/* * This is the Loris C++ Class Library, implementing analysis, * manipulation, and synthesis of digitized sounds using the Reassigned * Bandwidth-Enhanced Additive Sound Model. * * Loris is Copyright (c) 1999-2010 by Kelly Fitz and Lippold Haken * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY, without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * * * FourierTransform.C * * Implementation of class Loris::FourierTransform, providing a simplified * uniform interface to the FFTW library (www.fftw.org), version 2.1.3 * or newer (including version 3), or to the General Purpose FFT package * by Takuya OOURA, http://momonga.t.u-tokyo.ac.jp/~ooura/fft.html if * FFTW is unavailable. * * Kelly Fitz, 2 Jun 2006 * loris@cerlsoundgroup.org * * http://www.cerlsoundgroup.org/Loris/ * */ #if HAVE_CONFIG_H #include "config.h" #endif #include "FourierTransform.h" #include "LorisExceptions.h" #include "Notifier.h" #include #include #if defined(HAVE_M_PI) && (HAVE_M_PI) const double Pi = M_PI; #else const double Pi = std::acos( -1.0 ); #endif #if defined(HAVE_FFTW3_H) && HAVE_FFTW3_H #include #elif defined(HAVE_FFTW_H) && HAVE_FFTW_H #include #endif // --------------------------------------------------------------------------- // isPO2 - return true if N is a power of two // --------------------------------------------------------------------------- // If out_expon is non-zero, return the exponent in that address. // static bool isPO2( unsigned int N, int * out_expon = 0 ) { unsigned int M = 1; int exp = 0; while ( M < N ) { M *= 2; ++exp; } if ( 0 != out_expon && M == N ) { *out_expon = exp; } return M == N; } // =========================================================================== // No longer matters that fftw and this class use the same floating point // data format. The insulating implementation class now does its job of // really insulating clients completely from FFTW, by copying data between // buffers of std::complex< double > and fftw_complex, rather than // relying on those two complex types to have the same memory layout. // The overhead of copying is probably not significant, compared to // the expense of computing the transform. // // about complex math functions for fftw_complex: // // These functions are all defined as templates in . // Regrettably, they are all implemented using real() and // imag() _member_ functions of the template argument, T. // If they had instead been implemented in terms of the real() // and imag() (template) free functions, then I could just specialize // those two for the fftw complex data type, and the other template // functions would work. Instead, I have to specialize _all_ of // those functions that I want to use. I hope this was a learning // experience for someone... In the mean time, the alternative I // have is to take advantage of the fact that fftw_complex and // std::complex have the same footprint, so I can just // cast back and forth between the two types. Its icky, but it // works, and its a lot faster than converting, and more palatable // than redefining all those operators. // // On the subject of brilliant designs, fftw_complex is defined as // a typedef of an anonymous struct, as in typedef struct {...} fftw_complex, // so I cannot forward-declare that type. // // In other good news, the planning structure got a slight name change // in version 3, making it even more important to remove all traces of // FFTW from the FourierTransform class definition. // // =========================================================================== // begin namespace namespace Loris { using std::complex; using std::vector; // --- private implementation class --- // --------------------------------------------------------------------------- // FTimpl // // Insulating implementation class to insulate clients // completely from everything about the interaction between // Loris and FFTW. There is more copying of data between buffers, // but this is not the expensive part of computing Fourier transforms // and we don't have to do unsavory things that require std::complex // and fftw_complex to have the same memory layout (we could even get // by with single-precision floats in FFTW if necessary). Also got // rid of lots of shared buffer stuff that just made