/* * libADLMIDI is a free Software MIDI synthesizer library with OPL3 emulation * * Original ADLMIDI code: Copyright (c) 2010-2014 Joel Yliluoma * ADLMIDI Library API: Copyright (c) 2015-2020 Vitaly Novichkov * * Library is based on the ADLMIDI, a MIDI player for Linux and Windows with OPL3 emulation: * http://iki.fi/bisqwit/source/adlmidi.html * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include "adlmidi_opl3.hpp" #include "adlmidi_private.hpp" #include #include #ifndef DISABLE_EMBEDDED_BANKS #include "wopl/wopl_file.h" #endif #ifdef ADLMIDI_HW_OPL static const unsigned OPLBase = 0x388; #else # if defined(ADLMIDI_DISABLE_NUKED_EMULATOR) && \ defined(ADLMIDI_DISABLE_DOSBOX_EMULATOR) && \ defined(ADLMIDI_DISABLE_OPAL_EMULATOR) && \ defined(ADLMIDI_DISABLE_JAVA_EMULATOR) # error "No emulators enabled. You must enable at least one emulator to use this library!" # endif // Nuked OPL3 emulator, Most accurate, but requires the powerful CPU # ifndef ADLMIDI_DISABLE_NUKED_EMULATOR # include "chips/nuked_opl3.h" # include "chips/nuked_opl3_v174.h" # endif // DosBox 0.74 OPL3 emulator, Well-accurate and fast # ifndef ADLMIDI_DISABLE_DOSBOX_EMULATOR # include "chips/dosbox_opl3.h" # endif // Opal emulator # ifndef ADLMIDI_DISABLE_OPAL_EMULATOR # include "chips/opal_opl3.h" # endif // Java emulator # ifndef ADLMIDI_DISABLE_JAVA_EMULATOR # include "chips/java_opl3.h" # endif #endif static const unsigned adl_emulatorSupport = 0 #ifndef ADLMIDI_HW_OPL # ifndef ADLMIDI_DISABLE_NUKED_EMULATOR | (1u << ADLMIDI_EMU_NUKED) | (1u << ADLMIDI_EMU_NUKED_174) # endif # ifndef ADLMIDI_DISABLE_DOSBOX_EMULATOR | (1u << ADLMIDI_EMU_DOSBOX) # endif # ifndef ADLMIDI_DISABLE_OPAL_EMULATOR | (1u << ADLMIDI_EMU_OPAL) # endif # ifndef ADLMIDI_DISABLE_JAVA_EMULATOR | (1u << ADLMIDI_EMU_JAVA) # endif #endif ; //! Check emulator availability bool adl_isEmulatorAvailable(int emulator) { return (adl_emulatorSupport & (1u << (unsigned)emulator)) != 0; } //! Find highest emulator int adl_getHighestEmulator() { int emu = -1; for(unsigned m = adl_emulatorSupport; m > 0; m >>= 1) ++emu; return emu; } //! Find lowest emulator int adl_getLowestEmulator() { int emu = -1; unsigned m = adl_emulatorSupport; if(m > 0) { for(emu = 0; (m & 1) == 0; m >>= 1) ++emu; } return emu; } //! Per-channel and per-operator registers map static const uint16_t g_operatorsMap[(NUM_OF_CHANNELS + NUM_OF_RM_CHANNELS) * 2] = { // Channels 0-2 0x000, 0x003, 0x001, 0x004, 0x002, 0x005, // operators 0, 3, 1, 4, 2, 5 // Channels 3-5 0x008, 0x00B, 0x009, 0x00C, 0x00A, 0x00D, // operators 6, 9, 7,10, 8,11 // Channels 6-8 0x010, 0x013, 0x011, 0x014, 0x012, 0x015, // operators 12,15, 13,16, 14,17 // Same for second card 0x100, 0x103, 0x101, 0x104, 0x102, 0x105, // operators 18,21, 19,22, 20,23 0x108, 0x10B, 0x109, 0x10C, 0x10A, 0x10D, // operators 24,27, 25,28, 26,29 0x110, 0x113, 0x111, 0x114, 0x112, 0x115, // operators 30,33, 31,34, 32,35 //==For Rhythm-mode percussions // Channel 18 0x010, 0x013, // operators 12,15 // Channel 19 0xFFF, 0x014, // operator 16 // Channel 19 0x012, 0xFFF, // operator 14 // Channel 19 0xFFF, 0x015, // operator 17 // Channel 19 0x011, 0xFFF, // operator 13 //==For Rhythm-mode percussions in CMF, snare and cymbal operators has inverted! 