From 0ef2e06cb3a1a09843b06ceb3078475e47d0e34f Mon Sep 17 00:00:00 2001 From: John Glover Date: Thu, 12 Jul 2012 21:25:29 +0100 Subject: [sndobj] Rename sndobj.py to pysndobj.py --- simpl/pysndobj.py | 197 ++++++++++++++++++++++++++++++++++++++++++++++++++++++ simpl/sndobj.py | 197 ------------------------------------------------------ 2 files changed, 197 insertions(+), 197 deletions(-) create mode 100644 simpl/pysndobj.py delete mode 100644 simpl/sndobj.py diff --git a/simpl/pysndobj.py b/simpl/pysndobj.py new file mode 100644 index 0000000..97e703a --- /dev/null +++ b/simpl/pysndobj.py @@ -0,0 +1,197 @@ +import simpl +import simpl.simplsndobj as simplsndobj +import numpy as np + + +class SndObjPeakDetection(simpl.PeakDetection): + "Sinusoidal peak detection using the SndObj library" + def __init__(self): + super(SndObjPeakDetection, self).__init__() + self._input = simplsndobj.SndObj() + self._input.SetVectorSize(self.frame_size) + self._window = simplsndobj.HammingTable(self.frame_size, 0.5) + self._ifgram = simplsndobj.IFGram(self._window, self._input, 1, + self.frame_size, self.hop_size) + self._threshold = 0.003 + self._analysis = simplsndobj.SinAnal(self._ifgram, self._threshold, + self.max_peaks) + + # properties + threshold = property(lambda self: self.get_threshold(), + lambda self, x: self.set_threshold(x)) + + def set_frame_size(self, frame_size): + "Set the analysis frame size" + self._input.SetVectorSize(frame_size) + if self.window_type == "hamming": + self._window = simplsndobj.HammingTable(frame_size, 0.5) + elif self.window_type >= 0 and self.window_type <= 1: + self._window = simplsndobj.HammingTable(frame_size, self.window_type) + self._ifgram.Connect("window", self._window) + self._ifgram.Set("fft size", frame_size) + self._frame_size = frame_size + + def set_hop_size(self, hop_size): + self._ifgram.Set("hop size", hop_size) + self._hop_size = hop_size + + def set_max_peaks(self, max_peaks): + "Set the maximum number of peaks detected" + self._analysis.Set("max tracks", max_peaks) + self._max_peaks = max_peaks + + def set_window_type(self, window_type): + "Set the analysis window type" + if window_type == "hamming": + self._window = simplsndobj.HammingTable(self.frame_size, 0.5) + elif window_type >= 0 and window_type <= 1: + self._window = simplsndobj.HammingTable(self.frame_size, window_type) + else: + raise Exception("UnknownWindowType") + self._ifgram.Connect("window", self._window) + self._window_type = window_type + + def get_threshold(self): + return self._threshold + + def set_threshold(self, threshold): + self._analysis.Set("threshold", threshold) + self._threshold = threshold + + def find_peaks_in_frame(self, frame): + "Find and return all spectral peaks in a given frame of audio" + peaks = [] + self._input.PushIn(frame.audio) + self._input.DoProcess() + self._ifgram.DoProcess() + num_peaks_found = self._analysis.FindPeaks() + + # loop through analysis output and create peak objects + for i in range(num_peaks_found): + p = simpl.Peak() + p.amplitude = self._analysis.Output(i * 3) + p.frequency = self._analysis.Output((i * 3) + 1) + p.phase = self._analysis.Output((i * 3) + 2) + if not peaks: + peaks.append(p) + else: + if np.abs(p.frequency - peaks[-1].frequency) > self._min_peak_separation: + peaks.append(p) + else: + if p.amplitude > peaks[-1].amplitude: + peaks.remove(peaks[-1]) + peaks.append(p) + return peaks + + +class SndObjPartialTracking(simpl.PartialTracking): + "Partial tracking using the algorithm from the Sound Object Library" + def __init__(self): + simpl.PartialTracking.__init__(self) + self._threshold = 0.003 + self._num_bins = 1025 + self._analysis = simplsndobj.SinAnal( + simplsndobj.SndObj(), self._num_bins, + self._threshold, self.max_partials + ) + + def set_max_partials(self, num_partials): + self._analysis.Set("max tracks", num_partials) + self._max_partials = num_partials + + def update_partials(self, frame): + "Streamable (real-time) partial-tracking." + partials = [] + # load Peak amplitudes, frequencies and phases into arrays + num_peaks = len(frame.peaks) + amps = np.zeros(num_peaks, dtype=simpl.dtype) + freqs = np.zeros(num_peaks, dtype=simpl.dtype) + phases = np.zeros(num_peaks, dtype=simpl.dtype) + for i in range(num_peaks): + peak = frame.peaks[i] + amps[i] = peak.amplitude + freqs[i] = peak.frequency + phases[i] = peak.phase + # set peaks in SndObj SinAnal object + self._analysis.SetPeaks(amps, freqs, phases) + # call SndObj partial tracking + self._analysis.PartialTracking() + # form Partial objects + num_partials = self._analysis.GetTracks() + for i in range(num_partials): + peak = simpl.Peak() + peak.amplitude = self._analysis.Output(i * 3) + peak.frequency = self._analysis.Output((i * 3) + 1) + peak.phase = self._analysis.Output((i * 3) + 2) + partials.append(peak) + for i in range(num_partials, self.max_partials): + peak = simpl.Peak() + partials.append(peak) + return partials + + +class SimplSndObjAnalysisWrapper(simplsndobj.SinAnal): + """An object that takes simpl Peaks and presents them as SndObj analysis + data to the SndObj synthesis objects.""" + def __init__(self): + simplsndobj.SinAnal.