the implementation // lots more complicated than necessary. This one is simple, if not // as memory efficient. // #if defined(HAVE_FFTW3_H) && HAVE_FFTW3_H class FTimpl // FFTW version 3 { private: fftw_plan plan; FourierTransform::size_type N; fftw_complex * ftIn; fftw_complex * ftOut; public: // Construct an implementation instance: // allocate an input buffer, and an output buffer // and make a plan. FTimpl( FourierTransform::size_type sz ) : plan( 0 ), N( sz ), ftIn( 0 ), ftOut( 0 ) { // allocate buffers: ftIn = (fftw_complex *)fftw_malloc( sizeof( fftw_complex ) * N ); ftOut = (fftw_complex *)fftw_malloc( sizeof( fftw_complex ) * N ); if ( 0 == ftIn || 0 == ftOut ) { fftw_free( ftIn ); fftw_free( ftOut ); throw RuntimeError( "cannot allocate Fourier transform buffers" ); } // create a plan: plan = fftw_plan_dft_1d( N, ftIn, ftOut, FFTW_FORWARD, FFTW_ESTIMATE ); // verify: if ( 0 == plan ) { Throw( RuntimeError, "FourierTransform could not make a (fftw) plan." ); } } // Destroy the implementation instance: // dump the plan. ~FTimpl( void ) { if ( 0 != plan ) { fftw_destroy_plan( plan ); } fftw_free( ftIn ); fftw_free( ftOut ); } // Copy complex< double >'s from a buffer into ftIn, // the buffer must be as long as ftIn. void loadInput( const complex< double > * bufPtr ) { for ( FourierTransform::size_type k = 0; k < N; ++k ) { ftIn[ k ][0] = bufPtr->real(); // real part ftIn[ k ][1] = bufPtr->imag(); // imaginary part ++bufPtr; } } // Copy complex< double >'s from ftOut into a buffer, // which must be as long as ftOut. void copyOutput( complex< double > * bufPtr ) const { for ( FourierTransform::size_type k = 0; k < N; ++k ) { *bufPtr = complex< double >( ftOut[ k ][0], ftOut[ k ][1] ); ++bufPtr; } } // Compute a forward transform. void forward( void ) { fftw_execute( plan ); } }; // end of class FTimpl for FFTW version 3 #elif defined(HAVE_FFTW_H) && HAVE_FFTW_H // "die hook" for FFTW, which otherwise try to write to a // non-existent console. static void fftw_die_Loris( const char * s ) { using namespace std; // exit might be hidden in there notifier << "The FFTW library used by Loris has encountered a fatal error: " << s << endl; exit(EXIT_FAILURE); } class FTimpl // FFTW version 2 { private: fftw_plan plan; FourierTransform::size_type N; fftw_complex * ftIn; fftw_complex * ftOut; public: // Construct an implementation instance: // allocate an input buffer, and an output buffer // and make a plan. FTimpl( FourierTransform::size_type sz ) : plan( 0 ), N( sz ), ftIn( 0 ), ftOut( 0 ) { // allocate buffers: ftIn = (fftw_complex *)fftw_malloc( sizeof( fftw_complex ) * N ); ftOut = (fftw_complex *)fftw_malloc( sizeof( fftw_complex ) * N ); if ( 0 == ftIn || 0 == ftOut ) { fftw_free( ftIn ); fftw_free( ftOut ); Throw( RuntimeError, "cannot allocate Fourier transform buffers" ); } // create a plan: plan = fftw_create_plan_specific( N, FFTW_FORWARD, FFTW_ESTIMATE, ftIn, 1, ftOut, 1 ); // verify: if ( 0 == plan ) { Throw( RuntimeError, "FourierTransform could not make a (fftw) plan." ); } // FFTW calls fprintf a lot, which may be a problem in // non-console-enabled applications. Catch fftw_die() // calls by routing the error message to our own Notifier // and exiting, using the function defined above. // // (version 2 only) fftw_die_hook = fftw_die_Loris; } // Destroy the implementation instance: // dump the plan. ~FTimpl( void ) { if ( 0 != plan ) { fftw_destroy_plan( plan ); } fftw_free( ftIn ); fftw_free( ftOut ); } // Copy complex< double >'s from a buffer into ftIn, // the buffer must be as long as ftIn. void loadInput( const complex< double > * bufPtr ) { for ( FourierTransform::size_type k = 0; k < N; ++k ) { c_re( ftIn[ k ] ) = bufPtr->real(); c_im( ftIn[ k ] ) = bufPtr->imag(); ++bufPtr; } } // Copy complex< double >'s from ftOut into a buffer, // which must be as long as ftOut. void copyOutput( complex< double > * bufPtr ) const { for ( FourierTransform::size_type k = 0; k < N; ++k ) { *bufPtr = complex< double >( c_re( ftOut[ k ] ), c_im( ftOut[ k ] ) ); ++bufPtr; } } // Compute a forward transform. void forward( void ) { fftw_one( plan, ftIn, ftOut ); } }; // end of class FTimpl for FFTW version 2 #else #define SORRY_NO_FFTW 1 // function prototype, definition in fftsg.c /* extern "C" void