0x010, 0x013, // operators 12,15 // Channel 19 0x014, 0xFFF, // operator 16 // Channel 19 0x012, 0xFFF, // operator 14 // Channel 19 0x015, 0xFFF, // operator 17 // Channel 19 0x011, 0xFFF // operator 13 }; //! Channel map to regoster offsets static const uint16_t g_channelsMap[NUM_OF_CHANNELS] = { 0x000, 0x001, 0x002, 0x003, 0x004, 0x005, 0x006, 0x007, 0x008, // 0..8 0x100, 0x101, 0x102, 0x103, 0x104, 0x105, 0x106, 0x107, 0x108, // 9..17 (secondary set) 0x006, 0x007, 0x008, 0x008, 0x008 // <- hw percussions, hihats and cymbals using tom-tom's channel as pitch source }; //! Channel map to regoster offsets (separated copy for panning) static const uint16_t g_channelsMapPan[NUM_OF_CHANNELS] = { 0x000, 0x001, 0x002, 0x003, 0x004, 0x005, 0x006, 0x007, 0x008, // 0..8 0x100, 0x101, 0x102, 0x103, 0x104, 0x105, 0x106, 0x107, 0x108, // 9..17 (secondary set) 0x006, 0x007, 0x008, 0xFFF, 0xFFF // <- hw percussions, 0xFFF = no support for pitch/pan }; /* In OPL3 mode: 0 1 2 6 7 8 9 10 11 16 17 18 op0 op1 op2 op12 op13 op14 op18 op19 op20 op30 op31 op32 op3 op4 op5 op15 op16 op17 op21 op22 op23 op33 op34 op35 3 4 5 13 14 15 op6 op7 op8 op24 op25 op26 op9 op10 op11 op27 op28 op29 Ports: +0 +1 +2 +10 +11 +12 +100 +101 +102 +110 +111 +112 +3 +4 +5 +13 +14 +15 +103 +104 +105 +113 +114 +115 +8 +9 +A +108 +109 +10A +B +C +D +10B +10C +10D Percussion: bassdrum = op(0): 0xBD bit 0x10, operators 12 (0x10) and 15 (0x13) / channels 6, 6b snare = op(3): 0xBD bit 0x08, operators 16 (0x14) / channels 7b tomtom = op(4): 0xBD bit 0x04, operators 14 (0x12) / channels 8 cym = op(5): 0xBD bit 0x02, operators 17 (0x17) / channels 8b hihat = op(2): 0xBD bit 0x01, operators 13 (0x11) / channels 7 In OPTi mode ("extended FM" in 82C924, 82C925, 82C931 chips): 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 op0 op4 op6 op10 op12 op16 op18 op22 op24 op28 op30 op34 op36 op38 op40 op42 op44 op46 op1 op5 op7 op11 op13 op17 op19 op23 op25 op29 op31 op35 op37 op39 op41 op43 op45 op47 op2 op8 op14 op20 op26 op32 op3 op9 op15 op21 op27 op33 for a total of 6 quad + 12 dual Ports: ??? */ // Mapping from MIDI volume level to OPL level value. static const uint_fast32_t DMX_volume_mapping_table[128] = { 0, 1, 3, 5, 6, 8, 10, 11, 13, 14, 16, 17, 19, 20, 22, 23, 25, 26, 27, 29, 30, 32, 33, 34, 36, 37, 39, 41, 43, 45, 47, 49, 50, 52, 54, 55, 57, 59, 60, 61, 63, 64, 66, 67, 68, 69, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 84, 85, 86, 87, 88, 89, 90, 91, 92, 92, 93, 94, 95, 96, 96, 97, 98, 99, 99, 100, 101, 101, 102, 103, 103, 104, 105, 105, 106, 107, 107, 108, 109, 109, 110, 110, 111, 112, 112, 113, 113, 114, 114, 115, 115, 116, 117, 117, 118, 118, 119, 119, 120, 120, 121, 121, 122, 122, 123, 123, 123, 124, 124, 125, 125, 126, 126, 127, 127, }; static const uint_fast32_t W9X_volume_mapping_table[32] = { 63, 63, 40, 36, 32, 28, 23, 21, 19, 17, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 5, 4, 4, 3, 3, 2, 2, 1, 1, 0, 0 }; enum { MasterVolumeDefault = 127 }; enum { OPL_PANNING_LEFT = 0x10, OPL_PANNING_RIGHT = 0x20, OPL_PANNING_BOTH = 0x30 }; static adlinsdata2 makeEmptyInstrument() { adlinsdata2 ins; memset(&ins, 0, sizeof(adlinsdata2)); ins.flags = adlinsdata::Flag_NoSound; return ins; } const adlinsdata2 OPL3::m_emptyInstrument = makeEmptyInstrument(); OPL3::OPL3() : m_numChips(1), m_numFourOps(0), m_deepTremoloMode(false), m_deepVibratoMode(false), m_rhythmMode(false), m_softPanning(false), m_masterVolume(MasterVolumeDefault), m_musicMode(MODE_MIDI), m_volumeScale(VOLUME_Generic) { m_insBankSetup.volumeModel = OPL3::VOLUME_Generic; m_insBankSetup.deepTremolo = false; m_insBankSetup.deepVibrato = false; m_insBankSetup.scaleModulators = false; #ifdef DISABLE_EMBEDDED_BANKS m_embeddedBank = CustomBankTag; #else setEmbeddedBank(0); #endif } OPL3::~OPL3() { #ifdef ADLMIDI_HW_OPL silenceAll(); writeRegI(0, 0x0BD, 0); writeRegI(0, 0x104, 0); writeRegI(0, 0x105, 0); silenceAll(); #endif } bool OPL3::setupLocked() { return (m_musicMode == MODE_CMF || m_musicMode == MODE_IMF || m_musicMode == MODE_RSXX); } void OPL3::setEmbeddedBank(uint32_t bank) { #ifndef DISABLE_EMBEDDED_BANKS m_embeddedBank = bank; //Embedded banks are supports 128:128 GM set only m_insBanks.clear(); if(bank >= static_cast(g_embeddedBanksCount)) return; const BanksDump::BankEntry &bankEntry = g_embeddedBanks[m_embeddedBank]; m_insBankSetup.deepTremolo = ((bankEntry.bankSetup >> 8) & 0x01) != 0; m_insBankSetup.deepVibrato = ((bankEntry.bankSetup >> 8) & 0x02) != 0; m_insBankSetup.volumeModel = (bankEntry.bankSetup & 0xFF); m_insBankSetup.scaleModulators = false; for(int ss = 0; ss < 2; ss++) { bank_count_t maxBanks = ss ? bankEntry.banksPercussionCount : bankEntry.banksMelodicCount; bank_count_t banksOffset = ss ? bankEntry.banksOffsetPercussive : bankEntry.banksOffsetMelodic; for(bank_count_t bankID = 0; bankID < maxBanks; bankID++) { size_t bankIndex = g_embeddedBanksMidiIndex[banksOffset + bankID]; const BanksDump::MidiBank &bankData = g_embeddedBanksMidi[bankIndex]; size_t bankMidiIndex = static_cast((bankData.msb * 256) + bankData.lsb) + (ss ? static_cast(PercussionTag) : 0); Bank &bankTarget = m_insBanks[bankMidiIndex]; for(size_t instId = 0; instId < 128; instId++) { midi_bank_idx_t instIndex = bankData.insts[instId]; if(instIndex < 0) continue; BanksDump::InstrumentEntry instIn = g_embeddedBanksInstruments[instIndex]; adlinsdata2 &instOut = bankTarget.ins[instId]; adlFromInstrument(instIn, instOut); } } } #else ADL_UNUSED(bank); #endif } void OPL3::writeReg(size_t chip, uint16_t address, uint8_t value) { #ifdef ADLMIDI_HW_OPL ADL_UNUSED(chip); unsigned o = address >> 8; unsigned port = OPLBase + o * 2; # ifdef __DJGPP__ outportb(port, address); for(unsigned c = 0; c < 6; ++c) inportb(port); outportb(port + 1, value); for(unsigned c = 0; c < 35; ++c) inportb(port); # endif # ifdef __WATCOMC__ outp(port, address); for(uint16_t c = 0; c < 6; ++c) inp(port); outp(port + 1, value); for(uint16_t c = 0; c < 35; ++c) inp(port); # endif//__WATCOMC__ #else//ADLMIDI_HW_OPL m_chips[chip]->writeReg(address, value); #endif } void OPL3::writeRegI(size_t chip, uint32_t