__init__(self) + self.partials = [] + + def GetTracks(self): + return len(self.partials) + + def GetTrackID(self, partial_number): + if partial_number < len(self.partials): + return partial_number + else: + # TODO: what should this return if no matching partial found? + return 0 + + def Output(self, position): + peak = int(position) / 3 + if peak > len(self.partials): + # TODO: what should this return if no matching partial found? + return 0.0 + + data_field = int(position) % 3 + if data_field is 0: + return self.partials[peak].amplitude + elif data_field is 1: + return self.partials[peak].frequency + elif data_field is 2: + return self.partials[peak].phase + + +class SndObjSynthesis(simpl.Synthesis): + "Sinusoidal resynthesis using the SndObj library" + def __init__(self, synthesis_type='adsyn'): + simpl.Synthesis.__init__(self) + self._analysis = SimplSndObjAnalysisWrapper() + self._table = simplsndobj.HarmTable(10000, 1, 1, 0.25) + if synthesis_type == 'adsyn': + self._synth = simplsndobj.AdSyn(self._analysis, self.max_partials, + self._table, 1, 1, self.hop_size) + elif synthesis_type == 'sinsyn': + self._synth = simplsndobj.SinSyn(self._analysis, self.max_partials, + self._table, 1, self.hop_size) + else: + raise Exception("UnknownSynthesisType") + self._current_frame = np.zeros(self.hop_size, dtype=np.dtype) + + def set_hop_size(self, hop_size): + self._synth.SetVectorSize(hop_size) + self._hop_size = hop_size + self._current_frame = np.zeros(hop_size, dtype=np.dtype) + + def set_max_partials(self, num_partials): + self._synth.Set('max tracks', num_partials) + self._max_partials = num_partials + + def synth_frame(self, frame): + "Synthesises a frame of audio, given a list of peaks from tracks" + self._analysis.partials = frame.partials + if len(frame.partials) > self._max_partials: + self.max_partials = len(frame.partials) + self._synth.DoProcess() + self._synth.PopOut(self._current_frame) + return self._current_frame diff --git a/simpl/sndobj.py b/simpl/sndobj.py deleted file mode 100644 index 90b8fee..0000000 --- a/simpl/sndobj.py +++ /dev/null @@ -1,197 +0,0 @@ -import simpl -import simpl.simplsndobj as simplsndobj -import numpy as np - - -class SndObjPeakDetection(simpl.PeakDetection): - "Sinusoidal peak detection using the SndObj library" - def __init__(self): - simpl.PeakDetection.__init__(self) - self._input = simplsndobj.SndObj() - self._input.SetVectorSize(self.frame_size) - self._window = simplsndobj.HammingTable(self.frame_size, 0.5) - self._ifgram = simplsndobj.IFGram(self._window, self._input, 1, - self.frame_size, self.hop_size) - self._threshold = 0.003 - self._analysis = simplsndobj.SinAnal(self._ifgram, self._threshold, - self.max_peaks) - - # properties - threshold = property(lambda self: self.get_threshold(), - lambda self, x: self.set_threshold(x)) - - def set_frame_size(self, frame_size): - "Set the analysis frame size" - self._input.SetVectorSize(frame_size) - if self.window_type == "hamming": - self._window = simplsndobj.HammingTable(frame_size, 0.5) - elif self.window_type >= 0 and self.window_type <= 1: - self._window = simplsndobj.HammingTable(frame_size, self.window_type) - self._ifgram.Connect("window", self._window) - self._ifgram.Set("fft size", frame_size) - self._frame_size = frame_size - - def set_hop_size(self, hop_size): - self._ifgram.Set("hop size", hop_size) - self._hop_size = hop_size - - def set_max_peaks(self, max_peaks): - "Set the maximum number of peaks detected" - self._analysis.Set("max tracks", max_peaks) - self._max_peaks = max_peaks - - def set_window_type(self, window_type): - "Set the analysis window type" - if window_type == "hamming": - self._window = simplsndobj.HammingTable(self.frame_size, 0.5) - elif window_type >= 0 and window_type <= 1: - self._window = simplsndobj.HammingTable(self.frame_size, window_type) - else: - raise Exception("UnknownWindowType") - self._ifgram.Connect("window", self._window) - self._window_type = window_type - - def get_threshold(self): - return self._threshold - - def set_threshold(self, threshold): - self._analysis.Set("threshold", threshold) - self._threshold = threshold - - def find_peaks_in_frame(self, frame): - "Find and return all spectral peaks in a given frame of audio" - peaks = [] - self._input.PushIn(frame.audio) - self._input.DoProcess() - self._ifgram.DoProcess() - num_peaks_found = self._analysis.FindPeaks() - - # loop through analysis output and create peak objects - for i in range(num_peaks_found): - p = simpl.Peak() - p.amplitude = self._analysis.Output(i * 3) - p.frequency = self._analysis.Output((i * 3) + 1) - p.phase = self._analysis.Output((i * 3) + 2) - if not peaks: - peaks.append(p) - else: - if np.abs(p.frequency - peaks[-1].frequency) > self._min_peak_separation: - peaks.append(p) - else: - if p.amplitude > peaks[-1].amplitude: - peaks.remove(peaks[-1]) - peaks.append(p) - return peaks - - -class SndObjPartialTracking(simpl.PartialTracking): - "Partial tracking using the algorithm from the Sound Object Library" - def __init__(self): - simpl.PartialTracking.__init__(self) - self._threshold = 0.003 - self._num_bins = 1025 - self._analysis = simplsndobj.SinAnal( - simplsndobj.SndObj(), self._num_bins, - self._threshold, self.max_partials - ) - - def set_max_partials(self, num_partials): - self._analysis.Set("max tracks", num_partials) - self._max_partials = num_partials - - def update_partials(self, frame): - "Streamable (real-time) partial-tracking." - partials = [] - # load Peak amplitudes, frequencies and phases into arrays - num_peaks = len(frame.peaks) - amps = np.zeros(num_peaks, dtype=simpl.dtype) - freqs = np.zeros(num_peaks, dtype=simpl.dtype) - phases = np.zeros(num_peaks, dtype=simpl.dtype) - for i in range(num_peaks): - peak = frame.peaks[i] - amps[i] = peak.amplitude - freqs[i] = peak.frequency - phases[i] = peak.phase - # set peaks in SndObj SinAnal object - self._analysis.SetPeaks(amps, freqs, phases) - # call SndObj partial tracking - self._analysis.PartialTracking() - # form Partial objects - num_partials = self._analysis.GetTracks() - for i in range(num_partials): - peak = simpl.Peak() - peak.amplitude = self._analysis.Output(i * 3) - peak.frequency = self._analysis.Output((i * 3) + 1) - peak.phase = self._analysis.Output((i * 3) + 2) - partials.append(peak) - for i in range(num_partials, self.max_partials): - peak = simpl.Peak() - partials.append(peak) - return partials - - -class SimplSndObjAnalysisWrapper(simplsndobj.SinAnal): - """An object that takes simpl Peaks and presents them as SndObj analysis - data to the SndObj synthesis objects.""" - def __init__(self): - simplsndobj.SinAnal.__init__(self) - self.partials = [] - - def GetTracks(self): - return len(self.partials) - - def GetTrackID(self, partial_number): - if partial_number < len(self.partials): - return partial_number - else: - # TODO: what should this return if no matching partial found? - return 0 - - def Output(self, position): - peak = int(position) / 3 - if peak > len(self.partials): - # TODO: what should this return if no matching partial found? - return 0.0 - - data_field = int(position) % 3 - if data_field is 0: - return self.partials[peak].amplitude - elif data_field is 1: - return self.partials[peak].frequency - elif data_field is 2: - return self.partials[peak].phase - - -class SndObjSynthesis(simpl.Synthesis): - "Sinusoidal resynthesis using the SndObj library" - def __init__(self, synthesis_type='adsyn'): - simpl.Synthesis.__init__(self) - self._analysis = SimplSndObjAnalysisWrapper() - self._table = simplsndobj.HarmTable(10000, 1, 1, 0.25) - if synthesis_type == 'adsyn': - self._synth = simplsndobj.AdSyn(self._analysis, self.max_partials, - self._table, 1, 1, self.hop_size) - elif synthesis_type == 'sinsyn': - self._synth = simplsndobj.SinSyn(self._analysis, self.max_partials, - self._table, 1, self.hop_size) - else: - raise Exception("UnknownSynthesisType") - self._current_frame = np.zeros(self.hop_size, dtype=np.dtype) - - def set_hop_size(self, hop_size): - self._synth.SetVectorSize(hop_size) - self._hop_size = hop_size - self._current_frame = np.zeros(hop_size, dtype=np.dtype) - - def set_max_partials(self, num_partials): - self._synth.Set('max tracks', num_partials) - self._max_partials = num_partials - - def synth_frame(self, frame): - "Synthesises a frame of audio, given a list of peaks from tracks" - self._analysis.partials = frame.partials - if len(frame.partials) > self._max_partials: - self.max_partials = len(frame.partials) - self._synth.DoProcess() - self._synth.PopOut(self._current_frame) - return self._current_frame -- cgit v1.2.3