cdft(int, int, double *, int *, double *); */ // function prototype, definition below static void slowDFT( double * in, double * out, int N ); // Uses General Purpose FFT (Fast Fourier/Cosine/Sine Transform) Package // by Takuya OOURA, http://momonga.t.u-tokyo.ac.jp/~ooura/fft.html defined // in fftsg.c. // // In the event that the size is not a power of two, uses a (very) slow // direct DFT computation, defined below. In this case, the workspace // array is not used, and the twiddle factor array is used to store the // transform result. class FTimpl // platform-neutral stand-alone implementation { private: double * mTxInOut; // input/output buffer for in-place transform double * mTwiddle; // storage for twiddle factors int * mWorkspace; // workspace storage FourierTransform::size_type N; bool mIsPO2; public: // Construct an implementation instance: // allocate buffers and workspace, and // initialize the twiddle factors. FTimpl( FourierTransform::size_type sz ) : mTxInOut( 0 ), mTwiddle( 0 ), mWorkspace( 0 ), N( sz ), mIsPO2( isPO2( sz ) ) { mTxInOut = new double[ 2*N ]; // input/output buffer for in-place transform if ( mIsPO2 ) { mTwiddle = new double[ N/2 ]; // storage for twiddle factors mWorkspace = new int[ 2*int( std::sqrt((double)N) + 0.5 ) ]; // workspace if ( 0 == mTxInOut || 0 == mTwiddle || 0 == mWorkspace ) { delete [] mTxInOut; delete [] mTwiddle; delete [] mWorkspace; Throw( RuntimeError, "FourierTransform: could not initialize tranform" ); } mWorkspace[0] = 0; // first time only, triggers setup // no need to do it now, it will happen the // first time a transform is computed // cdft_double( 2*N, -1, mTxInOut, mWorkspace, mTwiddle ); } else { mTwiddle = new double[ 2*N ]; // use for result in slowDFT if ( 0 == mTxInOut || 0 == mTwiddle ) { delete [] mTxInOut; delete [] mTwiddle; Throw( RuntimeError, "FourierTransform: could not initialize tranform" ); } } } // Destroy the implementation instance: ~FTimpl( void ) { delete [] mTxInOut; delete [] mTwiddle; delete [] mWorkspace; } // Copy complex< double >'s from a buffer into ftIn, // the buffer must be as long as ftIn. void loadInput( const complex< double > * bufPtr ) { for ( FourierTransform::size_type k = 0; k < N; ++k ) { mTxInOut[ 2*k ] = bufPtr->real(); mTxInOut[ 2*k+1 ] = bufPtr->imag(); ++bufPtr; } } // Copy complex< double >'s from ftOut into a buffer, // which must be as long as ftOut. Result might be // stored in the twiddle factor array if this is not // power of two length DFT. void copyOutput( complex< double > * bufPtr ) const { double * result = mTxInOut; if ( !mIsPO2 ) { result = mTwiddle; } for ( FourierTransform::size_type k = 0; k < N; ++k ) { *bufPtr = complex< double >( result[ 2*k ], result[ 2*k+1 ] ); ++bufPtr; } } // Compute a forward transform. void forward( void ) { if ( mIsPO2 ) { /* cdft( 2*N, -1, mTxInOut, mWorkspace, mTwiddle ); */ slowDFT( mTxInOut, mTwiddle, N ); } else { slowDFT( mTxInOut, mTwiddle, N ); } } }; // end of class platform-neutral stand-alone FTimpl #endif // --- FourierTransform members --- // --------------------------------------------------------------------------- // FourierTransform constructor // --------------------------------------------------------------------------- //! Initialize a new FourierTransform of the specified size. //! //! \param len is the length of the transform in samples (the //! number of samples in the transform) //! \throw RuntimeError if the necessary buffers cannot be //! allocated, or there is an error configuring FFTW. // FourierTransform::FourierTransform( size_type len ) : _buffer( len ), _impl( new FTimpl( len ) ) { // zero: std::fill( _buffer.begin(), _buffer.end(), 0. ); } // --------------------------------------------------------------------------- // FourierTransform copy constructor // --------------------------------------------------------------------------- //! Initialize a new FourierTransform that is a copy of another, //! having the same size and the same buffer contents. //! //! \param rhs is the instance to copy //! \throw RuntimeError if the necessary buffers cannot be //! allocated, or there is an error configuring FFTW. // FourierTransform::FourierTransform( const FourierTransform & rhs ) : _buffer( rhs._buffer ), _impl( new