address, uint32_t value) { #ifdef ADLMIDI_HW_OPL writeReg(chip, static_cast(address), static_cast(value)); #else//ADLMIDI_HW_OPL m_chips[chip]->writeReg(static_cast(address), static_cast(value)); #endif } void OPL3::writePan(size_t chip, uint32_t address, uint32_t value) { #ifndef ADLMIDI_HW_OPL m_chips[chip]->writePan(static_cast(address), static_cast(value)); #else ADL_UNUSED(chip); ADL_UNUSED(address); ADL_UNUSED(value); #endif } void OPL3::noteOff(size_t c) { size_t chip = c / NUM_OF_CHANNELS, cc = c % NUM_OF_CHANNELS; if(cc >= OPL3_CHANNELS_RHYTHM_BASE) { m_regBD[chip] &= ~(0x10 >> (cc - OPL3_CHANNELS_RHYTHM_BASE)); writeRegI(chip, 0xBD, m_regBD[chip]); return; } writeRegI(chip, 0xB0 + g_channelsMap[cc], m_keyBlockFNumCache[c] & 0xDF); } void OPL3::noteOn(size_t c1, size_t c2, double hertz) // Hertz range: 0..131071 { size_t chip = c1 / NUM_OF_CHANNELS, cc1 = c1 % NUM_OF_CHANNELS, cc2 = c2 % NUM_OF_CHANNELS; uint32_t octave = 0, ftone = 0, mul_offset = 0; if(hertz < 0) return; //Basic range until max of octaves reaching while((hertz >= 1023.5) && (octave < 0x1C00)) { hertz /= 2.0; // Calculate octave octave += 0x400; } //Extended range, rely on frequency multiplication increment while(hertz >= 1022.75) { hertz /= 2.0; // Calculate octave mul_offset++; } ftone = octave + static_cast(hertz + 0.5); uint32_t chn = g_channelsMap[cc1]; const adldata &patch1 = m_insCache[c1]; const adldata &patch2 = m_insCache[c2 < m_insCache.size() ? c2 : 0]; if(cc1 < OPL3_CHANNELS_RHYTHM_BASE) { ftone += 0x2000u; /* Key-ON [KON] */ const bool natural_4op = (m_channelCategory[c1] == ChanCat_4op_Master); const size_t opsCount = natural_4op ? 4 : 2; const uint16_t op_addr[4] = { g_operatorsMap[cc1 * 2 + 0], g_operatorsMap[cc1 * 2 + 1], g_operatorsMap[cc2 * 2 + 0], g_operatorsMap[cc2 * 2 + 1] }; const uint32_t ops[4] = { patch1.modulator_E862 & 0xFF, patch1.carrier_E862 & 0xFF, patch2.modulator_E862 & 0xFF, patch2.carrier_E862 & 0xFF }; for(size_t op = 0; op < opsCount; op++) { if(op_addr[op] == 0xFFF) continue; if(mul_offset > 0) { uint32_t dt = ops[op] & 0xF0; uint32_t mul = ops[op] & 0x0F; if((mul + mul_offset) > 0x0F) { mul_offset = 0; mul = 0x0F; } writeRegI(chip, 0x20 + op_addr[op], (dt | (mul + mul_offset)) & 0xFF); } else { writeRegI(chip, 0x20 + op_addr[op], ops[op] & 0xFF); } } } if(chn != 0xFFF) { writeRegI(chip , 0xA0 + chn, (ftone & 0xFF)); writeRegI(chip , 0xB0 + chn, (ftone >> 8)); m_keyBlockFNumCache[c1] = (ftone >> 8); } if(cc1 >= OPL3_CHANNELS_RHYTHM_BASE) { m_regBD[chip ] |= (0x10 >> (cc1 - OPL3_CHANNELS_RHYTHM_BASE)); writeRegI(chip , 0x0BD, m_regBD[chip ]); //x |= 0x800; // for test } } static inline uint_fast32_t brightnessToOPL(uint_fast32_t brightness) { double b = static_cast(brightness); double ret = ::round(127.0 * ::sqrt(b * (1.0 / 127.0))) / 2.0; return static_cast(ret); } void OPL3::touchNote(size_t c, uint_fast32_t velocity, uint_fast32_t channelVolume, uint_fast32_t channelExpression, uint8_t brightness) { size_t chip = c / NUM_OF_CHANNELS, cc = c % NUM_OF_CHANNELS; const adldata &adli = m_insCache[c]; size_t cmf_offset = ((m_musicMode == MODE_CMF) && cc >= OPL3_CHANNELS_RHYTHM_BASE) ? 