# Copyright (c) 2009 John Glover, National University of Ireland, Maynooth # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software # Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA import simpl import pysndobj import numpy as np class SndObjPeakDetection(simpl.PeakDetection): "Sinusoidal peak detection using the SndObj library (Instantaneous Frequency)" def __init__(self): simpl.PeakDetection.__init__(self) self._input = pysndobj.SndObj() self._input.SetVectorSize(self.frame_size) self._window = pysndobj.HammingTable(self.frame_size, 0.5) self._ifgram = pysndobj.IFGram(self._window, self._input, 1, self.frame_size, self.hop_size) self._threshold = 0.003 self._analysis = pysndobj.SinAnal(self._ifgram, self._threshold, self.max_peaks) # properties threshold = property(lambda self: self.get_threshold(), lambda self, x: self.set_threshold(x)) def set_frame_size(self, frame_size): "Set the analysis frame size" self._input.SetVectorSize(frame_size) if self.window_type == "hamming": self._window = pysndobj.HammingTable(frame_size, 0.5) elif self.window_type >=0 and self.window_type <= 1: self._window = pysndobj.HammingTable(frame_size, self.window_type) self._ifgram.Connect("window", self._window) self._ifgram.Set("fft size", frame_size) self._frame_size = frame_size def set_hop_size(self, hop_size): self._ifgram.Set("hop size", hop_size) self._hop_size = hop_size def set_max_peaks(self, max_peaks): "Set the maximum number of peaks detected" self._analysis.Set("max tracks", max_peaks) self._max_peaks = max_peaks def set_window_type(self, window_type): "Set the analysis window type" if window_type == "hamming": self._window = pysndobj.HammingTable(self.frame_size, 0.5) elif window_type >=0 and window_type <= 1: self._window = pysndobj.HammingTable(self.frame_size, window_type) else: raise Exception("UnknownWindowType") self._ifgram.Connect("window", self._window) self._window_type = window_type def get_threshold(self): return self._threshold def set_threshold(self, threshold): self._analysis.Set("threshold", threshold) self._threshold = threshold def find_peaks_in_frame(self, frame): "Find and return all spectral peaks in a given frame of audio" current_peaks = [] self._input.PushIn(frame) self._input.DoProcess() self._ifgram.DoProcess() num_peaks_found = self._analysis.FindPeaks() # loop through analysis output and create peak objects for i in range(num_peaks_found): p = simpl.Peak() p.amplitude = self._analysis.Output(i*3) p.frequency = self._analysis.Output((i*3)+1) p.phase = self._analysis.Output((i*3)+2) if not current_peaks: current_peaks.append(p) else: if np.abs(p.frequency - current_peaks[-1].frequency) > self._min_peak_separation: current_peaks.append(p) else: if p.amplitude > current_peaks[-1].amplitude: current_peaks.remove(current_peaks[-1]) current_peaks.append(p) return current_peaks class SndObjPartialTracking(simpl.PartialTracking): "Partial tracking using the algorithm from the Sound Object Library" def __init__(self): simpl.PartialTracking.__init__(self) self._threshold = 0.003 # todo: property self._num_bins = 1025 # todo: property self._analysis = pysndobj.SinAnal(pysndobj.SndObj(), self._num_bins, self._threshold, self.max_partials) def set_max_partials(self, num_partials): self._analysis.Set("max tracks", num_partials) self._max_partials = num_partials def update_partials(self, frame, frame_number): "Streamable (real-time) partial-tracking." frame_partials = [] # load Peak amplitudes, frequencies and phases into arrays num_peaks = len(frame) amps = simpl.zeros(num_peaks) freqs = simpl.zeros(num_peaks) phases = simpl.zeros(num_peaks) for i in range(num_peaks): peak = frame[i] amps[i] = peak.amplitude freqs[i] = peak.frequency phases[i] = peak.phase # set peaks in SndObj SinAnal object self._analysis.SetPeaks(amps, freqs, phases) # call SndObj partial tracking self._analysis.PartialTracking() # form Partial objects num_partials = self._analysis.GetTracks() for i in range(num_partials): peak = simpl.Peak() peak.amplitude = self._analysis.Output(i*3) peak.frequency = self._analysis.Output((i*3)+1) peak.phase = self._analysis.Output((i*3)+2) id = self._analysis.GetTrackID(i) # if this is a continuing partial, create a peak and append it if id >= 0 and id <= len(self.partials) - 1: self.partials[id].add_peak(peak) # if not, make a new partial else: partial = simpl.Partial() partial.starting_frame = frame_number partial.add_peak(peak) self.partials.append(partial) frame_partials.append(peak) return frame_partials class SimplSndObjAnalysisWrapper(pysndobj.SinAnal): """An object that takes simpl Peaks and presents them as SndObj analysis data to the SndObj synthesis objects.""" def __init__(self): pysndobj.SinAnal.__init__(self) self.peaks = [] def GetTracks(self): return len(self.peaks) def GetTrackID(self, partial_number): if partial_number < len(self.peaks): return self.peaks[partial_number].partial_id else: # TODO: what should this return if no matching partial found? return 0 def Output(self, position): peak = int(position) / 3 if peak > len(self.peaks): # TODO: what should this return if no matching partial found? return 0.0 data_field = int(position) % 3 if data_field is 0: return self.peaks[peak].amplitude elif data_field is 1: return self.peaks[peak].frequency elif data_field is 2: return self.peaks[peak].phase class SndObjSynthesis(simpl.Synthesis): "Sinusoidal resynthesis using the SndObj library" def __init__(self, synthesis_type='adsyn'): simpl.Synthesis.__init__(self) self._analysis = SimplSndObjAnalysisWrapper() self._table = pysndobj.HarmTable(10000, 1, 1, 0.25) if synthesis_type == 'adsyn': self._synth = pysndobj.AdSyn(self._analysis, self.max_partials, self._table, 1, 1, self.hop_size) elif synthesis_type == 'sinsyn': self._synth = pysndobj.SinSyn(self._analysis, self.max_partials, self._table, 1, self.hop_size) else: raise Exception("UnknownSynthesisType") self._current_frame = simpl.zeros(self.hop_size) def set_hop_size(self, hop_size): self._synth.SetVectorSize(hop_size) self._hop_size = hop_size self._current_frame = simpl.zeros(hop_size) def set_max_partials(self, num_partials): self._synth.Set('max tracks', num_partials) self._max_partials = num_partials def synth_frame(self, peaks): "Synthesises a frame of audio, given a list of peaks from tracks" self._analysis.peaks = peaks if len(peaks) > self._max_partials: self.max_partials = len(peaks) self._synth.DoProcess() self._synth.PopOut(self._current_frame) return self._current_frame