenerateBlock3(*samples, out);
+ }
+
+ void Handler::GenerateArr(Bit32s *out, ssize_t *samples)
+ {
+ if(GCC_UNLIKELY(*samples > 512))
+ *samples = 512;
+
+ if(!chip.opl3Active)
+ chip.GenerateBlock2(static_cast<Bitu>(*samples), out);
+ else
+ chip.GenerateBlock3(static_cast<Bitu>(*samples), out);
+ }
+
+ void Handler::GenerateArr(Bit16s *out, ssize_t *samples)
+ {
+ Bit32s out32[1024];
+ if(GCC_UNLIKELY(*samples > 512))
+ *samples = 512;
+ memset(out32, 0, sizeof(Bit32s) * 1024);
+ if(!chip.opl3Active)
+ chip.GenerateBlock2(static_cast<Bitu>(*samples), out32);
+ else
+ chip.GenerateBlock3(static_cast<Bitu>(*samples), out32);
+ ssize_t sz = *samples * 2;
+ for(ssize_t i = 0; i < sz; i++)
+ out[i] = static_cast<Bit16s>(DBOPL_CLAMP(out32[i], static_cast<ssize_t>(INT16_MIN), static_cast<ssize_t>(INT16_MAX)));
+ }
+
+ void Handler::GenerateArrMix(Bit32s *out, ssize_t *samples)
+ {
+ if(GCC_UNLIKELY(*samples > 512))
+ *samples = 512;
+ if(!chip.opl3Active)
+ chip.GenerateBlock2_Mix(static_cast<Bitu>(*samples), out);
+ else
+ chip.GenerateBlock3_Mix(static_cast<Bitu>(*samples), out);
+ }
+
+ void Handler::GenerateArrMix(Bit16s *out, ssize_t *samples)
+ {
+ Bit32s out32[1024];
+ if(GCC_UNLIKELY(*samples > 512))
+ *samples = 512;
+ memset(out32, 0, sizeof(Bit32s) * 1024);
+ if(!chip.opl3Active)
+ chip.GenerateBlock2(static_cast<Bitu>(*samples), out32);
+ else
+ chip.GenerateBlock3(static_cast<Bitu>(*samples), out32);
+ ssize_t sz = *samples * 2;
+ for(ssize_t i = 0; i < sz; i++)
+ out[i] += static_cast<Bit16s>(DBOPL_CLAMP(out32[i], static_cast<ssize_t>(INT16_MIN), static_cast<ssize_t>(INT16_MAX)));
+ }
+
+
+ void Handler::Init(Bitu rate)
+ {
+ InitTables();
+ chip.Setup((Bit32u)rate);
+ }
+
+
+} //Namespace DBOPL
+
+//#endif //ADLMIDI_USE_DOSBOX_OPL