10 : 0; uint16_t o1 = g_operatorsMap[cc * 2 + 0 + cmf_offset]; uint16_t o2 = g_operatorsMap[cc * 2 + 1 + cmf_offset]; uint8_t x = adli.modulator_40, y = adli.carrier_40; uint32_t mode = 1; // 2-op AM uint_fast32_t kslMod = x & 0xC0; uint_fast32_t kslCar = y & 0xC0; uint_fast32_t tlMod = x & 63; uint_fast32_t tlCar = y & 63; uint_fast32_t modulator; uint_fast32_t carrier; uint_fast32_t volume = 0; uint_fast32_t midiVolume = 0; bool do_modulator = false; bool do_carrier = true; static const bool do_ops[10][2] = { { false, true }, /* 2 op FM */ { true, true }, /* 2 op AM */ { false, false }, /* 4 op FM-FM ops 1&2 */ { true, false }, /* 4 op AM-FM ops 1&2 */ { false, true }, /* 4 op FM-AM ops 1&2 */ { true, false }, /* 4 op AM-AM ops 1&2 */ { false, true }, /* 4 op FM-FM ops 3&4 */ { false, true }, /* 4 op AM-FM ops 3&4 */ { false, true }, /* 4 op FM-AM ops 3&4 */ { true, true } /* 4 op AM-AM ops 3&4 */ }; // ------ Mix volumes and compute average ------ switch(m_volumeScale) { default: case Synth::VOLUME_Generic: { volume = velocity * m_masterVolume * channelVolume * channelExpression; /* If the channel has arpeggio, the effective volume of * *this* instrument is actually lower due to timesharing. * To compensate, add extra volume that corresponds to the * time this note is *not* heard. * Empirical tests however show that a full equal-proportion * increment sounds wrong. Therefore, using the square root. */ //volume = (int)(volume * std::sqrt( (double) ch[c].users.size() )); const double c1 = 11.541560327111707; const double c2 = 1.601379199767093e+02; const uint_fast32_t minVolume = 1108075; // 8725 * 127 // The formula below: SOLVE(V=127^4 * 2^( (A-63.49999) / 8), A) if(volume > minVolume) { double lv = std::log(static_cast(volume)); volume = static_cast(lv * c1 - c2); } else volume = 0; } break; case Synth::VOLUME_NATIVE: { volume = velocity * channelVolume * channelExpression; // 4096766 = (127 * 127 * 127) / 2 volume = (volume * m_masterVolume) / 4096766; } break; case Synth::VOLUME_DMX: case Synth::VOLUME_DMX_FIXED: { volume = (channelVolume * channelExpression * m_masterVolume) / 16129; volume = (DMX_volume_mapping_table[volume] + 1) << 1; volume = (DMX_volume_mapping_table[(velocity < 128) ? velocity : 127] * volume) >> 9; } break; case Synth::VOLUME_APOGEE: case Synth::VOLUME_APOGEE_FIXED: { volume = 0; midiVolume = (channelVolume * channelExpression * m_masterVolume / 16129); } break; case Synth::VOLUME_9X: { volume = velocity * channelVolume * channelExpression * m_masterVolume; volume = 63 - W9X_volume_mapping_table[(volume / 2048383) >> 2]; } break; } if(volume > 63) volume = 63; if(midiVolume > 127) midiVolume = 127; if(m_channelCategory[c] == ChanCat_Regular || m_channelCategory[c] == ChanCat_Rhythm_Bass) { mode = adli.feedconn & 1; // 2-op FM or 2-op AM } else if(m_channelCategory[c] == ChanCat_4op_Master || m_channelCategory[c] == ChanCat_4op_Slave) { const adldata *i0, *i1; if(m_channelCategory[c] == ChanCat_4op_Master) { i0 = &adli; i1 = &m_insCache[c + 3]; mode = 2; // 4-op xx-xx ops 1&2 } else { i0 = &m_insCache[c - 3]; i1 = &adli; mode = 6; // 4-op xx-xx ops 3&4 } mode += (i0->feedconn & 1) + (i1->feedconn & 1) * 2; } // ------ Compute the total level register output data ------ if(m_musicMode == MODE_RSXX) { tlCar -= volume / 2; } else if((m_volumeScale == Synth::VOLUME_APOGEE || m_volumeScale == Synth::VOLUME_APOGEE_FIXED) && mode <= 1) { // volume = ((64 * (velocity + 0x80)) * volume) >> 15; do_modulator = do_ops[mode][ 0 ] || m_scaleModulators; tlCar = 63 - tlCar; tlCar *= velocity + 0x80; tlCar = (midiVolume * tlCar) >> 15; tlCar = tlCar ^ 63; if(do_modulator) { tlMod = 63 - tlMod; tlMod *= velocity + 0x80; // NOTE: Here is a bug of Apogee Sound System that makes modulator // to not work properly on AM instruments // The fix of this bug is just replacing of tlCar with tmMod // in this formula if(m_volumeScale == Synth::VOLUME_APOGEE_FIXED) tlMod = (midiVolume * tlMod) >> 15; else tlMod = (midiVolume * tlCar) >> 15; tlMod ^= 63; } } else if(m_volumeScale == Synth::VOLUME_DMX && mode <= 1) { do_modulator = do_ops[mode][ 0 ] || m_scaleModulators; tlCar = (63 - volume); if(do_modulator) { if(tlMod < tlCar) tlMod = tlCar; } } else { do_modulator = do_ops[ mode ][ 0 ] || m_scaleModulators; do_carrier = do_ops[ mode ][ 1 ] || m_scaleModulators; if(do_modulator) tlMod = 63 - volume + (volume * tlMod) / 63; if(do_carrier) tlCar = 63 - volume + (volume * tlCar) / 63; } if(brightness != 127) { brightness = brightnessToOPL(brightness); if(!do_modulator) tlMod = 63 - brightness + (brightness * tlMod) / 63; if(!do_carrier) tlCar = 63 - brightness + (brightness * tlCar) / 63; } modulator = (kslMod & 0xC0) | (tlMod & 63); carrier = (kslCar & 0xC0) | (tlCar & 63); if(o1 != 0xFFF) writeRegI(chip, 0x40 + o1, modulator); if(o2 != 0xFFF) writeRegI(chip, 0x40 + o2, carrier); // Correct formula (ST3, AdPlug): // 63-((63-(instrvol))/63)*chanvol // Reduces to (tested identical): // 63 - chanvol + chanvol*instrvol/63 // Also (slower, floats): // 63 + chanvol * (instrvol / 63.0 - 1) } void OPL3::setPatch(size_t c, const adldata &instrument) { size_t chip = c / NUM_OF_CHANNELS, cc = c % NUM_OF_CHANNELS; static const uint8_t data[4] = {0x20, 0x60, 0x80, 0xE0}; m_insCache[c] = instrument; size_t cmf_offset = ((m_musicMode == MODE_CMF) && (cc >= OPL3_CHANNELS_RHYTHM_BASE)) ? 10 : 0; uint16_t o1 = g_operatorsMap[cc * 2 + 0 + cmf_offset]; uint16_t o2 = g_operatorsMap[cc * 2 + 1 + cmf_offset]; unsigned x = instrument.modulator_E862, y = instrument.carrier_E862; for(size_t a = 0; a < 4; ++a, x >>= 8, y >>= 8) { if(o1 != 0xFFF) writeRegI(chip, data[a] + o1, x & 0xFF); if(o2 != 0xFFF) writeRegI(chip, data[a] + o2, y & 0xFF); } } void OPL3::setPan(size_t c, uint8_t value) { size_t chip = c / NUM_OF_CHANNELS, cc = c % NUM_OF_CHANNELS; if(g_channelsMapPan[cc] != 0xFFF) { #ifndef ADLMIDI_HW_OPL if (m_softPanning) { writePan(chip, g_channelsMapPan[cc], value); writeRegI(chip, 0xC0 + g_channelsMapPan[cc], m_insCache[c].feedconn | OPL_PANNING_BOTH); } else { #endif int panning = 0; if(value < 64 + 32) panning |= OPL_PANNING_LEFT; if(value >= 64 - 32) panning |= OPL_PANNING_RIGHT; writePan(chip, g_channelsMapPan[cc], 