#ifndef UDO_MELSEQUENCING #define UDO_MELSEQUENCING ## /* Melodic pattern sequencer base Legacy, without microtonal option This file is part of the SONICS UDO collection by Richard Knight 2021 License: GPL-2.0-or-later http://1bpm.net */ #include "__config__.udo" ; using fftsize for tuning #include "chords.udo" ; chord data #include "sequencing.udo" ; sequencer base #include "interop.udo" ; for updating host with outvalue #include "wavetables.udo" ; for tuning #include "json.udo" ; used to update host ; if these are set, then don't launch the manager automatically. sequencing_melodic_persistence will load accordingly #ifdef MEL_INITPATH #define MEL_HASINIT ## #end #ifdef MEL_INITDB #define MEL_HASINIT ## #end ;-------------------------internal-globals-------------------------------------------------------------------------- gimel_number init 12 ; number of melodic sections available gimel_state ftgen 0, 0, -4, -7, 0 ; state: current section, next section, current_step (gimel_number) gimel_chords ftgen 0, 0, -gimel_number, -7, 0 ; chord indexes from melodic.udo for each section gimel_notes ftgen 0, 0, -gimel_number, -7, 0 ; midi note numbers for each section gimel_lengths ftgen 0, 0, -gimel_number, -7, 0 ; lengths in beats for each section gimel_action1 ftgen 0, 0, -gimel_number, -7, 0 ; follow action 1 for each section gimel_action2 ftgen 0, 0, -gimel_number, -7, 0 ; follow action 2 for each section gimel_actionthreshold ftgen 0, 0, -gimel_number, -7, 0 ; follow action threshold - below 0.5 is action1, above is action2 gimel_active ftgen 0, 0, -gimel_number, -7, 0 ; whether each section is active or to be ignored gimel_importance ftgen 0, 0, -gimel_number, -7, 0 ; arbitrary section importance , 0 to 1 gimel_mod1 ftgen 0, 0, -gimel_number, -7, 0 ; arbitrary modulation 1, 0 to 1 gimel_mod2 ftgen 0, 0, -gimel_number, -7, 0 ; arbitrary modulation 2, 0 to 1 gimel_mod3 ftgen 0, 0, -gimel_number, -7, 0 ; arbitrary modulation 3, 0 to 1 gimel_mod4 ftgen 0, 0, -gimel_number, -7, 0 ; arbitrary modulation 4, 0 to 1 gimel_centadd ftgen 0, 0, -gimel_number, -7, 0 ; microtonal midi note additions (0 = no change; 1 = add one semitone; 0.01 = add one cent) gimel_future ftgen 0, 0, -8, -7, 0 ; future sections: 8 in the future gimel_current_notes ftgen 0, 0, -13, -7, 0 ; current notes: index 0 is the length gimel_next_notes ftgen 0, 0, -13, -7, 0 ; next notes: index 0 is the length gimel_temp_random ftgen 0, 0, -gimel_number, -7, 0 ; temp storage for pattern randomisation gkmel_section_change init 0 ; section change trigger gkmel_section_change_due init 0 ; how many beats until next section change gkmel_futures_refresh_trig init 0 ; trigger to set if futures are to be recalculated ; user modifiable variables gkmel_pause init 0 ; pause progression changes gkmel_advance_trig init 0 ; manual progression advance trigger ; names and references for persistence and introspection: essentially the tables to be saved gSmel_names[] fillarray "chords", "notes", "lengths", "action1", "action2",\ "actionthreshold", "active", "importance", "mod1", "mod2", "mod3", "mod4" gimel_fns[] fillarray gimel_chords, gimel_notes, gimel_lengths, gimel_action1, gimel_action2,\ gimel_actionthreshold, gimel_active, gimel_importance, gimel_mod1, gimel_mod2, gimel_mod3, gimel_mod4 ;-----------------------------opcodes------------------------------------------------------------------------------- /* Refresh