FTimpl( rhs._buffer.size() ) ) // not copied { } // --------------------------------------------------------------------------- // FourierTransform destructor // --------------------------------------------------------------------------- //! Free the resources associated with this FourierTransform. // FourierTransform::~FourierTransform( void ) { delete _impl; } // --------------------------------------------------------------------------- // FourierTransform assignment operator // --------------------------------------------------------------------------- //! Make this FourierTransform a copy of another, having //! the same size and buffer contents. //! //! \param rhs is the instance to copy //! \return a refernce to this instance //! \throw RuntimeError if the necessary buffers cannot be //! allocated, or there is an error configuring FFTW. // FourierTransform & FourierTransform::operator=( const FourierTransform & rhs ) { if ( this != &rhs ) { _buffer = rhs._buffer; // The implementation instance is not assigned, // but a new one is created. delete _impl; _impl = 0; _impl = new FTimpl( _buffer.size() ); } return *this; } // --------------------------------------------------------------------------- // size // --------------------------------------------------------------------------- //! Return the length of the transform (in samples). //! //! \return the length of the transform in samples. FourierTransform::size_type FourierTransform::size( void ) const { return _buffer.size(); } // --------------------------------------------------------------------------- // transform // --------------------------------------------------------------------------- //! Compute the Fourier transform of the samples stored in the //! transform buffer. The samples stored in the transform buffer //! (accessed by index or by iterator) are replaced by the //! transformed samples, in-place. // void FourierTransform::transform( void ) { // copy data into the transform input buffer: _impl->loadInput( &_buffer.front() ); // crunch: _impl->forward(); // copy the data out of the transform output buffer: _impl->copyOutput( &_buffer.front() ); } // --- slow non-power-of-two DFT implementation --- #if defined(SORRY_NO_FFTW) // --------------------------------------------------------------------------- // slowDFT // --------------------------------------------------------------------------- // Non-power-of-two DFT implementation. in and out cannot be the same, // and each is 2*N long, storing interleaved complex numbers. // This version is only used when FFTW is unavailable. // static void slowDFT( double * in, double * out, int N ) { #if 1 // slow DFT // This version of the direct DFT computation is tolerably // speedy, even for rather long transforms (like 8k). // There is only one expensive call to std::polar, and // twiddle factors are updated by multiplying. This // causes some loss in numerical accuracy, worse for // longer transforms, but even for 10k long transforms, // accuracy is within hundredths of a percent in my experiments. const std::complex< double > eminj2pioN = std::polar( 1.0, -2.0 * Pi / N ); std::complex< double > Wn = 1; for ( int n = 0; n < N; ++n ) { std::complex< double > Wkn = 1; std::complex< double > Xkn = 0; for ( int k = 0; k < N; ++k ) { Xkn += std::complex< double >( in[ 2*k ], in[ 2*k+1 ] ) * Wkn; Wkn *= Wn; } out[ 2*n ] = Xkn.real(); out[ 2*n+1 ] = Xkn.imag(); Wn *= eminj2pioN; } #else // very, very slow // This version of the direct DFT computation is slightly // more accurate, increasingly so for longer transforms, // but it is so much slower (4-5x) that the small improvement // in accuracy is probably not worth the extra wait. For // short transforms, the accuracy of both algorithms is // very high, and for long transforms, this algorithm is // too slow. // // Both algorithms are retained here, so that this // tradeoff can be re-evaluated if necessary. for ( int n = 0; n < N; ++n ) { std::complex< double > Xkn = 0; for ( int k = 0; k < N; ++k ) { std::complex< double > Wkn = std::polar( 1.0, -2.0 * Pi * k * n / N ); Xkn += std::complex< double >( in[ 2*k ], in[ 2*k+1 ] ) * Wkn; } out[ 2*n ] = Xkn.real(); out[ 2*n+1 ] = Xkn.imag(); } #endif } #endif // defined(SORRY_NO_FFTW) } // end of namespace Loris