64); writeRegI(chip, 0xC0 + g_channelsMapPan[cc], m_insCache[c].feedconn | panning); #ifndef ADLMIDI_HW_OPL } #endif } } void OPL3::silenceAll() // Silence all OPL channels. { for(size_t c = 0; c < m_numChannels; ++c) { noteOff(c); touchNote(c, 0, 0, 0); } } void OPL3::updateChannelCategories() { const uint32_t fours = m_numFourOps; for(uint32_t chip = 0, fours_left = fours; chip < m_numChips; ++chip) { m_regBD[chip] = (m_deepTremoloMode * 0x80 + m_deepVibratoMode * 0x40 + m_rhythmMode * 0x20); writeRegI(chip, 0x0BD, m_regBD[chip]); uint32_t fours_this_chip = std::min(fours_left, static_cast(6u)); writeRegI(chip, 0x104, (1 << fours_this_chip) - 1); fours_left -= fours_this_chip; } if(!m_rhythmMode) { for(size_t a = 0, n = m_numChips; a < n; ++a) { for(size_t b = 0; b < NUM_OF_CHANNELS; ++b) { m_channelCategory[a * NUM_OF_CHANNELS + b] = (b >= OPL3_CHANNELS_RHYTHM_BASE) ? ChanCat_Rhythm_Slave : ChanCat_Regular; } } } else { for(size_t a = 0, n = m_numChips; a < n; ++a) { for(size_t b = 0; b < NUM_OF_CHANNELS; ++b) { m_channelCategory[a * NUM_OF_CHANNELS + b] = (b >= OPL3_CHANNELS_RHYTHM_BASE) ? static_cast(ChanCat_Rhythm_Bass + (b - OPL3_CHANNELS_RHYTHM_BASE)) : (b >= 6 && b < 9) ? ChanCat_Rhythm_Slave : ChanCat_Regular; } } } uint32_t nextfour = 0; for(uint32_t a = 0; a < fours; ++a) { m_channelCategory[nextfour] = ChanCat_4op_Master; m_channelCategory[nextfour + 3] = ChanCat_4op_Slave; switch(a % 6) { case 0: case 1: nextfour += 1; break; case 2: nextfour += 9 - 2; break; case 3: case 4: nextfour += 1; break; case 5: nextfour += NUM_OF_CHANNELS - 9 - 2; break; } } /**/ /* In two-op mode, channels 0..8 go as follows: Op1[port] Op2[port] Channel 0: 00 00 03 03 Channel 1: 01 01 04 04 Channel 2: 02 02 05 05 Channel 3: 06 08 09 0B Channel 4: 07 09 10 0C Channel 5: 08 0A 11 0D Channel 6: 12 10 15 13 Channel 7: 13 11 16 14 Channel 8: 14 12 17 15 In four-op mode, channels 0..8 go as follows: Op1[port] Op2[port] Op3[port] Op4[port] Channel 0: 00 00 03 03 06 08 09 0B Channel 1: 01 01 04 04 07 09 10 0C Channel 2: 02 02 05 05 08 0A 11 0D Channel 3: CHANNEL 0 SLAVE Channel 4: CHANNEL 1 SLAVE Channel 5: CHANNEL 2 SLAVE Channel 6: 12 10 15 13 Channel 7: 13 11 16 14 Channel 8: 14 12 17 15 Same goes principally for channels 9-17 respectively. */ } void OPL3::commitDeepFlags() { for(size_t chip = 0; chip < m_numChips; ++chip) { m_regBD[chip] = (m_deepTremoloMode * 0x80 + m_deepVibratoMode * 0x40 + m_rhythmMode * 0x20); writeRegI(chip, 0x0BD, m_regBD[chip]); } } void OPL3::setVolumeScaleModel(ADLMIDI_VolumeModels volumeModel) { switch(volumeModel) { case ADLMIDI_VolumeModel_AUTO://Do nothing until restart playing break; case ADLMIDI_VolumeModel_Generic: m_volumeScale = OPL3::VOLUME_Generic; break; case ADLMIDI_VolumeModel_NativeOPL3: m_volumeScale = OPL3::VOLUME_NATIVE; break; case ADLMIDI_VolumeModel_DMX: m_volumeScale = OPL3::VOLUME_DMX; break; case ADLMIDI_VolumeModel_APOGEE: m_volumeScale = OPL3::VOLUME_APOGEE; break; case ADLMIDI_VolumeModel_9X: m_volumeScale = OPL3::VOLUME_9X; break; case ADLMIDI_VolumeModel_DMX_Fixed: m_volumeScale = OPL3::VOLUME_DMX_FIXED; break; case