//////////////////////////////////////////////////////////////////////// // This file is part of the SndObj library // // This program is free software; you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation; either version 2 of the License, or // (at your option) any later version. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program; if not, write to the Free Software // Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA // // Copyright (c)Victor Lazzarini, 1997-2004 // See License.txt for a disclaimer of all warranties // and licensing information ///////////////////////////////////////////////// // FFT.cpp : implementation of the FFT class // short-time fast fourier transform // Victor Lazzarini, 2003 ///////////////////////////////////////////////// #include "FFT.h" FFT::FFT(){ m_table = 0; // hopsize controls decimation // we have vecsize/hopsize overlapping frames // the vector size is also equal the fftsize // so that each call to DoProcess produces a // new fft frame at the output // since SndObj has already allocated the output // we have to reset the vector size m_fftsize = DEF_FFTSIZE; SetVectorSize(DEF_FFTSIZE); m_hopsize = DEF_VECSIZE; m_frames = m_fftsize/m_hopsize; m_sigframe = new float*[m_frames]; m_ffttmp = new float[m_fftsize]; m_counter = new int[m_frames]; m_halfsize = m_fftsize/2; m_fund = m_sr/m_fftsize; memset(m_ffttmp, 0, m_fftsize*sizeof(float)); int i; for(i = 0; i < m_frames; i++){ m_sigframe[i] = new float[m_fftsize]; memset(m_sigframe[i], 0, m_fftsize*sizeof(float)); m_counter[i] = i*m_hopsize; } m_plan = rfftw_create_plan(m_fftsize, FFTW_REAL_TO_COMPLEX, FFTW_ESTIMATE); AddMsg("scale", 21); AddMsg("fft size", 22); AddMsg("hop size", 23); AddMsg("window", 24); m_scale = 1.f; m_norm = m_fftsize; m_cur =0; } FFT::FFT(Table* window, SndObj* input, float scale, int fftsize, int hopsize, float sr): SndObj(input, fftsize, sr){ m_table = window; m_hopsize = hopsize; m_fftsize = fftsize; m_frames = m_fftsize/m_hopsize; m_sigframe = new float*[m_frames]; m_ffttmp = new float[m_fftsize]; m_counter = new int[m_frames]; m_halfsize = m_fftsize/2; m_fund = m_sr/m_fftsize; memset(m_ffttmp, 0, m_fftsize*sizeof(float)); int i; for(i = 0; i < m_frames; i++){ m_sigframe[i] = new float[m_fftsize]; memset(m_sigframe[i], 0, m_fftsize*sizeof(float)); m_counter[i] = i*m_hopsize; } m_plan = rfftw_create_plan(m_fftsize, FFTW_REAL_TO_COMPLEX, FFTW_ESTIMATE); AddMsg("scale", 21); AddMsg("fft size", 22); AddMsg("hop size", 23); AddMsg("window", 24); m_scale = scale; m_norm = m_fftsize/m_scale; m_cur =0; } FFT::~FFT(){ #ifndef WIN rfftw_destroy_plan(m_plan); #endif delete[] m_counter; delete[] m_sigframe; delete[] m_ffttmp; } void FFT::SetFFTSize(int fftsize){ SetVectorSize(m_fftsize = fftsize); ReInit(); } void FFT::SetHopSize(int hopsize){ m_hopsize = hopsize; ReInit(); } void FFT::ReInit(){ rfftw_destroy_plan(m_plan); delete[] m_counter; delete[] m_sigframe; delete[] m_ffttmp; delete[] m_output; if(!(m_output = new float[m_vecsize])){ m_error = 1; #ifdef DEBUG cout << ErrorMessage(); #endif return; } m_frames = m_fftsize/m_hopsize; m_sigframe = new float*[m_frames]; m_ffttmp = new float[m_fftsize]; m_counter = new int[m_frames]; m_halfsize = m_fftsize/2; m_fund = m_sr/m_fftsize; int i; for(i = 0; i < m_frames; i++){ m_sigframe[i] = new float[m_fftsize]; memset(m_sigframe[i], 0, m_fftsize*sizeof(float)); m_counter[i] = i*m_hopsize; } m_plan = rfftw_create_plan(m_vecsize, FFTW_REAL_TO_COMPLEX, FFTW_ESTIMATE); m_cur =0; m_norm = m_fftsize/m_scale; } int FFT::Set(char* mess, float value){ switch(FindMsg(mess)){ case 21: SetScale(value); return 1; case 22: SetFFTSize((int) value); return 1; case 23: SetHopSize((int) value); return 1; default: return SndObj::Set(mess, value); } } int FFT::Connect(char* mess, void *input){ switch(FindMsg(mess)){ case 24: SetWindow((Table *) input); return 1; default: return SndObj::Connect(mess, input); } } short FFT::DoProcess(){ if(!m_error){ if(m_input && m_table){ if(m_enable){ int i; float sig = 0.f; for(m_vecpos = 0; m_vecpos < m_hopsize; m_vecpos++) { // signal input sig = m_input->Output(m_vecpos); // distribute to the signal fftframes and apply the window // according to a time pointer (kept by counter[n]) for(i=0;i < m_frames; i++){ m_sigframe[i][m_counter[i]]= sig*m_table->Lookup(m_counter[i]); m_counter[i]++; } } // every hopsize samples // set the current sigframe to be transformed m_cur--; if(m_cur<0) m_cur = m_frames-1; // transform it and fill the output buffer fft(m_sigframe[m_cur]); // zero the current sigframe time pointer m_counter[m_cur] = 0; return 1; } else { // if disabled for(m_vecpos=0; m_vecpos < m_hopsize; m_vecpos++) m_output[m_vecpos] = 0.f; return 1; } } else { m_error = 3; return 0; } } else return 0; } void FFT::fft(float* signal){ // FFT function rfftw_one(m_plan, signal, m_ffttmp); // re-arrange output into re, im format // packing re[0] and re[nyquist] together, // normalise it and fill the output buffer m_output[0] = m_ffttmp[0]/m_norm; m_output[1] = m_ffttmp[m_halfsize]/m_norm; for(int i=2, i2=1; i