//////////////////////////////////////////////////////////////////////// // This file is part of the SndObj library // // This program is free software; you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation; either version 2 of the License, or // (at your option) any later version. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program; if not, write to the Free Software // Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA // // Copyright (c)Victor Lazzarini, 1997-2004 // See License.txt for a disclaimer of all warranties // and licensing information #include "IFAdd.h" IFAdd::IFAdd(){ } IFAdd::IFAdd(IFGram* input, int bins, Table* table, double pitch, double scale, double tscal, int vecsize, double sr) : ReSyn((SinAnal *)input, bins, table, pitch, scale, tscal, vecsize, sr){ } IFAdd::~IFAdd(){ } short IFAdd::DoProcess() { if(m_input){ double ampnext,amp,freq, freqnext, phase; double inc1, inc2, a, ph, cnt, frac; double a2, a3, phasediff, phasenext, cph, shf; bool lock; int i2, i, bins = m_maxtracks, ndx; double* tab = m_ptable->GetTable(); memset(m_output, 0, sizeof(double)*m_vecsize); shf = m_tscal*m_pitch; if(shf - Ftoi(shf)) lock = false; else lock = true; // for each bin from 1 for(i=1; i < bins; i++){ i2 = i<<1; ampnext = m_input->Output(i2)*m_scale; freqnext = m_input->Output(i2+1)*TWOPI*m_pitch; phasenext = ((IFGram *)m_input)->Outphases(i)*shf; freq = m_freqs[i]; phase = m_phases[i]; amp = m_amps[i]; //phase difference phasediff = phasenext - phase; while(phasediff >= PI) phasediff -= TWOPI; while(phasediff < -PI) phasediff += TWOPI; // update phasediff to match the freq cph = ((freq+freqnext)*m_factor/2. - phasediff)/TWOPI; phasediff += TWOPI* (lock ? Ftoi(cph + 0.5) : cph); // interpolation coefs a2 = 3./m_facsqr * (phasediff - m_factor/3.*(2*freq+freqnext)); a3 = 1./(3*m_facsqr) * (freqnext - freq - 2*a2*m_factor); // interpolation resynthesis loop a = amp; ph = phase; cnt = 0; inc1 = (ampnext - amp)/m_vecsize; inc2 = 1/m_sr; for(m_vecpos=0; m_vecpos < m_vecsize; m_vecpos++){ if(m_enable) { // table lookup oscillator ph *= m_LoTWOPI; while(ph < 0) ph += m_size; while(ph >= m_size) ph -= m_size; ndx = Ftoi(ph); frac = ph - ndx; m_output[m_vecpos] += a*(tab[ndx] + (tab[ndx+1] - tab[ndx])*frac); a += inc1; cnt += inc2; ph = phase + cnt*(freq + cnt*(a2 + a3*cnt)); } else m_output[m_vecpos] = 0.f; } // keep amp, freq, and update phase for next time m_amps[i] = ampnext; m_freqs[i] = freqnext; phasenext += (lock ? 0 : (cph - Ftoi(cph))*TWOPI); while(phasenext < 0) phasenext += TWOPI; while(phasenext >= TWOPI) phasenext -= TWOPI; m_phases[i] = phasenext; } return 1; } else { m_error = 1; return 0; } }