the actions list: static actions and pattern references */ Smel_baseactions[] fillarray "Same", "Next", "Previous", "Random" gSmel_actions[] init lenarray(Smel_baseactions) + gimel_number index = 0 while (index < lenarray(gSmel_actions)) do if (index < 4) then gSmel_actions[index] = Smel_baseactions[index] else gSmel_actions[index] = sprintf("Section %d", index - 3) endif index += 1 od /* ; actions: static actions and pattern references filled by _mel_refreshactions ;gSmel_actions[] init 1 opcode _mel_refreshactions, 0, 0 endop _mel_refreshactions() ; initialise */ instr _mel_debug_printstate index = 0 Sjson = json_init() Sjson = json_appendtable(Sjson, "future", gimel_future) while (index < lenarray(gimel_fns)) do Sjson = json_appendtable(Sjson, gSmel_names[index], gimel_fns[index]) index += 1 od prints Sjson prints "\n\n" endin /* Send JSON formatted information on current setup to API host */ instr mel_updatehost ; use p4 for channel? Sjson = json_init() Sjson = json_appendvalue(Sjson, "sections", gimel_number) Sjson = json_appendarray(Sjson, "chordnames", gSchords) Sjson = json_appendarray(Sjson, "actiontypes", gSmel_actions) SjsonFns = json_init() index = 0 while (index < lenarray(gimel_fns)) do SjsonFns = json_appendvalue(SjsonFns, gSmel_names[index], gimel_fns[index]) index += 1 od Sjson = json_appendobject(Sjson, "ftables", SjsonFns) io_sendstring("mel_state", Sjson) turnoff endin /* ; new verison using plugin opcode instr mel_updatehost ; use p4 for channel? iJson jsoninit jsoninsertval iJson, "sections", gimel_number jsoninsertval iJson, "chordnames", gSchords jsoninsertval iJson, "actiontypes", gSmel_actions iJsonFns jsoninit jsoninsertval iJsonFns, gSmel_names, gimel_fns jsoninsert iJson, "ftables", iJsonFns io_sendstring("mel_state", jsondumps(iJson, 1)) endin */ /* Get modulation parameters for current section imod1, imod2, imod3, imod4 mel_currentmod imod1 modulation parameter 1 imod2 modulation parameter 2 imod3 modulation parameter 3 imod4 modulation parameter 4 */ opcode mel_currentmod, iiii, 0 icur = table:i(0, gimel_state) xout table:i(icur, gimel_mod1), table:i(icur, gimel_mod2), table:i(icur, gimel_mod3), table:i(icur, gimel_mod4) endop /* Get modulation parameters for current section kmod1, kmod2, kmod3, kmod4 mel_currentmod kmod1 modulation parameter 1 kmod2 modulation parameter 2 kmod3 modulation parameter 3 kmod4 modulation parameter 4 */ opcode mel_currentmod, kkkk, 0 kcur = table:k(0, gimel_state) xout table:k(kcur, gimel_mod1), table:k(kcur, gimel_mod2), table:k(kcur, gimel_mod3), table:k(kcur, gimel_mod4) endop /* Get a random midi note from the current section chord inote mel_randomnote inote random note from current chord */ opcode mel_randomnote, i, 0 ilen = table:i(0, gimel_current_notes) index = round(random(1, ilen-1)) xout table:i(index, gimel_current_notes) endop /* Get a random midi note from the current section chord knote mel_randomnote knote random note from current chord */ opcode mel_randomnote, k, 0 klen = table:k(0, gimel_current_notes) kindex = round:k(random:k(1, klen-1)) xout table:k(kindex, gimel_current_notes) endop /* Get the current section at k-rate ksection _mel_currentsectionget ksection current section */ opcode _mel_currentsectionget, k, 0 xout table:k(0, gimel_state) endop /* Get the next section at k-rate ksection _mel_nextsectionget ksection next section */ opcode _mel_nextsectionget, k, 0 