From 39e0005e226ed6f04562e9d5d7548782fef81c20 Mon Sep 17 00:00:00 2001 From: John Glover Date: Tue, 21 Aug 2012 18:31:07 +0100 Subject: [sndobj] Update SndObj to use FFTW v3 (was using v2). Remove unused SndObj files. Whitespace clean up. --- src/sndobj/rfftw/rader.c | 370 ----------------------------------------------- 1 file changed, 370 deletions(-) delete mode 100644 src/sndobj/rfftw/rader.c (limited to 'src/sndobj/rfftw/rader.c') diff --git a/src/sndobj/rfftw/rader.c b/src/sndobj/rfftw/rader.c deleted file mode 100644 index 6783580..0000000 --- a/src/sndobj/rfftw/rader.c +++ /dev/null @@ -1,370 +0,0 @@ -/* - * Copyright (c) 1997-1999 Massachusetts Institute of Technology - * - * This program is free software; you can redistribute it and/or modify - * it under the terms of the GNU General Public License as published by - * the Free Software Foundation; either version 2 of the License, or - * (at your option) any later version. - * - * This program is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - * GNU General Public License for more details. - * - * You should have received a copy of the GNU General Public License - * along with this program; if not, write to the Free Software - * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA - * - */ - -/* - * Compute transforms of prime sizes using Rader's trick: turn them - * into convolutions of size n - 1, which you then perform via a pair - * of FFTs. - */ - -#include -#include - -#include - -#ifdef FFTW_USING_CILK -#include -#include -#endif - -#ifdef FFTW_DEBUG -#define WHEN_DEBUG(a) a -#else -#define WHEN_DEBUG(a) -#endif - -/* compute n^m mod p, where m >= 0 and p > 0. */ -static int power_mod(int n, int m, int p) -{ - if (m == 0) - return 1; - else if (m % 2 == 0) { - int x = power_mod(n, m / 2, p); - return MULMOD(x, x, p); - } - else - return MULMOD(n, power_mod(n, m - 1, p), p); -} - -/* - * Find the period of n in the multiplicative group mod p (p prime). - * That is, return the smallest m such that n^m == 1 mod p. - */ -static int period(int n, int p) -{ - int prod = n, period = 1; - - while (prod != 1) { - prod = MULMOD(prod, n, p); - ++period; - if (prod == 0) - fftw_die("non-prime order in Rader\n"); - } - return period; -} - -/* find a generator for the multiplicative group mod p, where p is prime */ -static int find_generator(int p) -{ - int g; - - for (g = 1; g < p; ++g) - if (period(g, p) == p - 1) - break; - if (g == p) - fftw_die("couldn't find generator for Rader\n"); - return g; -} - -/***************************************************************************/ - -static fftw_rader_data *create_rader_aux(int p, int flags) -{ - fftw_complex *omega, *work; - int g, ginv, gpower; - int i; - FFTW_TRIG_REAL twoPiOverN; - fftw_real scale = 1.0 / (p - 1); /* for convolution */ - fftw_plan plan; - fftw_rader_data *d; - - if (p < 2) - fftw_die("non-prime order in Rader\n"); - - flags &= ~FFTW_IN_PLACE; - - d = (fftw_rader_data *) fftw_malloc(sizeof(fftw_rader_data)); - - g = find_generator(p); - ginv = power_mod(g, p - 2, p); - - omega = (fftw_complex *) fftw_malloc((p - 1) * sizeof(fftw_complex)); - - plan = fftw_create_plan(p - 1, FFTW_FORWARD, - flags & ~FFTW_NO_VECTOR_RECURSE); - - work = (fftw_complex *) fftw_malloc((p - 1) * sizeof(fftw_complex)); - - twoPiOverN = FFTW_K2PI / (FFTW_TRIG_REAL) p; - gpower = 1; - for (i = 0; i < p - 1; ++i) { - c_re(work[i]) = scale * FFTW_TRIG_COS(twoPiOverN * gpower); - c_im(work[i]) = FFTW_FORWARD * scale * FFTW_TRIG_SIN(twoPiOverN - * gpower); - gpower = MULMOD(gpower, ginv, p); - } - - /* fft permuted roots of unity */ - fftw_executor_simple(p - 1, work, omega, plan->root, 1, 1, - plan->recurse_kind); - - fftw_free(work); - - d->plan = plan; - d->omega = omega; - d->g = g; - d->ginv = ginv; - d->p = p; - d->flags = flags; - d->refcount = 1; - d->next = NULL; - - d->cdesc = (fftw_codelet_desc *) fftw_malloc(sizeof(fftw_codelet_desc)); - d->cdesc->name = NULL; - d->cdesc->codelet = NULL; - d->cdesc->size = p; - d->cdesc->dir = FFTW_FORWARD; - d->cdesc->type = FFTW_RADER; - d->cdesc->signature = g; - d->cdesc->ntwiddle = 0; - d->cdesc->twiddle_order = NULL; - return d; -} - -/***************************************************************************/ - -static fftw_rader_data *fftw_create_rader(int p, int flags) -{ - fftw_rader_data *d = fftw_rader_top; - - flags &= ~FFTW_IN_PLACE; - while (d && (d->p != p || d->flags != flags)) - d = d->next; - if (d) { - d->refcount++; - return d; - } - d = create_rader_aux(p, flags); - d->next = fftw_rader_top; - fftw_rader_top = d; - return d; -} - -/***************************************************************************/ - -/* Compute the prime FFTs, premultiplied by twiddle factors. Below, we - * extensively use the identity that fft(x*)* = ifft(x) in order to - * share data between forward and backward transforms and to obviate - * the necessity of having separate forward and backward plans. */ - -void fftw_twiddle_rader(fftw_complex *A, const fftw_complex *W, - int m, int r, int stride, - fftw_rader_data * d) -{ - fftw_complex *tmp = (fftw_complex *) - fftw_malloc((r - 1) * sizeof(fftw_complex)); - int i, k, gpower = 1, g = d->g, ginv = d->ginv; - fftw_real a0r, a0i; - fftw_complex *omega = d->omega; - - for (i = 0; i < m; ++i, A += stride, W += r - 1) { - /* - * Here, we fft W[k-1] * A[k*(m*stride)], using Rader. - * (Actually, W is pre-permuted to match the permutation that we - * will do on A.) - */ - - /* First, permute the input and multiply by W, storing in tmp: */ - /* gpower == g^k mod r in the following loop */ - for (k = 0; k < r - 1; ++k, gpower = MULMOD(gpower, g, r)) { - fftw_real rA, iA, rW, iW; - rW = c_re(W[k]); - iW = c_im(W[k]); - rA = c_re(A[gpower * (m * stride)]); - iA = c_im(A[gpower * (m * stride)]); - c_re(tmp[k]) = rW * rA - iW * iA; - c_im(tmp[k]) = rW * iA + iW * rA; - } - - WHEN_DEBUG( { - if (gpower != 1) - fftw_die("incorrect generator in Rader\n"); - } - ); - - /* FFT tmp to A: */ - fftw_executor_simple(r - 1, tmp, A + (m * stride), - d->plan->root, 1, m * stride, - d->plan->recurse_kind); - - /* set output DC component: */ - a0r = c_re(A[0]); - a0i = c_im(A[0]); - c_re(A[0]) += c_re(A[(m * stride)]); - c_im(A[0]) += c_im(A[(m * stride)]); - - /* now, multiply by omega: */ - for (k = 0; k < r - 1; ++k) { - fftw_real rA, iA, rW, iW; - rW = c_re(omega[k]); - iW = c_im(omega[k]); - rA = c_re(A[(k + 1) * (m * stride)]); - iA = c_im(A[(k + 1) * (m * stride)]); - c_re(A[(k + 1) * (m * stride)]) = rW * rA - iW * iA; - c_im(A[(k + 1) * (m * stride)]) = -(rW * iA + iW * rA); - } - - /* this will add A[0] to all of the outputs after the ifft */ - c_re(A[(m * stride)]) += a0r; - c_im(A[(m * stride)]) -= a0i; - - /* inverse FFT: */ - fftw_executor_simple(r - 1, A + (m * stride), tmp, - d->plan->root, m * stride, 1, - d->plan->recurse_kind); - - /* finally, do inverse permutation to unshuffle the output: */ - for (k = 0; k < r - 1; ++k, gpower = MULMOD(gpower, ginv, r)) { - c_re(A[gpower * (m * stride)]) = c_re(tmp[k]); - c_im(A[gpower * (m * stride)]) = -c_im(tmp[k]); - } - - WHEN_DEBUG( { - if (gpower != 1) - fftw_die("incorrect generator in Rader\n"); - } - ); - - } - - fftw_free(tmp); -} - -void fftwi_twiddle_rader(fftw_complex *A, const fftw_complex *W, - int m, int r, int stride, - fftw_rader_data * d) -{ - fftw_complex *tmp = (fftw_complex *) - fftw_malloc((r - 1) * sizeof(fftw_complex)); - int i, k, gpower = 1, g = d->g, ginv = d->ginv; - fftw_real a0r, a0i; - fftw_complex *omega = d->omega; - - for (i = 0; i < m; ++i, A += stride, W += r - 1) { - /* - * Here, we fft W[k-1]* * A[k*(m*stride)], using Rader. - * (Actually, W is pre-permuted to match the permutation that - * we will do on A.) - */ - - /* First, permute the input and multiply by W*, storing in tmp: */ - /* gpower == g^k mod r in the following loop */ - for (k = 0; k < r - 1; ++k, gpower = MULMOD(gpower, g, r)) { - fftw_real rA, iA, rW, iW; - rW = c_re(W[k]); - iW = c_im(W[k]); - rA = c_re(A[gpower * (m * stride)]); - iA = c_im(A[gpower * (m * stride)]); - c_re(tmp[k]) = rW * rA + iW * iA; - c_im(tmp[k]) = iW * rA - rW * iA; - } - - WHEN_DEBUG( { - if (gpower != 1) - fftw_die("incorrect generator in Rader\n"); - } - ); - - /* FFT tmp to A: */ - fftw_executor_simple(r - 1, tmp, A + (m * stride), - d->plan->root, 1, m * stride, - d->plan->recurse_kind); - - /* set output DC component: */ - a0r = c_re(A[0]); - a0i = c_im(A[0]); - c_re(A[0]) += c_re(A[(m * stride)]); - c_im(A[0]) -= c_im(A[(m * stride)]); - - /* now, multiply by omega: */ - for (k = 0; k < r - 1; ++k) { - fftw_real rA, iA, rW, iW; - rW = c_re(omega[k]); - iW = c_im(omega[k]); - rA = c_re(A[(k + 1) * (m * stride)]); - iA = c_im(A[(k + 1) * (m * stride)]); - c_re(A[(k + 1) * (m * stride)]) = rW * rA - iW * iA; - c_im(A[(k + 1) * (m * stride)]) = -(rW * iA + iW * rA); - } - - /* this will add A[0] to all of the outputs after the ifft */ - c_re(A[(m * stride)]) += a0r; - c_im(A[(m * stride)]) += a0i; - - /* inverse FFT: */ - fftw_executor_simple(r - 1, A + (m * stride), tmp, - d->plan->root, m * stride, 1, - d->plan->recurse_kind); - - /* finally, do inverse permutation to unshuffle the output: */ - for (k = 0; k < r - 1; ++k, gpower = MULMOD(gpower, ginv, r)) { - A[gpower * (m * stride)] = tmp[k]; - } - - WHEN_DEBUG( { - if (gpower != 1) - fftw_die("incorrect generator in Rader\n"); - } - ); - } - - fftw_free(tmp); -} - -/***************************************************************************/ - -/* - * Make an FFTW_RADER plan node. Note that this function must go - * here, rather than in putils.c, because it indirectly calls the - * fftw_planner. If we included it in putils.c, which is also used - * by rfftw, then any program using rfftw would be linked with all - * of the FFTW codelets, even if they were not needed. I wish that the - * darn linkers operated on a function rather than a file granularity. - */ -fftw_plan_node *fftw_make_node_rader(int n, int size, fftw_direction dir, - fftw_plan_node *recurse, - int flags) -{ - fftw_plan_node *p = fftw_make_node(); - - p->type = FFTW_RADER; - p->nodeu.rader.size = size; - p->nodeu.rader.codelet = dir == FFTW_FORWARD ? - fftw_twiddle_rader : fftwi_twiddle_rader; - p->nodeu.rader.rader_data = fftw_create_rader(size, flags); - p->nodeu.rader.recurse = recurse; - fftw_use_node(recurse); - - if (flags & FFTW_MEASURE) - p->nodeu.rader.tw = - fftw_create_twiddle(n, p->nodeu.rader.rader_data->cdesc); - else - p->nodeu.rader.tw = 0; - return p; -} -- cgit v1.2.3