ADLMIDI_VolumeModel_APOGEE_Fixed: m_volumeScale = OPL3::VOLUME_APOGEE_FIXED; break; } } ADLMIDI_VolumeModels OPL3::getVolumeScaleModel() { switch(m_volumeScale) { default: case OPL3::VOLUME_Generic: return ADLMIDI_VolumeModel_Generic; case OPL3::VOLUME_NATIVE: return ADLMIDI_VolumeModel_NativeOPL3; case OPL3::VOLUME_DMX: return ADLMIDI_VolumeModel_DMX; case OPL3::VOLUME_APOGEE: return ADLMIDI_VolumeModel_APOGEE; case OPL3::VOLUME_9X: return ADLMIDI_VolumeModel_9X; case OPL3::VOLUME_DMX_FIXED: return ADLMIDI_VolumeModel_DMX_Fixed; case OPL3::VOLUME_APOGEE_FIXED: return ADLMIDI_VolumeModel_APOGEE_Fixed; } } #ifndef ADLMIDI_HW_OPL void OPL3::clearChips() { for(size_t i = 0; i < m_chips.size(); i++) m_chips[i].reset(NULL); m_chips.clear(); } #endif void OPL3::reset(int emulator, unsigned long PCM_RATE, void *audioTickHandler) { #ifndef ADLMIDI_HW_OPL clearChips(); #else (void)emulator; (void)PCM_RATE; #endif #if !defined(ADLMIDI_AUDIO_TICK_HANDLER) (void)audioTickHandler; #endif m_insCache.clear(); m_keyBlockFNumCache.clear(); m_regBD.clear(); #ifndef ADLMIDI_HW_OPL m_chips.resize(m_numChips, AdlMIDI_SPtr()); #endif const struct adldata defaultInsCache = { 0x1557403,0x005B381, 0x49,0x80, 0x4, +0 }; m_numChannels = m_numChips * NUM_OF_CHANNELS; m_insCache.resize(m_numChannels, defaultInsCache); m_keyBlockFNumCache.resize(m_numChannels, 0); m_regBD.resize(m_numChips, 0); m_channelCategory.resize(m_numChannels, 0); for(size_t p = 0, a = 0; a < m_numChips; ++a) { for(size_t b = 0; b < OPL3_CHANNELS_RHYTHM_BASE; ++b) m_channelCategory[p++] = ChanCat_Regular; for(size_t b = 0; b < NUM_OF_RM_CHANNELS; ++b) m_channelCategory[p++] = ChanCat_Rhythm_Slave; } static const uint16_t data[] = { 0x004, 96, 0x004, 128, // Pulse timer 0x105, 0, 0x105, 1, 0x105, 0, // Pulse OPL3 enable 0x001, 32, 0x105, 1 // Enable wave, OPL3 extensions }; // size_t fours = m_numFourOps; for(size_t i = 0; i < m_numChips; ++i) { #ifndef ADLMIDI_HW_OPL OPLChipBase *chip; switch(emulator) { default: assert(false); abort(); #ifndef ADLMIDI_DISABLE_NUKED_EMULATOR case ADLMIDI_EMU_NUKED: /* Latest Nuked OPL3 */ chip = new NukedOPL3; break; case ADLMIDI_EMU_NUKED_174: /* Old Nuked OPL3 1.4.7 modified and optimized */ chip = new NukedOPL3v174; break; #endif #ifndef ADLMIDI_DISABLE_DOSBOX_EMULATOR case ADLMIDI_EMU_DOSBOX: chip = new DosBoxOPL3; break; #endif #ifndef ADLMIDI_DISABLE_OPAL_EMULATOR case ADLMIDI_EMU_OPAL: chip = new OpalOPL3; break; #endif #ifndef ADLMIDI_DISABLE_JAVA_EMULATOR case ADLMIDI_EMU_JAVA: chip = new JavaOPL3; break; #endif } m_chips[i].reset(chip); chip->setChipId((uint32_t)i); chip->setRate((uint32_t)PCM_RATE); if(m_runAtPcmRate) chip->setRunningAtPcmRate(true); # if defined(ADLMIDI_AUDIO_TICK_HANDLER) chip->setAudioTickHandlerInstance(audioTickHandler); # endif #endif // ADLMIDI_HW_OPL /* Clean-up channels from any playing junk sounds */ for(size_t a = 0; a < OPL3_CHANNELS_RHYTHM_BASE; ++a) writeRegI(i, 0xB0 + g_channelsMap[a], 0x00); for(size_t a = 0; a < sizeof(data) / sizeof(*data); a += 2) writeRegI(i, data[a], (data[a + 1])); } updateChannelCategories(); silenceAll(); }