xout table:k(0, gimel_future) endop /* Set the current section at k-rate _mel_currentsectionset ksection ksection current section to set */ opcode _mel_currentsectionset, 0, k ksection xin tablew ksection, 0, gimel_state endop /* Get the current section at init time isection _mel_currentsectionget usection current section */ opcode _mel_currentsectionget, i, 0 xout table:i(0, gimel_state) endop /* Get the length of the current section in seconds iseconds mel_length iseconds length in seconds */ opcode mel_length, i, 0 xout table:i(_mel_currentsectionget:i(), gimel_lengths) * i(gkseq_beattime) endop /* Get the length of the current section in seconds kseconds mel_length kseconds length in seconds */ opcode mel_length, k, 0 xout table:k(_mel_currentsectionget:k(), gimel_lengths) * gkseq_beattime endop /* Get the current MIDI note numbers as an array inotes[] mel_currentnotes inotes[] the note numbers */ opcode mel_currentnotes, i[], 0 ilen = table:i(0, gimel_current_notes) iout[] init ilen index = 0 while (index < ilen) do iout[index] = table:i(index+1, gimel_current_notes) index += 1 od xout iout endop /* Call Sinstrument when ktrig is fired, for each note (passed as p4) and the current section length accordingly mel_eachnote Sinstrument, ktrig[, klength = mel_length:k()] Sinstrument the instrument name to call ktrig trigger to active call klength duration of instrument to call, defaulting to mel_length:k() */ opcode mel_eachnote, 0, SkJ Sinstrument, ktrig, klength xin if (ktrig == 1) then kdur = (klength == -1 ) ? mel_length:k() : klength kindex = 0 while (kindex < table:k(0, gimel_current_notes)) do schedulek Sinstrument, 0, kdur, table:k(kindex + 1, gimel_current_notes) kindex += 1 od endif endop /* Get the most important entry from futures table kbestindex, kimportance, kbeats mel_future_mostimportant kbestindex index in gimel_future kimportance the importance measure kbeats number of beats until the event occurs */ opcode mel_future_mostimportant, kkk, 0 kindex = 0 kimportance = -9999 kbestindex = 0 kbeats = table:k(table:k(0, gimel_state), gimel_lengths) ; current duration base while (kindex < ftlen(gimel_future)) do ksection = table:k(kindex, gimel_future) kimportancetemp = table:k(ksection, gimel_importance) if (kimportancetemp > kimportance) then kimportance = kimportancetemp kbestindex = kindex endif kindex += 1 od kindex = 0 while (kindex < kbestindex) do kbeats += table:k(table:k(kindex, gimel_future), gimel_lengths) kindex += 1 od xout kbestindex, kimportance, kbeats ; * gkseq_beattime endop /* Get the most important entry from futures table ibestindex, iimportance, ibeats mel_future_mostimportant ibestindex index in gimel_future importance the importance measure ibeats number of beats until the event occurs */ opcode mel_future_mostimportant, iii, 0 index = 0 importance = -9999 ibestindex = 0 ibeats = table:i(table:i(0, gimel_state), gimel_lengths) ; current duration base while (index < ftlen(gimel_future)) do isection = table:i(index, gimel_future) importancetemp = table:i(isection, gimel_importance) if (importancetemp > importance) then importance = importancetemp ibestindex = index endif index += 1 od index = 0 while (index < ibestindex) do ibeats += table:i(table:i(index, gimel_future), gimel_lengths) index += 1 od xout ibestindex, importance, ibeats ; * i(gkseq_beattime) endop /* Calculate the next section from a given section knext _mel_calculatenext kcurrent knext the calculated next section index kcurrent the section index to base the calculation upon */ opcode _mel_calculatenext, k, k kthissection xin knextsection = -1 if (random:k(0, 1) <= table:k(kthissection, gimel_actionthreshold)) then knextaction = table:k(kthissection, gimel_action2) else knextaction = table:k(kthissection, gimel_action1) endif ; if current is not active, go to next ? kcurrentactive = table:k(kthissection, gimel_active) if (kcurrentactive == 0 && knextaction == 0) then knextaction = 1 endif ; same if (knextaction == 0) then knextsection = kthissection ; next or previous elseif (knextaction >= 1 && knextaction <= 3) then ; specified action kcount = 0 kactive = 0 knextsection = kthissection while (kactive == 0 && kcount < gimel_number) do ; loop until active section found or all sections checked if (knextaction == 1) then ; next if (knextsection + 1 > gimel_number - 1) then knextsection = 0 else knextsection += 1 endif elseif (knextaction == 2) then ; previous if (knextsection -1 < 0) then knextsection = gimel_number - 1 else knextsection -= 1 endif endif kactive = table:k(knextsection, gimel_active) kcount += 1 od ; random elseif (knextaction == 3) then kindex = 0 krandmax = 0 while (kindex < gimel_number) do if (table:k(kindex, gimel_active) == 1) then tablew kindex, krandmax, gimel_temp_random krandmax += 1 endif kindex += 1 od knextsection = table:k(round(random(0, krandmax - 1)), gimel_temp_random) ; specific section elseif (knextaction >= 4) then ; specific active pattern if (table:k(knextaction - 4, gimel_active) == 1) then knextsection = knextaction - 4 else knextsection = kthissection endif endif xout knextsection endop /* Set gimel_next_notes from the first entry in the futures table */ opcode _mel_setnextnotes, 0, 0 knext = table:k(0, gimel_future) chordmidibyindextof gimel_next_notes, table:k(knext, gimel_chords), table:k(knext, gimel_notes) endop /* Pop the next future entry from the futures table, move all future entries down one and add a new calculated entry accordingly kcurrent _mel_future_pop kcurrent the current section to be used now */ opcode _mel_future_pop, k, 0 imax = ftlen(gimel_future) kcurrent = table:k(0, gimel_future) kindex = 0 while (kindex < imax - 1) do tablew table:k(kindex + 1, gimel_future), kindex, gimel_future kindex += 1 od ; write new last entry tablew _mel_calculatenext(table:k(kindex, gimel_future)), imax - 1, gimel_future _mel_setnextnotes() xout kcurrent endop /* Recalculate the futures table (in the event of parameters being changed at runtime etc) */ opcode _mel_futures_refresh, 0, O kindexStart xin ; usually 0, can be a start index (ie 1 leaves the first entry in place) kindex = kindexStart imax = ftlen(gimel_future) ; TODO do first, etc while (kindex < imax) do if (kindex == 0) then kcurrent = table:k(0, gimel_state) ; 0 ; get current, rather than 0... else kcurrent = table:k(kindex - 1, gimel_future) endif tablew _mel_calculatenext(kcurrent), kindex, gimel_future kindex += 1 od _mel_setnextnotes() endop /* Set next section, for host control p4 section number to set as next */ instr mel_setnextsection isection = p4 if (table:i(isection, gimel_active) == 1) then tablew isection, 0, gimel_future gkmel_futures_refresh_trig = 2 endif turnoff endin /* Refresh the futures table, for host control */ instr mel_futures_refresh gkmel_futures_refresh_trig = 1 turnoff endin /* Randomise all section parameters */ opcode _mel_randomise, 0, 0 index = 0 iactives[] init 4 + gimel_lengths iactivenum = 4 while (index < gimel_number) do tablew round(random(0, lenarray(gSchords) - 1)), index, gimel_chords tablew round(random(4, 8)), index, gimel_lengths tablew round(random(48, 70)), index, gimel_notes tablew random(0, 1), index, gimel_actionthreshold tablew random(0, 1), index, gimel_importance tablew random(0, 1), index, gimel_mod1 tablew random(0, 1), index, gimel_mod2 tablew random(0, 1), index, gimel_mod3 tablew random(0, 1), index, gimel_mod4 iactive = round(random(0, 1)) if (iactive == 1) then iactives[iactivenum-1] = iactive iactivenum += 1 endif tablew iactive, index, gimel_active index += 1 od ; set next action to only active sections index = 0 while (index < gimel_number) do iaction1 = iactives[round(random(0, iactivenum))] iaction2 = iactives[round(random(0, iactivenum))] tablew iaction1, index, gimel_action1 tablew iaction2, index, gimel_action2 index += 1 od endop /* Randomise all section parameters and update the host */ instr mel_randomise _mel_randomise() gkmel_futures_refresh_trig = 1 event_i "i", "mel_updatehost", 0, 1 turnoff endin /* Pause progression, for host control */ instr mel_pause gkmel_pause = p4 turnoff endin /* Advance progression, for host control */ instr mel_advance gkmel_advance_trig = 1 turnoff endin /* Advance progression if paused, for host control */ instr mel_advanceifpaused if (gkmel_pause == 1) then gkmel_advance_trig = 1 endif turnoff endin opcode mel_nextchangelength, k, 0 kcurrent = _mel_currentsectionget:k() klength = table:k(kcurrent, gimel_lengths) imaxfutures = ftlen(gimel_future) kindex = 0 while (kindex < imaxfutures) do ksection = table:k(kindex, gimel_future) if (ksection != kcurrent) kgoto complete klength += table:k(ksection, gimel_lengths) kindex += 1 od complete: xout klength endop /* Initialise the sequencer sections; monitor for gkseq_beat triggers and change sections accordingly */ instr _mel_manager #ifndef MEL_HASINIT _mel_randomise() #end ksectionlength init 0 gkmel_futures_refresh_trig init 1 if (gkmel_futures_refresh_trig != 0) then _mel_futures_refresh(gkmel_futures_refresh_trig - 1) ; if gkmel_futures_refresh_trig is 2, then omit first, otherwise recalculate all gkmel_futures_refresh_trig = 0 ksectionlength = mel_nextchangelength:k() endif kstep init 0 gkmel_section_change = 0 kmanualadvance = 0 if (gkmel_advance_trig == 1) then kmanualadvance = 1 gkmel_advance_trig = 0 endif if ((gkseq_beat == 1 && gkmel_pause == 0) || kmanualadvance == 1) then if (kstep == 0 || kmanualadvance == 1) then kcurrent = _mel_currentsectionget:k() tablecopy gimel_current_notes, gimel_next_notes knew = _mel_future_pop:k() _mel_currentsectionset(knew) ; only send if actually changed if (kcurrent != knew) then io_send("mel_current", knew) ; send current (from next) gkmel_section_change = 1 ksectionlength = mel_nextchangelength:k() endif endif gkmel_section_change_due = ksectionlength - kstep if (kstep < ksectionlength - 1) then ; current step < current length kstep += 1 else kstep = 0 endif endif ; end each beat endin #ifndef MEL_HASINIT alwayson "_mel_manager" #end /* Extend the current notes and convert to frequency, multiplying by powers of two to be used in mel_tune ifreqs[] _mel_tune_noteprepare inotes[], imult ifreqs[] resulting frequencies inotes[] input midi note numbers imult number of times to multiply note contents */ opcode _mel_tune_noteprepare, i[], i[]i iarr[], imult xin inew[] init lenarray(iarr) * imult indexnew = 0 index = 0 while (index < lenarray(iarr)) do ifreq = cpsmidinn(iarr[index]) index2 = 0 while (index2 < imult) do if (index2 > 0) then inew[indexnew] = ifreq * (2* (index2+1)) else inew[indexnew] = ifreq endif index2 += 1 indexnew += 1 od index += 1 od xout inew endop /* Create a chord with the specified frequencies aout _mel_tune_chord ifreqs[] [, ifn, index] aout resulting chord ifreqs[] frequencies to play ifn wavetable to play with, default = gifnSine index internal index usage for recursion */ opcode _mel_tune_chord, a, i[]oo ifreqs[], ifn, index xin ifn = (ifn == 0) ? gifnSine : ifn aout = oscil(0.1, ifreqs[index], ifn) if (index < lenarray(ifreqs) - 1) then aout += _mel_tune_chord(ifreqs, ifn, index + 1) endif xout aout endop /* Stereo tuning to current melodic sequencer notes aoutL, aoutR mel_tune ainL, ainR, ifn, imult [, ifftrate, ifftdiv] aoutL, aoutR output audio ainL, ainR input audio ifn wavetable to use imult multiples of harmonics to generate in tuning ifftrate fft size, defaults to config default ifftdiv fft window division factor (eg 4, 8, 16), defaults to config default */ opcode mel_tune, aa, aaiioo aL, aR, ifn, imult, ifftrate, ifftdiv xin ifftrate = (ifftrate == 0) ? giFFTsize : ifftrate ifftdiv = (ifftdiv == 0) ? giFFTwinFactor : ifftdiv ifreqs[] _mel_tune_noteprepare mel_currentnotes(), imult fmods pvsanal _mel_tune_chord(ifreqs, ifn), ifftrate, ifftrate/ifftdiv, ifftrate, 1 fL1 pvsanal aL, ifftrate, ifftrate/ifftdiv, ifftrate, 1 fR1 pvsanal aR, ifftrate, ifftrate/ifftdiv, ifftrate, 1 fL2 pvsmorph fL1, fmods, 0, 1 fR2 pvsmorph fR1, fmods, 0, 1 aL1 pvsynth fL2 aR1 pvsynth fR2 idel = (ifftrate+2)/sr aL1 balance aL1, delay(aL, idel) aR1 balance aR1, delay(aR, idel) xout aL1, aR1 endop /* Experimental tonal balance of two signals aoutput balancetonal ain, aincomparator aoutput balanced signal ain signal to apply changes to aincomparator signal to 'extract' frequency contour from */ opcode balancetonal, a, aa ain, ainc xin aouts[] init 16 aouts[0] balance butterbp(ain, 100, 200), butterbp(ainc, 100, 200) ; 0 - 200 aouts[1] balance butterbp(ain, 400, 400), butterbp(ainc, 400, 400) ; 200 - 600 aouts[2] balance butterbp(ain, 800, 400), butterbp(ainc, 800, 400) ; 600 - 1000 aouts[3] balance butterbp(ain, 1200, 400), butterbp(ainc, 1200, 400) ; 1000 - 1400 aouts[4] balance butterbp(ain, 1700, 600), butterbp(ainc, 1700, 600) ; 1400 - 2000 aouts[5] balance butterbp(ain, 2400, 800), butterbp(ainc, 2400, 800) ; 2000 - 2800 aouts[6] balance butterbp(ain, 3200, 800), butterbp(ainc, 3200, 800) ; 2800 - 3600 aouts[7] balance butterbp(ain, 4200, 1200), butterbp(ainc, 4200, 1200) ; 3600 - 4800 aouts[8] balance butterbp(ain, 5400, 1200), butterbp(ainc, 5400, 1200) ; 4800 - 6000 aouts[9] balance butterbp(ain, 7000, 2000), butterbp(ainc, 7000, 2000) ; 6000 - 8000 aouts[10] balance butterbp(ain, 9000, 2000), butterbp(ainc, 9000, 2000) ; 8000 - 10000 aouts[11] balance butterbp(ain, 11000, 2000), butterbp(ainc, 11000, 2000) ; 10000 - 12000 aouts[12] balance butterbp(ain, 14000, 4000), butterbp(ainc, 14000, 4000) ; 12000 - 16000 aouts[13] balance butterbp(ain, 18000, 4000), butterbp(ainc, 18000, 4000) ; 16000 - 20000 aouts[14] balance butterhp(ain, 20000), butterhp(ainc, 20000) aout sumarray aouts xout aout endop #end